• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#! /usr/bin/env perl
2# Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10######################################################################
11## Constant-time SSSE3 AES core implementation.
12## version 0.1
13##
14## By Mike Hamburg (Stanford University), 2009
15## Public domain.
16##
17## For details see http://shiftleft.org/papers/vector_aes/ and
18## http://crypto.stanford.edu/vpaes/.
19
20######################################################################
21# September 2011.
22#
23# Interface to OpenSSL as "almost" drop-in replacement for
24# aes-x86_64.pl. "Almost" refers to the fact that AES_cbc_encrypt
25# doesn't handle partial vectors (doesn't have to if called from
26# EVP only). "Drop-in" implies that this module doesn't share key
27# schedule structure with the original nor does it make assumption
28# about its alignment...
29#
30# Performance summary. aes-x86_64.pl column lists large-block CBC
31# encrypt/decrypt/with-hyper-threading-off(*) results in cycles per
32# byte processed with 128-bit key, and vpaes-x86_64.pl column -
33# [also large-block CBC] encrypt/decrypt.
34#
35#		aes-x86_64.pl		vpaes-x86_64.pl
36#
37# Core 2(**)	29.6/41.1/14.3		21.9/25.2(***)
38# Nehalem	29.6/40.3/14.6		10.0/11.8
39# Atom		57.3/74.2/32.1		60.9/77.2(***)
40# Silvermont	52.7/64.0/19.5		48.8/60.8(***)
41# Goldmont	38.9/49.0/17.8		10.6/12.6
42#
43# (*)	"Hyper-threading" in the context refers rather to cache shared
44#	among multiple cores, than to specifically Intel HTT. As vast
45#	majority of contemporary cores share cache, slower code path
46#	is common place. In other words "with-hyper-threading-off"
47#	results are presented mostly for reference purposes.
48#
49# (**)	"Core 2" refers to initial 65nm design, a.k.a. Conroe.
50#
51# (***)	Less impressive improvement on Core 2 and Atom is due to slow
52#	pshufb,	yet it's respectable +36%/62% improvement on Core 2
53#	(as implied, over "hyper-threading-safe" code path).
54#
55#						<appro@openssl.org>
56
57$flavour = shift;
58$output  = shift;
59if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
60
61$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
62
63$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
64( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
65( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or
66die "can't locate x86_64-xlate.pl";
67
68open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
69*STDOUT=*OUT;
70
71$PREFIX="vpaes";
72
73$code.=<<___;
74.text
75
76##
77##  _aes_encrypt_core
78##
79##  AES-encrypt %xmm0.
80##
81##  Inputs:
82##     %xmm0 = input
83##     %xmm9-%xmm15 as in _vpaes_preheat
84##    (%rdx) = scheduled keys
85##
86##  Output in %xmm0
87##  Clobbers  %xmm1-%xmm5, %r9, %r10, %r11, %rax
88##  Preserves %xmm6 - %xmm8 so you get some local vectors
89##
90##
91.type	_vpaes_encrypt_core,\@abi-omnipotent
92.align 16
93_vpaes_encrypt_core:
94.cfi_startproc
95	mov	%rdx,	%r9
96	mov	\$16,	%r11
97	mov	240(%rdx),%eax
98	movdqa	%xmm9,	%xmm1
99	movdqa	.Lk_ipt(%rip), %xmm2	# iptlo
100	pandn	%xmm0,	%xmm1
101	movdqu	(%r9),	%xmm5		# round0 key
102	psrld	\$4,	%xmm1
103	pand	%xmm9,	%xmm0
104	pshufb	%xmm0,	%xmm2
105	movdqa	.Lk_ipt+16(%rip), %xmm0	# ipthi
106	pshufb	%xmm1,	%xmm0
107	pxor	%xmm5,	%xmm2
108	add	\$16,	%r9
109	pxor	%xmm2,	%xmm0
110	lea	.Lk_mc_backward(%rip),%r10
111	jmp	.Lenc_entry
112
113.align 16
114.Lenc_loop:
115	# middle of middle round
116	movdqa  %xmm13,	%xmm4	# 4 : sb1u
117	movdqa  %xmm12,	%xmm0	# 0 : sb1t
118	pshufb  %xmm2,	%xmm4	# 4 = sb1u
119	pshufb  %xmm3,	%xmm0	# 0 = sb1t
120	pxor	%xmm5,	%xmm4	# 4 = sb1u + k
121	movdqa  %xmm15,	%xmm5	# 4 : sb2u
122	pxor	%xmm4,	%xmm0	# 0 = A
123	movdqa	-0x40(%r11,%r10), %xmm1		# .Lk_mc_forward[]
124	pshufb	%xmm2,	%xmm5	# 4 = sb2u
125	movdqa	(%r11,%r10), %xmm4		# .Lk_mc_backward[]
126	movdqa	%xmm14, %xmm2	# 2 : sb2t
127	pshufb	%xmm3,  %xmm2	# 2 = sb2t
128	movdqa	%xmm0,  %xmm3	# 3 = A
129	pxor	%xmm5,	%xmm2	# 2 = 2A
130	pshufb  %xmm1,  %xmm0	# 0 = B
131	add	\$16,	%r9	# next key
132	pxor	%xmm2,  %xmm0	# 0 = 2A+B
133	pshufb	%xmm4,	%xmm3	# 3 = D
134	add	\$16,	%r11	# next mc
