• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Adapted from https://github.com/Alexhuszagh/rust-lexical.
2 
3 //! Estimate the error in an 80-bit approximation of a float.
4 //!
5 //! This estimates the error in a floating-point representation.
6 //!
7 //! This implementation is loosely based off the Golang implementation,
8 //! found here: <https://golang.org/src/strconv/atof.go>
9 
10 use super::float::*;
11 use super::num::*;
12 use super::rounding::*;
13 
14 pub(crate) trait FloatErrors {
15     /// Get the full error scale.
error_scale() -> u3216     fn error_scale() -> u32;
17     /// Get the half error scale.
error_halfscale() -> u3218     fn error_halfscale() -> u32;
19     /// Determine if the number of errors is tolerable for float precision.
error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool20     fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool;
21 }
22 
23 /// Check if the error is accurate with a round-nearest rounding scheme.
24 #[inline]
nearest_error_is_accurate(errors: u64, fp: &ExtendedFloat, extrabits: u64) -> bool25 fn nearest_error_is_accurate(errors: u64, fp: &ExtendedFloat, extrabits: u64) -> bool {
26     // Round-to-nearest, need to use the halfway point.
27     if extrabits == 65 {
28         // Underflow, we have a shift larger than the mantissa.
29         // Representation is valid **only** if the value is close enough
30         // overflow to the next bit within errors. If it overflows,
31         // the representation is **not** valid.
32         !fp.mant.overflowing_add(errors).1
33     } else {
34         let mask: u64 = lower_n_mask(extrabits);
35         let extra: u64 = fp.mant & mask;
36 
37         // Round-to-nearest, need to check if we're close to halfway.
38         // IE, b10100 | 100000, where `|` signifies the truncation point.
39         let halfway: u64 = lower_n_halfway(extrabits);
40         let cmp1 = halfway.wrapping_sub(errors) < extra;
41         let cmp2 = extra < halfway.wrapping_add(errors);
42 
43         // If both comparisons are true, we have significant rounding error,
44         // and the value cannot be exactly represented. Otherwise, the
45         // representation is valid.
46         !(cmp1 && cmp2)
47     }
48 }
49 
50 impl FloatErrors for u64 {
51     #[inline]
error_scale() -> u3252     fn error_scale() -> u32 {
53         8
54     }
55 
56     #[inline]
error_halfscale() -> u3257     fn error_halfscale() -> u32 {
58         u64::error_scale() / 2
59     }
60 
61     #[inline]
error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool62     fn error_is_accurate<F: Float>(count: u32, fp: &ExtendedFloat) -> bool {
63         // Determine if extended-precision float is a good approximation.
64         // If the error has affected too many units, the float will be
65         // inaccurate, or if the representation is too close to halfway
66         // that any operations could affect this halfway representation.
67         // See the documentation for dtoa for more information.
68         let bias = -(F::EXPONENT_BIAS - F::MANTISSA_SIZE);
69         let denormal_exp = bias - 63;
70         // This is always a valid u32, since (denormal_exp - fp.exp)
71         // will always be positive and the significand size is {23, 52}.
72         let extrabits = if fp.exp <= denormal_exp {
73             64 - F::MANTISSA_SIZE + denormal_exp - fp.exp
74         } else {
75             63 - F::MANTISSA_SIZE
76         };
77 
78         // Our logic is as follows: we want to determine if the actual
79         // mantissa and the errors during calculation differ significantly
80         // from the rounding point. The rounding point for round-nearest
81         // is the halfway point, IE, this when the truncated bits start
82         // with b1000..., while the rounding point for the round-toward
83         // is when the truncated bits are equal to 0.
84         // To do so, we can check whether the rounding point +/- the error
85         // are >/< the actual lower n bits.
86         //
87         // For whether we need to use signed or unsigned types for this
88         // analysis, see this example, using u8 rather than u64 to simplify
89         // things.
90         //
91         // # Comparisons
92         //      cmp1 = (halfway - errors) < extra
93         //      cmp1 = extra < (halfway + errors)
94         //
95         // # Large Extrabits, Low Errors
96         //
97         //      extrabits = 8
98         //      halfway          =  0b10000000
99         //      extra            =  0b10000010
100         //      errors           =  0b00000100
101         //      halfway - errors =  0b01111100
102         //      halfway + errors =  0b10000100
103         //
104         //      Unsigned:
105         //          halfway - errors = 124
106         //          halfway + errors = 132
107         //          extra            = 130
108         //          cmp1             = true
109         //          cmp2             = true
110         //      Signed:
111         //          halfway - errors = 124
112         //          halfway + errors = -124
113         //          extra            = -126
114         //          cmp1             = false
115         //          cmp2             = true
116         //
117         // # Conclusion
118         //
119         // Since errors will always be small, and since we want to detect
120         // if the representation is accurate, we need to use an **unsigned**
121         // type for comparisons.
122 
123         let extrabits = extrabits as u64;
124         let errors = count as u64;
125         if extrabits > 65 {
126             // Underflow, we have a literal 0.
127             return true;
128         }
129 
130         nearest_error_is_accurate(errors, fp, extrabits)
131     }
132 }
133