• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use super::plumbing::*;
2 use super::*;
3 use crate::math::div_round_up;
4 use std::iter;
5 use std::usize;
6 
7 /// `StepBy` is an iterator that skips `n` elements between each yield, where `n` is the given step.
8 /// This struct is created by the [`step_by()`] method on [`IndexedParallelIterator`]
9 ///
10 /// [`step_by()`]: trait.IndexedParallelIterator.html#method.step_by
11 /// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
12 #[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
13 #[derive(Debug, Clone)]
14 pub struct StepBy<I: IndexedParallelIterator> {
15     base: I,
16     step: usize,
17 }
18 
19 impl<I> StepBy<I>
20 where
21     I: IndexedParallelIterator,
22 {
23     /// Creates a new `StepBy` iterator.
new(base: I, step: usize) -> Self24     pub(super) fn new(base: I, step: usize) -> Self {
25         StepBy { base, step }
26     }
27 }
28 
29 impl<I> ParallelIterator for StepBy<I>
30 where
31     I: IndexedParallelIterator,
32 {
33     type Item = I::Item;
34 
drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,35     fn drive_unindexed<C>(self, consumer: C) -> C::Result
36     where
37         C: UnindexedConsumer<Self::Item>,
38     {
39         bridge(self, consumer)
40     }
41 
opt_len(&self) -> Option<usize>42     fn opt_len(&self) -> Option<usize> {
43         Some(self.len())
44     }
45 }
46 
47 impl<I> IndexedParallelIterator for StepBy<I>
48 where
49     I: IndexedParallelIterator,
50 {
drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result51     fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result {
52         bridge(self, consumer)
53     }
54 
len(&self) -> usize55     fn len(&self) -> usize {
56         div_round_up(self.base.len(), self.step)
57     }
58 
with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,59     fn with_producer<CB>(self, callback: CB) -> CB::Output
60     where
61         CB: ProducerCallback<Self::Item>,
62     {
63         let len = self.base.len();
64         return self.base.with_producer(Callback {
65             callback,
66             step: self.step,
67             len,
68         });
69 
70         struct Callback<CB> {
71             callback: CB,
72             step: usize,
73             len: usize,
74         }
75 
76         impl<T, CB> ProducerCallback<T> for Callback<CB>
77         where
78             CB: ProducerCallback<T>,
79         {
80             type Output = CB::Output;
81             fn callback<P>(self, base: P) -> CB::Output
82             where
83                 P: Producer<Item = T>,
84             {
85                 let producer = StepByProducer {
86                     base,
87                     step: self.step,
88                     len: self.len,
89                 };
90                 self.callback.callback(producer)
91             }
92         }
93     }
94 }
95 
96 /// ////////////////////////////////////////////////////////////////////////
97 /// Producer implementation
98 
99 struct StepByProducer<P> {
100     base: P,
101     step: usize,
102     len: usize,
103 }
104 
105 impl<P> Producer for StepByProducer<P>
106 where
107     P: Producer,
108 {
109     type Item = P::Item;
110     type IntoIter = iter::StepBy<P::IntoIter>;
111 
into_iter(self) -> Self::IntoIter112     fn into_iter(self) -> Self::IntoIter {
113         self.base.into_iter().step_by(self.step)
114     }
115 
split_at(self, index: usize) -> (Self, Self)116     fn split_at(self, index: usize) -> (Self, Self) {
117         let elem_index = Ord::min(index * self.step, self.len);
118 
119         let (left, right) = self.base.split_at(elem_index);
120         (
121             StepByProducer {
122                 base: left,
123                 step: self.step,
124                 len: elem_index,
125             },
126             StepByProducer {
127                 base: right,
128                 step: self.step,
129                 len: self.len - elem_index,
130             },
131         )
132     }
133 
min_len(&self) -> usize134     fn min_len(&self) -> usize {
135         div_round_up(self.base.min_len(), self.step)
136     }
137 
max_len(&self) -> usize138     fn max_len(&self) -> usize {
139         self.base.max_len() / self.step
140     }
141 }
142