135	pxor	%xmm0,	%xmm3	# 3 = 2A+B+D
136	pshufb  %xmm1,	%xmm0	# 0 = 2B+C
137	and	\$0x30,	%r11	# ... mod 4
138	sub	\$1,%rax	# nr--
139	pxor	%xmm3,	%xmm0	# 0 = 2A+3B+C+D
140
141.Lenc_entry:
142	# top of round
143	movdqa  %xmm9, 	%xmm1	# 1 : i
144	movdqa	%xmm11, %xmm5	# 2 : a/k
145	pandn	%xmm0, 	%xmm1	# 1 = i<<4
146	psrld	\$4,   	%xmm1   # 1 = i
147	pand	%xmm9, 	%xmm0   # 0 = k
148	pshufb  %xmm0,  %xmm5	# 2 = a/k
149	movdqa	%xmm10,	%xmm3  	# 3 : 1/i
150	pxor	%xmm1,	%xmm0	# 0 = j
151	pshufb  %xmm1, 	%xmm3  	# 3 = 1/i
152	movdqa	%xmm10,	%xmm4  	# 4 : 1/j
153	pxor	%xmm5, 	%xmm3  	# 3 = iak = 1/i + a/k
154	pshufb	%xmm0, 	%xmm4  	# 4 = 1/j
155	movdqa	%xmm10,	%xmm2  	# 2 : 1/iak
156	pxor	%xmm5, 	%xmm4  	# 4 = jak = 1/j + a/k
157	pshufb  %xmm3,	%xmm2  	# 2 = 1/iak
158	movdqa	%xmm10, %xmm3   # 3 : 1/jak
159	pxor	%xmm0, 	%xmm2  	# 2 = io
160	pshufb  %xmm4,  %xmm3   # 3 = 1/jak
161	movdqu	(%r9),	%xmm5
162	pxor	%xmm1,  %xmm3   # 3 = jo
163	jnz	.Lenc_loop
164
165	# middle of last round
166	movdqa	-0x60(%r10), %xmm4	# 3 : sbou	.Lk_sbo
167	movdqa	-0x50(%r10), %xmm0	# 0 : sbot	.Lk_sbo+16
168	pshufb  %xmm2,  %xmm4	# 4 = sbou
169	pxor	%xmm5,  %xmm4	# 4 = sb1u + k
170	pshufb  %xmm3,	%xmm0	# 0 = sb1t
171	movdqa	0x40(%r11,%r10), %xmm1		# .Lk_sr[]
172	pxor	%xmm4,	%xmm0	# 0 = A
173	pshufb	%xmm1,	%xmm0
174	ret
175.cfi_endproc
176.size	_vpaes_encrypt_core,.-_vpaes_encrypt_core
177
178##
179##  _aes_encrypt_core_2x
180##
181##  AES-encrypt %xmm0 and %xmm6 in parallel.
182##
183##  Inputs:
184##     %xmm0 and %xmm6 = input
185##     %xmm9 and %xmm10 as in _vpaes_preheat
186##    (%rdx) = scheduled keys
187##
188##  Output in %xmm0 and %xmm6
189##  Clobbers  %xmm1-%xmm5, %xmm7, %xmm8, %xmm11-%xmm13, %r9, %r10, %r11, %rax
190##  Preserves %xmm14 and %xmm15
191##
192##  This function stitches two parallel instances of _vpaes_encrypt_core. x86_64
193##  provides 16 XMM registers. _vpaes_encrypt_core computes over six registers
194##  (%xmm0-%xmm5) and additionally uses seven registers with preloaded constants
195##  from _vpaes_preheat (%xmm9-%xmm15). This does not quite fit two instances,
196##  so we spill some of %xmm9 through %xmm15 back to memory. We keep %xmm9 and
197##  %xmm10 in registers as these values are used several times in a row. The
198##  remainder are read once per round and are spilled to memory. This leaves two
199##  registers preserved for the caller.
200##
201##  Thus, of the two _vpaes_encrypt_core instances, the first uses (%xmm0-%xmm5)
202##  as before. The second uses %xmm6-%xmm8,%xmm11-%xmm13. (Add 6 to %xmm2 and
203##  below. Add 8 to %xmm3 and up.) Instructions in the second instance are
204##  indented by one space.
205##
206##
207.type	_vpaes_encrypt_core_2x,\@abi-omnipotent
208.align 16
209_vpaes_encrypt_core_2x:
210.cfi_startproc
211	mov	%rdx,	%r9
212	mov	\$16,	%r11
213	mov	240(%rdx),%eax
214	movdqa	%xmm9,	%xmm1
215	 movdqa	%xmm9,	%xmm7
216	movdqa	.Lk_ipt(%rip), %xmm2	# iptlo
217	 movdqa	%xmm2,	%xmm8
218	pandn	%xmm0,	%xmm1
219	 pandn	%xmm6,	%xmm7
220	movdqu	(%r9),	%xmm5		# round0 key
221	 # Also use %xmm5 in the second instance.
222	psrld	\$4,	%xmm1
223	 psrld	\$4,	%xmm7
224	pand	%xmm9,	%xmm0
225	 pand	%xmm9,	%xmm6
226	pshufb	%xmm0,	%xmm2
227	 pshufb	%xmm6,	%xmm8
228	movdqa	.Lk_ipt+16(%rip), %xmm0	# ipthi
229	 movdqa	%xmm0,	%xmm6
230	pshufb	%xmm1,	%xmm0
231	 pshufb	%xmm7,	%xmm6
232	pxor	%xmm5,	%xmm2
233	 pxor	%xmm5,	%xmm8
234	add	\$16,	%r9
235	pxor	%xmm2,	%xmm0
236	 pxor	%xmm8,	%xmm6
237	lea	.Lk_mc_backward(%rip),%r10
238	jmp	.Lenc2x_entry
239
240.align 16
241.Lenc2x_loop:
242	# middle of middle round
243	movdqa  .Lk_sb1(%rip),	%xmm4		# 4 : sb1u
244	movdqa  .Lk_sb1+16(%rip),%xmm0		# 0 : sb1t
245	 movdqa	%xmm4,	%xmm12
246	 movdqa	%xmm0,	%xmm6
247	pshufb  %xmm2,	%xmm4			# 4 = sb1u
248	 pshufb	%xmm8,	%xmm12
249	pshufb  %xmm3,	%xmm0			# 0 = sb1t
250	 pshufb	%xmm11,	%xmm6
251	pxor	%xmm5,	%xmm4			# 4 = sb1u + k
252	 pxor	%xmm5,	%xmm12
253	movdqa  .Lk_sb2(%rip),	%xmm5		# 4 : sb2u
254	 movdqa	%xmm5,	%xmm13
255	pxor	%xmm4,	%xmm0			# 0 = A
256	 pxor	%xmm12,	%xmm6
257	movdqa	-0x40(%r11,%r10), %xmm1		# .Lk_mc_forward[]
258	 # Also use %xmm1 in the second instance.
259	pshufb	%xmm2,	%xmm5			# 4 = sb2u
260	 pshufb	%xmm8,	%xmm13
261	movdqa	(%r11,%r10), %xmm4		# .Lk_mc_backward[]
262	 # Also use %xmm4 in the second instance.
263	movdqa	.Lk_sb2+16(%rip), %xmm2		# 2 : sb2t
264	 movdqa	%xmm2,	%xmm8
265	pshufb	%xmm3,  %xmm2			# 2 = sb2t
266	 pshufb	%xmm11,	%xmm8
267	movdqa	%xmm0,  %xmm3			# 3 = A
268	 movdqa	%xmm6,	%xmm11
269	pxor	%xmm5,	%xmm2			# 2 = 2A
270	 pxor	%xmm13,	%xmm8
271	pshufb  %xmm1,  %xmm0			# 0 = B
272	 pshufb	%xmm1,	%xmm6
273	add	\$16,	%r9			# next key
274	pxor	%xmm2,  %xmm0			# 0 = 2A+B
275	 pxor	%xmm8,	%xmm6
276	pshufb	%xmm4,	%xmm3			# 3 = D
277	 pshufb	%xmm4,	%xmm11
278	add	\$16,	%r11			# next mc
279	pxor	%xmm0,	%xmm3			# 3 = 2A+B+D
280	 pxor	%xmm6,	%xmm11
281	pshufb  %xmm1,	%xmm0			# 0 = 2B+C
282	 pshufb	%xmm1,	%xmm6
283	and	\$0x30,	%r11			# ... mod 4
284	sub	\$1,%rax			# nr--
285	pxor	%xmm3,	%xmm0			# 0 = 2A+3B+C+D
286	 pxor	%xmm11,	%xmm6
287
288.Lenc2x_entry:
289	# top of round
290	movdqa  %xmm9, 	%xmm1	# 1 : i
291	 movdqa	%xmm9,	%xmm7
292	movdqa	.Lk_inv+16(%rip), %xmm5	# 2 : a/k
293	 movdqa	%xmm5,	%xmm13
294	pandn	%xmm0, 	%xmm1	# 1 = i<<4
295	 pandn	%xmm6,	%xmm7
296	psrld	\$4,   	%xmm1   # 1 = i
297	 psrld	\$4,	%xmm7
298	pand	%xmm9, 	%xmm0   # 0 = k
299	 pand	%xmm9,	%xmm6
300	pshufb  %xmm0,  %xmm5	# 2 = a/k
301	 pshufb	%xmm6,	%xmm13
302	movdqa	%xmm10,	%xmm3  	# 3 : 1/i
303	 movdqa	%xmm10,	%xmm11
304	pxor	%xmm1,	%xmm0	# 0 = j
305	 pxor	%xmm7,	%xmm6
306	pshufb  %xmm1, 	%xmm3  	# 3 = 1/i
307	 pshufb	%xmm7,	%xmm11
308	movdqa	%xmm10,	%xmm4  	# 4 : 1/j
309	 movdqa	%xmm10,	%xmm12
310	pxor	%xmm5, 	%xmm3  	# 3 = iak = 1/i + a/k
311	 pxor	%xmm13,	%xmm11
312	pshufb	%xmm0, 	%xmm4  	# 4 = 1/j
313	 pshufb	%xmm6,	%xmm12
314	movdqa	%xmm10,	%xmm2  	# 2 : 1/iak
315	 movdqa	%xmm10,	%xmm8
316	pxor	%xmm5, 	%xmm4  	# 4 = jak = 1/j + a/k
317	 pxor	%xmm13,	%xmm12
318	pshufb  %xmm3,	%xmm2  	# 2 = 1/iak
319	 pshufb	%xmm11,	%xmm8
320	movdqa	%xmm10, %xmm3   # 3 : 1/jak
321	 movdqa	%xmm10,	%xmm11
322	pxor	%xmm0, 	%xmm2  	# 2 = io
323	 pxor	%xmm6,	%xmm8
324	pshufb  %xmm4,  %xmm3   # 3 = 1/jak
325	 pshufb	%xmm12,	%xmm11
326	movdqu	(%r9),	%xmm5
327	 # Also use %xmm5 in the second instance.
328	pxor	%xmm1,  %xmm3   # 3 = jo
329	 pxor	%xmm7,	%xmm11
330	jnz	.Lenc2x_loop
331
332	# middle of last round
333	movdqa	-0x60(%r10), %xmm4	# 3 : sbou	.Lk_sbo
334	movdqa	-0x50(%r10), %xmm0	# 0 : sbot	.Lk_sbo+16
335	 movdqa	%xmm4,	%xmm12
336	 movdqa	%xmm0,	%xmm6
337	pshufb  %xmm2,  %xmm4	# 4 = sbou
338	 pshufb	%xmm8,	%xmm12
339	pxor	%xmm5,  %xmm4	# 4 = sb1u + k
340	 pxor	%xmm5,	%xmm12
341	pshufb  %xmm3,	%xmm0	# 0 = sb1t
342	 pshufb	%xmm11,	%xmm6
343	movdqa	0x40(%r11,%r10), %xmm1		# .Lk_sr[]
344	 # Also use %xmm1 in the second instance.
345	pxor	%xmm4,	%xmm0	# 0 = A
346	 pxor	%xmm12,	%xmm6
347	pshufb	%xmm1,	%xmm0
348	 pshufb	%xmm1,	%xmm6
349	ret
350.cfi_endproc
351.size	_vpaes_encrypt_core_2x,.-_vpaes_encrypt_core_2x
352
353########################################################
354##                                                    ##
355##                  AES key schedule                  ##
356##                                                    ##
357########################################################
358.type	_vpaes_schedule_core,\@abi-omnipotent
359.align	16
360_vpaes_schedule_core:
361.cfi_startproc
362	# rdi = key
363	# rsi = size in bits
364	# rdx = buffer
365	# rcx = direction.  0=encrypt, 1=decrypt
366
367	call	_vpaes_preheat		# load the tables
368	movdqa	.Lk_rcon(%rip), %xmm8	# load rcon
369	movdqu	(%rdi),	%xmm0		# load key (unaligned)
370
371	# input transform
372	movdqa	%xmm0,	%xmm3
373	lea	.Lk_ipt(%rip), %r11
374	call	_vpaes_schedule_transform
375	movdqa	%xmm0,	%xmm7
376
377	lea	.Lk_sr(%rip),%r10
378
379	# encrypting, output zeroth round key after transform
380	movdqu	%xmm0,	(%rdx)
381
382.Lschedule_go:
383	cmp	\$192,	%esi
384	ja	.Lschedule_256
385	# 192-bit key support was removed.
386	# 128: fall though
387
388##
389##  .schedule_128
390##
391##  128-bit specific part of key schedule.
392##
393##  This schedule is really simple, because all its parts
394##  are accomplished by the subroutines.
395##
396.Lschedule_128:
397	mov	\$10, %esi
398
399.Loop_schedule_128:
400	call 	_vpaes_schedule_round
401	dec	%rsi
402	jz 	.Lschedule_mangle_last
403	call	_vpaes_schedule_mangle	# write output
404	jmp 	.Loop_schedule_128
405
406##
407##  .aes_schedule_256
408##
409##  256-bit specific part of key schedule.
410##
411##  The structure here is very similar to the 128-bit
412##  schedule, but with an additional "low side" in
413##  %xmm6.  The low side's rounds are the same as the
414##  high side's, except no rcon and no rotation.
415##
416.align	16
417.Lschedule_256:
418	movdqu	16(%rdi),%xmm0		# load key part 2 (unaligned)
419	call	_vpaes_schedule_transform	# input transform
420	mov	\$7, %esi
421
422.Loop_schedule_256:
423	call	_vpaes_schedule_mangle	# output low result
424	movdqa	%xmm0,	%xmm6		# save cur_lo in xmm6
425
426	# high round
427	call	_vpaes_schedule_round
428	dec	%rsi
429	jz 	.Lschedule_mangle_last
430	call	_vpaes_schedule_mangle
431
432	# low round. swap xmm7 and xmm6
433	pshufd	\$0xFF,	%xmm0,	%xmm0
434	movdqa	%xmm7,	%xmm5
435	movdqa	%xmm6,	%xmm7
436	call	_vpaes_schedule_low_round
437	movdqa	%xmm5,	%xmm7
438
439	jmp	.Loop_schedule_256
440
441
442##
443##  .aes_schedule_mangle_last
444##
445##  Mangler for last round of key schedule
446##  Mangles %xmm0
447##    when encrypting, outputs out(%xmm0) ^ 63
448##    when decrypting, outputs unskew(%xmm0)
449##
450##  Always called right before return... jumps to cleanup and exits
451##
452.align	16
453.Lschedule_mangle_last:
454	# schedule last round key from xmm0
455	lea	.Lk_deskew(%rip),%r11	# prepare to deskew
456
457	# encrypting
458	movdqa	(%r8,%r10),%xmm1
459	pshufb	%xmm1,	%xmm0		# output permute
460	lea	.Lk_opt(%rip),	%r11	# prepare to output transform
461	add	\$32,	%rdx
462
463.Lschedule_mangle_last_dec:
464	add	\$-16,	%rdx
465	pxor	.Lk_s63(%rip),	%xmm0
466	call	_vpaes_schedule_transform # output transform
467	movdqu	%xmm0,	(%rdx)		# save last key
468
469	# cleanup
470	pxor	%xmm0,  %xmm0
471	pxor	%xmm1,  %xmm1
472	pxor	%xmm2,  %xmm2
473	pxor	%xmm3,  %xmm3
474	pxor	%xmm4,  %xmm4
475	pxor	%xmm5,  %xmm5
476	pxor	%xmm6,  %xmm6
477	pxor	%xmm7,  %xmm7
478	ret
479.cfi_endproc
480.size	_vpaes_schedule_core,.-_vpaes_schedule_core
481
482##
483##  .aes_schedule_round
484##
485##  Runs one main round of the key schedule on %xmm0, %xmm7
486##
487##  Specifically, runs subbytes on the high dword of %xmm0
488##  then rotates it by one byte and xors into the low dword of
489##  %xmm7.
490##
491##  Adds rcon from low byte of %xmm8, then rotates %xmm8 for
492##  next rcon.
493##
494##  Smears the dwords of %xmm7 by xoring the low into the
495##  second low, result into third, result into highest.
496##
497##  Returns results in %xmm7 = %xmm0.
498##  Clobbers %xmm1-%xmm4, %r11.
499##
500.type	_vpaes_schedule_round,\@abi-omnipotent
501.align	16
502_vpaes_schedule_round:
503.cfi_startproc
504	# extract rcon from xmm8
505	pxor	%xmm1,	%xmm1
506	palignr	\$15,	%xmm8,	%xmm1
507	palignr	\$15,	%xmm8,	%xmm8
508	pxor	%xmm1,	%xmm7
509
510	# rotate
511	pshufd	\$0xFF,	%xmm0,	%xmm0
512	palignr	\$1,	%xmm0,	%xmm0
513
514	# fall through...
515
516	# low round: same as high round, but no rotation and no rcon.
517_vpaes_schedule_low_round:
518	# smear xmm7
519	movdqa	%xmm7,	%xmm1
520	pslldq	\$4,	%xmm7
521	pxor	%xmm1,	%xmm7
522	movdqa	%xmm7,	%xmm1
523	pslldq	\$8,	%xmm7
524	pxor	%xmm1,	%xmm7
525	pxor	.Lk_s63(%rip), %xmm7
526
527	# subbytes
528	movdqa  %xmm9, 	%xmm1
529	pandn	%xmm0, 	%xmm1
530	psrld	\$4,    %xmm1		# 1 = i
531	pand	%xmm9, 	%xmm0		# 0 = k
532	movdqa	%xmm11, %xmm2		# 2 : a/k
533	pshufb  %xmm0,  %xmm2		# 2 = a/k
534	pxor	%xmm1,	%xmm0		# 0 = j
535	movdqa	%xmm10,	%xmm3		# 3 : 1/i
536	pshufb  %xmm1, 	%xmm3		# 3 = 1/i
537	pxor	%xmm2, 	%xmm3		# 3 = iak = 1/i + a/k
538	movdqa	%xmm10,	%xmm4		# 4 : 1/j
539	pshufb	%xmm0, 	%xmm4		# 4 = 1/j
540	pxor	%xmm2, 	%xmm4		# 4 = jak = 1/j + a/k
541	movdqa	%xmm10,	%xmm2		# 2 : 1/iak
542	pshufb  %xmm3,	%xmm2		# 2 = 1/iak
543	pxor	%xmm0, 	%xmm2		# 2 = io
544	movdqa	%xmm10, %xmm3		# 3 : 1/jak
545	pshufb  %xmm4,  %xmm3		# 3 = 1/jak
546	pxor	%xmm1,  %xmm3		# 3 = jo
547	movdqa	%xmm13, %xmm4		# 4 : sbou
548	pshufb  %xmm2,  %xmm4		# 4 = sbou
549	movdqa	%xmm12, %xmm0		# 0 : sbot
550	pshufb  %xmm3,	%xmm0		# 0 = sb1t
551	pxor	%xmm4, 	%xmm0		# 0 = sbox output
552
553	# add in smeared stuff
554	pxor	%xmm7,	%xmm0
555	movdqa	%xmm0,	%xmm7
556	ret
557.cfi_endproc
558.size	_vpaes_schedule_round,.-_vpaes_schedule_round
559
560##
561##  .aes_schedule_transform
562##
563##  Linear-transform %xmm0 according to tables at (%r11)
564##
565##  Requires that %xmm9 = 0x0F0F... as in preheat
566##  Output in %xmm0
567##  Clobbers %xmm1, %xmm2
568##
569.type	_vpaes_schedule_transform,\@abi-omnipotent
570.align	16
571_vpaes_schedule_transform:
572.cfi_startproc
573	movdqa	%xmm9,	%xmm1
574	pandn	%xmm0,	%xmm1
575	psrld	\$4,	%xmm1
576	pand	%xmm9,	%xmm0
577	movdqa	(%r11), %xmm2 	# lo
578	pshufb	%xmm0,	%xmm2
579	movdqa	16(%r11), %xmm0 # hi
580	pshufb	%xmm1,	%xmm0
581	pxor	%xmm2,	%xmm0
582	ret
583.cfi_endproc
584.size	_vpaes_schedule_transform,.-_vpaes_schedule_transform
585
586##
587##  .aes_schedule_mangle
588##
589##  Mangle xmm0 from (basis-transformed) standard version
590##  to our version.
591##
592##  On encrypt,
593##    xor with 0x63
594##    multiply by circulant 0,1,1,1
595##    apply shiftrows transform
596##
597##  On decrypt,
598##    xor with 0x63
599##    multiply by "inverse mixcolumns" circulant E,B,D,9
600##    deskew
601##    apply shiftrows transform
602##
603##
604##  Writes out to (%rdx), and increments or decrements it
605##  Keeps track of round number mod 4 in %r8
606##  Preserves xmm0
607##  Clobbers xmm1-xmm5
608##
609.type	_vpaes_schedule_mangle,\@abi-omnipotent
610.align	16
611_vpaes_schedule_mangle:
612.cfi_startproc
613	movdqa	%xmm0,	%xmm4	# save xmm0 for later
614	movdqa	.Lk_mc_forward(%rip),%xmm5
615
616	# encrypting
617	add	\$16,	%rdx
618	pxor	.Lk_s63(%rip),%xmm4
619	pshufb	%xmm5,	%xmm4
620	movdqa	%xmm4,	%xmm3
621	pshufb	%xmm5,	%xmm4
622	pxor	%xmm4,	%xmm3
623	pshufb	%xmm5,	%xmm4
624	pxor	%xmm4,	%xmm3
625
626.Lschedule_mangle_both:
627	movdqa	(%r8,%r10),%xmm1
628	pshufb	%xmm1,%xmm3
629	add	\$-16,	%r8
630	and	\$0x30,	%r8
631	movdqu	%xmm3,	(%rdx)
632	ret
633.cfi_endproc
634.size	_vpaes_schedule_mangle,.-_vpaes_schedule_mangle
635
636#
637# Interface to OpenSSL
638#
639.globl	${PREFIX}_set_encrypt_key
640.type	${PREFIX}_set_encrypt_key,\@function,3
641.align	16
642${PREFIX}_set_encrypt_key:
643.cfi_startproc
644	_CET_ENDBR
645#ifdef BORINGSSL_DISPATCH_TEST
646.extern        BORINGSSL_function_hit
647       movb \$1, BORINGSSL_function_hit+5(%rip)
648#endif
649
650___
651$code.=<<___ if ($win64);
652	lea	-0xb8(%rsp),%rsp
653	movaps	%xmm6,0x10(%rsp)
654	movaps	%xmm7,0x20(%rsp)
655	movaps	%xmm8,0x30(%rsp)
656	movaps	%xmm9,0x40(%rsp)
657	movaps	%xmm10,0x50(%rsp)
658	movaps	%xmm11,0x60(%rsp)
659	movaps	%xmm12,0x70(%rsp)
660	movaps	%xmm13,0x80(%rsp)
661	movaps	%xmm14,0x90(%rsp)
662	movaps	%xmm15,0xa0(%rsp)
663.Lenc_key_body:
664___
665$code.=<<___;
666	mov	%esi,%eax
667	shr	\$5,%eax
668	add	\$5,%eax
669	mov	%eax,240(%rdx)	# AES_KEY->rounds = nbits/32+5;
670
671	mov	\$0,%ecx
672	mov	\$0x30,%r8d
673	call	_vpaes_schedule_core
674___
675$code.=<<___ if ($win64);
676	movaps	0x10(%rsp),%xmm6
677	movaps	0x20(%rsp),%xmm7
678	movaps	0x30(%rsp),%xmm8
679	movaps	0x40(%rsp),%xmm9
680	movaps	0x50(%rsp),%xmm10
681	movaps	0x60(%rsp),%xmm11
682	movaps	0x70(%rsp),%xmm12
683	movaps	0x80(%rsp),%xmm13
684	movaps	0x90(%rsp),%xmm14
685	movaps	0xa0(%rsp),%xmm15
686	lea	0xb8(%rsp),%rsp
687.Lenc_key_epilogue:
688___
689$code.=<<___;
690	xor	%eax,%eax
691	ret
692.cfi_endproc
693.size	${PREFIX}_set_encrypt_key,.-${PREFIX}_set_encrypt_key
694
695.globl	${PREFIX}_encrypt
696.type	${PREFIX}_encrypt,\@function,3
697.align	16
698${PREFIX}_encrypt:
699.cfi_startproc
700	_CET_ENDBR
701#ifdef BORINGSSL_DISPATCH_TEST
702.extern        BORINGSSL_function_hit
703       movb \$1, BORINGSSL_function_hit+4(%rip)
704#endif
705___
706$code.=<<___ if ($win64);
707	lea	-0xb8(%rsp),%rsp
708	movaps	%xmm6,0x10(%rsp)
709	movaps	%xmm7,0x20(%rsp)
710	movaps	%xmm8,0x30(%rsp)
711	movaps	%xmm9,0x40(%rsp)
712	movaps	%xmm10,0x50(%rsp)
713	movaps	%xmm11,0x60(%rsp)
714	movaps	%xmm12,0x70(%rsp)
715	movaps	%xmm13,0x80(%rsp)
716	movaps	%xmm14,0x90(%rsp)
717	movaps	%xmm15,0xa0(%rsp)
718.Lenc_body:
719___
720$code.=<<___;
721	movdqu	(%rdi),%xmm0
722	call	_vpaes_preheat
723	call	_vpaes_encrypt_core
724	movdqu	%xmm0,(%rsi)
725___
726$code.=<<___ if ($win64);
727	movaps	0x10(%rsp),%xmm6
728	movaps	0x20(%rsp),%xmm7
729	movaps	0x30(%rsp),%xmm8
730	movaps	0x40(%rsp),%xmm9
731	movaps	0x50(%rsp),%xmm10
732	movaps	0x60(%rsp),%xmm11
733	movaps	0x70(%rsp),%xmm12
734	movaps	0x80(%rsp),%xmm13
735	movaps	0x90(%rsp),%xmm14
736	movaps	0xa0(%rsp),%xmm15
737	lea	0xb8(%rsp),%rsp
738.Lenc_epilogue:
739___
740$code.=<<___;
741	ret
742.cfi_endproc
743.size	${PREFIX}_encrypt,.-${PREFIX}_encrypt
744___
745{
746my ($inp,$out,$blocks,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx","%r8");
747# void vpaes_ctr32_encrypt_blocks(const uint8_t *inp, uint8_t *out,
748#                                 size_t blocks, const AES_KEY *key,
749#                                 const uint8_t ivp[16]);
750$code.=<<___;
751.globl	${PREFIX}_ctr32_encrypt_blocks
752.type	${PREFIX}_ctr32_encrypt_blocks,\@function,5
753.align	16
754${PREFIX}_ctr32_encrypt_blocks:
755.cfi_startproc
756	_CET_ENDBR
757	# _vpaes_encrypt_core and _vpaes_encrypt_core_2x expect the key in %rdx.
758	xchg	$key, $blocks
759___
760($blocks,$key)=($key,$blocks);
761$code.=<<___;
762	test	$blocks, $blocks
763	jz	.Lctr32_abort
764___
765$code.=<<___ if ($win64);
766	lea	-0xb8(%rsp),%rsp
767	movaps	%xmm6,0x10(%rsp)
768	movaps	%xmm7,0x20(%rsp)
769	movaps	%xmm8,0x30(%rsp)
770	movaps	%xmm9,0x40(%rsp)
771	movaps	%xmm10,0x50(%rsp)
772	movaps	%xmm11,0x60(%rsp)
773	movaps	%xmm12,0x70(%rsp)
774	movaps	%xmm13,0x80(%rsp)
775	movaps	%xmm14,0x90(%rsp)
776	movaps	%xmm15,0xa0(%rsp)
777.Lctr32_body:
778___
779$code.=<<___;
780	movdqu	($ivp), %xmm0		# Load IV.
781	movdqa	.Lctr_add_one(%rip), %xmm8
782	sub	$inp, $out		# This allows only incrementing $inp.
783	call	_vpaes_preheat
784	movdqa	%xmm0, %xmm6
785	pshufb	.Lrev_ctr(%rip), %xmm6
786
787	test	\$1, $blocks
788	jz	.Lctr32_prep_loop
789
790	# Handle one block so the remaining block count is even for
791	# _vpaes_encrypt_core_2x.
792	movdqu	($inp), %xmm7		# Load input.
793	call	_vpaes_encrypt_core
794	pxor	%xmm7, %xmm0
795	paddd	%xmm8, %xmm6
796	movdqu	%xmm0, ($out,$inp)
797	sub	\$1, $blocks
798	lea	16($inp), $inp
799	jz	.Lctr32_done
800
801.Lctr32_prep_loop:
802	# _vpaes_encrypt_core_2x leaves only %xmm14 and %xmm15 as spare
803	# registers. We maintain two byte-swapped counters in them.
804	movdqa	%xmm6, %xmm14
805	movdqa	%xmm6, %xmm15
806	paddd	%xmm8, %xmm15
807
808.Lctr32_loop:
809	movdqa	.Lrev_ctr(%rip), %xmm1	# Set up counters.
810	movdqa	%xmm14, %xmm0
811	movdqa	%xmm15, %xmm6
812	pshufb	%xmm1, %xmm0
813	pshufb	%xmm1, %xmm6
814	call	_vpaes_encrypt_core_2x
815	movdqu	($inp), %xmm1		# Load input.
816	movdqu	16($inp), %xmm2
817	movdqa	.Lctr_add_two(%rip), %xmm3
818	pxor	%xmm1, %xmm0		# XOR input.
819	pxor	%xmm2, %xmm6
820	paddd	%xmm3, %xmm14		# Increment counters.
821	paddd	%xmm3, %xmm15
822	movdqu	%xmm0, ($out,$inp)	# Write output.
823	movdqu	%xmm6, 16($out,$inp)
824	sub	\$2, $blocks		# Advance loop.
825	lea	32($inp), $inp
826	jnz	.Lctr32_loop
827
828.Lctr32_done:
829___
830$code.=<<___ if ($win64);
831	movaps	0x10(%rsp),%xmm6
832	movaps	0x20(%rsp),%xmm7
833	movaps	0x30(%rsp),%xmm8
834	movaps	0x40(%rsp),%xmm9
835	movaps	0x50(%rsp),%xmm10
836	movaps	0x60(%rsp),%xmm11
837	movaps	0x70(%rsp),%xmm12
838	movaps	0x80(%rsp),%xmm13
839	movaps	0x90(%rsp),%xmm14
840	movaps	0xa0(%rsp),%xmm15
841	lea	0xb8(%rsp),%rsp
842.Lctr32_epilogue:
843___
844$code.=<<___;
845.Lctr32_abort:
846	ret
847.cfi_endproc
848.size	${PREFIX}_ctr32_encrypt_blocks,.-${PREFIX}_ctr32_encrypt_blocks
849___
850}
851$code.=<<___;
852##
853##  _aes_preheat
854##
855##  Fills register %r10 -> .aes_consts (so you can -fPIC)
856##  and %xmm9-%xmm15 as specified below.
857##
858.type	_vpaes_preheat,\@abi-omnipotent
859.align	16
860_vpaes_preheat:
861.cfi_startproc
862	lea	.Lk_s0F(%rip), %r10
863	movdqa	-0x20(%r10), %xmm10	# .Lk_inv
864	movdqa	-0x10(%r10), %xmm11	# .Lk_inv+16
865	movdqa	0x00(%r10), %xmm9	# .Lk_s0F
866	movdqa	0x30(%r10), %xmm13	# .Lk_sb1
867	movdqa	0x40(%r10), %xmm12	# .Lk_sb1+16
868	movdqa	0x50(%r10), %xmm15	# .Lk_sb2
869	movdqa	0x60(%r10), %xmm14	# .Lk_sb2+16
870	ret
871.cfi_endproc
872.size	_vpaes_preheat,.-_vpaes_preheat
873########################################################
874##                                                    ##
875##                     Constants                      ##
876##                                                    ##
877########################################################
878.type	_vpaes_consts,\@object
879.section .rodata
880.align	64
881_vpaes_consts:
882.Lk_inv:	# inv, inva
883	.quad	0x0E05060F0D080180, 0x040703090A0B0C02
884	.quad	0x01040A060F0B0780, 0x030D0E0C02050809
885
886.Lk_s0F:	# s0F
887	.quad	0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F0F0F0F0F
888
889.Lk_ipt:	# input transform (lo, hi)
890	.quad	0xC2B2E8985A2A7000, 0xCABAE09052227808
891	.quad	0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
892
893.Lk_sb1:	# sb1u, sb1t
894	.quad	0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
895	.quad	0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
896.Lk_sb2:	# sb2u, sb2t
897	.quad	0xE27A93C60B712400, 0x5EB7E955BC982FCD
898	.quad	0x69EB88400AE12900, 0xC2A163C8AB82234A
899.Lk_sbo:	# sbou, sbot
900	.quad	0xD0D26D176FBDC700, 0x15AABF7AC502A878
901	.quad	0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
902
903.Lk_mc_forward:	# mc_forward
904	.quad	0x0407060500030201, 0x0C0F0E0D080B0A09
905	.quad	0x080B0A0904070605, 0x000302010C0F0E0D
906	.quad	0x0C0F0E0D080B0A09, 0x0407060500030201
907	.quad	0x000302010C0F0E0D, 0x080B0A0904070605
908
909.Lk_mc_backward:# mc_backward
910	.quad	0x0605040702010003, 0x0E0D0C0F0A09080B
911	.quad	0x020100030E0D0C0F, 0x0A09080B06050407
912	.quad	0x0E0D0C0F0A09080B, 0x0605040702010003
913	.quad	0x0A09080B06050407, 0x020100030E0D0C0F
914
915.Lk_sr:		# sr
916	.quad	0x0706050403020100, 0x0F0E0D0C0B0A0908
917	.quad	0x030E09040F0A0500, 0x0B06010C07020D08
918	.quad	0x0F060D040B020900, 0x070E050C030A0108
919	.quad	0x0B0E0104070A0D00, 0x0306090C0F020508
920
921.Lk_rcon:	# rcon
922	.quad	0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
923
924.Lk_s63:	# s63: all equal to 0x63 transformed
925	.quad	0x5B5B5B5B5B5B5B5B, 0x5B5B5B5B5B5B5B5B
926
927.Lk_opt:	# output transform
928	.quad	0xFF9F4929D6B66000, 0xF7974121DEBE6808
929	.quad	0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
930
931.Lk_deskew:	# deskew tables: inverts the sbox's "skew"
932	.quad	0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
933	.quad	0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
934
935# .Lrev_ctr is a permutation which byte-swaps the counter portion of the IV.
936.Lrev_ctr:
937	.quad	0x0706050403020100, 0x0c0d0e0f0b0a0908
938# .Lctr_add_* may be added to a byte-swapped xmm register to increment the
939# counter. The register must be byte-swapped again to form the actual input.
940.Lctr_add_one:
941	.quad	0x0000000000000000, 0x0000000100000000
942.Lctr_add_two:
943	.quad	0x0000000000000000, 0x0000000200000000
944
945.asciz	"Vector Permutation AES for x86_64/SSSE3, Mike Hamburg (Stanford University)"
946.align	64
947.size	_vpaes_consts,.-_vpaes_consts
948.text
949___
950
951if ($win64) {
952# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
953#		CONTEXT *context,DISPATCHER_CONTEXT *disp)
954$rec="%rcx";
955$frame="%rdx";
956$context="%r8";
957$disp="%r9";
958
959$code.=<<___;
960.extern	__imp_RtlVirtualUnwind
961.type	se_handler,\@abi-omnipotent
962.align	16
963se_handler:
964	push	%rsi
965	push	%rdi
966	push	%rbx
967	push	%rbp
968	push	%r12
969	push	%r13
970	push	%r14
971	push	%r15
972	pushfq
973	sub	\$64,%rsp
974
975	mov	120($context),%rax	# pull context->Rax
976	mov	248($context),%rbx	# pull context->Rip
977
978	mov	8($disp),%rsi		# disp->ImageBase
979	mov	56($disp),%r11		# disp->HandlerData
980
981	mov	0(%r11),%r10d		# HandlerData[0]
982	lea	(%rsi,%r10),%r10	# prologue label
983	cmp	%r10,%rbx		# context->Rip<prologue label
984	jb	.Lin_prologue
985
986	mov	152($context),%rax	# pull context->Rsp
987
988	mov	4(%r11),%r10d		# HandlerData[1]
989	lea	(%rsi,%r10),%r10	# epilogue label
990	cmp	%r10,%rbx		# context->Rip>=epilogue label
991	jae	.Lin_prologue
992
993	lea	16(%rax),%rsi		# %xmm save area
994	lea	512($context),%rdi	# &context.Xmm6
995	mov	\$20,%ecx		# 10*sizeof(%xmm0)/sizeof(%rax)
996	.long	0xa548f3fc		# cld; rep movsq
997	lea	0xb8(%rax),%rax		# adjust stack pointer
998
999.Lin_prologue:
1000	mov	8(%rax),%rdi
1001	mov	16(%rax),%rsi
1002	mov	%rax,152($context)	# restore context->Rsp
1003	mov	%rsi,168($context)	# restore context->Rsi
1004	mov	%rdi,176($context)	# restore context->Rdi
1005
1006	mov	40($disp),%rdi		# disp->ContextRecord
1007	mov	$context,%rsi		# context
1008	mov	\$`1232/8`,%ecx		# sizeof(CONTEXT)
1009	.long	0xa548f3fc		# cld; rep movsq
1010
1011	mov	$disp,%rsi
1012	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
1013	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
1014	mov	0(%rsi),%r8		# arg3, disp->ControlPc
1015	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
1016	mov	40(%rsi),%r10		# disp->ContextRecord
1017	lea	56(%rsi),%r11		# &disp->HandlerData
1018	lea	24(%rsi),%r12		# &disp->EstablisherFrame
1019	mov	%r10,32(%rsp)		# arg5
1020	mov	%r11,40(%rsp)		# arg6
1021	mov	%r12,48(%rsp)		# arg7
1022	mov	%rcx,56(%rsp)		# arg8, (NULL)
1023	call	*__imp_RtlVirtualUnwind(%rip)
1024
1025	mov	\$1,%eax		# ExceptionContinueSearch
1026	add	\$64,%rsp
1027	popfq
1028	pop	%r15
1029	pop	%r14
1030	pop	%r13
1031	pop	%r12
1032	pop	%rbp
1033	pop	%rbx
1034	pop	%rdi
1035	pop	%rsi
1036	ret
1037.size	se_handler,.-se_handler
1038
1039.section	.pdata
1040.align	4
1041	.rva	.LSEH_begin_${PREFIX}_set_encrypt_key
1042	.rva	.LSEH_end_${PREFIX}_set_encrypt_key
1043	.rva	.LSEH_info_${PREFIX}_set_encrypt_key
1044
1045	.rva	.LSEH_begin_${PREFIX}_encrypt
1046	.rva	.LSEH_end_${PREFIX}_encrypt
1047	.rva	.LSEH_info_${PREFIX}_encrypt
1048	.rva	.LSEH_begin_${PREFIX}_ctr32_encrypt_blocks
1049	.rva	.LSEH_end_${PREFIX}_ctr32_encrypt_blocks
1050	.rva	.LSEH_info_${PREFIX}_ctr32_encrypt_blocks
1051
1052.section	.xdata
1053.align	8
1054.LSEH_info_${PREFIX}_set_encrypt_key:
1055	.byte	9,0,0,0
1056	.rva	se_handler
1057	.rva	.Lenc_key_body,.Lenc_key_epilogue	# HandlerData[]
1058.LSEH_info_${PREFIX}_encrypt:
1059	.byte	9,0,0,0
1060	.rva	se_handler
1061	.rva	.Lenc_body,.Lenc_epilogue		# HandlerData[]
1062.LSEH_info_${PREFIX}_ctr32_encrypt_blocks:
1063	.byte	9,0,0,0
1064	.rva	se_handler
1065	.rva	.Lctr32_body,.Lctr32_epilogue		# HandlerData[]
1066___
1067}
1068
1069$code =~ s/\`([^\`]*)\`/eval($1)/gem;
1070
1071print $code;
1072
1073close STDOUT or die "error closing STDOUT: $!";
1074