• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Parsing interface for parsing a token stream into a syntax tree node.
2 //!
3 //! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
4 //! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
5 //! these parser functions is a lower level mechanism built around the
6 //! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
7 //! tokens in a token stream.
8 //!
9 //! [`Result<T>`]: Result
10 //! [`Cursor`]: crate::buffer::Cursor
11 //!
12 //! # Example
13 //!
14 //! Here is a snippet of parsing code to get a feel for the style of the
15 //! library. We define data structures for a subset of Rust syntax including
16 //! enums (not shown) and structs, then provide implementations of the [`Parse`]
17 //! trait to parse these syntax tree data structures from a token stream.
18 //!
19 //! Once `Parse` impls have been defined, they can be called conveniently from a
20 //! procedural macro through [`parse_macro_input!`] as shown at the bottom of
21 //! the snippet. If the caller provides syntactically invalid input to the
22 //! procedural macro, they will receive a helpful compiler error message
23 //! pointing out the exact token that triggered the failure to parse.
24 //!
25 //! [`parse_macro_input!`]: crate::parse_macro_input!
26 //!
27 //! ```
28 //! # extern crate proc_macro;
29 //! #
30 //! use proc_macro::TokenStream;
31 //! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
32 //! use syn::parse::{Parse, ParseStream};
33 //! use syn::punctuated::Punctuated;
34 //!
35 //! enum Item {
36 //!     Struct(ItemStruct),
37 //!     Enum(ItemEnum),
38 //! }
39 //!
40 //! struct ItemStruct {
41 //!     struct_token: Token![struct],
42 //!     ident: Ident,
43 //!     brace_token: token::Brace,
44 //!     fields: Punctuated<Field, Token![,]>,
45 //! }
46 //! #
47 //! # enum ItemEnum {}
48 //!
49 //! impl Parse for Item {
50 //!     fn parse(input: ParseStream) -> Result<Self> {
51 //!         let lookahead = input.lookahead1();
52 //!         if lookahead.peek(Token![struct]) {
53 //!             input.parse().map(Item::Struct)
54 //!         } else if lookahead.peek(Token![enum]) {
55 //!             input.parse().map(Item::Enum)
56 //!         } else {
57 //!             Err(lookahead.error())
58 //!         }
59 //!     }
60 //! }
61 //!
62 //! impl Parse for ItemStruct {
63 //!     fn parse(input: ParseStream) -> Result<Self> {
64 //!         let content;
65 //!         Ok(ItemStruct {
66 //!             struct_token: input.parse()?,
67 //!             ident: input.parse()?,
68 //!             brace_token: braced!(content in input),
69 //!             fields: content.parse_terminated(Field::parse_named, Token![,])?,
70 //!         })
71 //!     }
72 //! }
73 //! #
74 //! # impl Parse for ItemEnum {
75 //! #     fn parse(input: ParseStream) -> Result<Self> {
76 //! #         unimplemented!()
77 //! #     }
78 //! # }
79 //!
80 //! # const IGNORE: &str = stringify! {
81 //! #[proc_macro]
82 //! # };
83 //! pub fn my_macro(tokens: TokenStream) -> TokenStream {
84 //!     let input = parse_macro_input!(tokens as Item);
85 //!
86 //!     /* ... */
87 //! #   TokenStream::new()
88 //! }
89 //! ```
90 //!
91 //! # The `syn::parse*` functions
92 //!
93 //! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
94 //! as an entry point for parsing syntax tree nodes that can be parsed in an
95 //! obvious default way. These functions can return any syntax tree node that
96 //! implements the [`Parse`] trait, which includes most types in Syn.
97 //!
98 //! [`syn::parse`]: crate::parse()
99 //! [`syn::parse2`]: crate::parse2()
100 //! [`syn::parse_str`]: crate::parse_str()
101 //!
102 //! ```
103 //! use syn::Type;
104 //!
105 //! # fn run_parser() -> syn::Result<()> {
106 //! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
107 //! #     Ok(())
108 //! # }
109 //! #
110 //! # run_parser().unwrap();
111 //! ```
112 //!
113 //! The [`parse_quote!`] macro also uses this approach.
114 //!
115 //! [`parse_quote!`]: crate::parse_quote!
116 //!
117 //! # The `Parser` trait
118 //!
119 //! Some types can be parsed in several ways depending on context. For example
120 //! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
121 //! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
122 //! may or may not allow trailing punctuation, and parsing it the wrong way
123 //! would either reject valid input or accept invalid input.
124 //!
125 //! [`Attribute`]: crate::Attribute
126 //! [`Punctuated`]: crate::punctuated
127 //!
128 //! The `Parse` trait is not implemented in these cases because there is no good
129 //! behavior to consider the default.
130 //!
131 //! ```compile_fail
132 //! # extern crate proc_macro;
133 //! #
134 //! # use syn::punctuated::Punctuated;
135 //! # use syn::{PathSegment, Result, Token};
136 //! #
137 //! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
138 //! #
139 //! // Can't parse `Punctuated` without knowing whether trailing punctuation
140 //! // should be allowed in this context.
141 //! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
142 //! #
143 //! #     Ok(())
144 //! # }
145 //! ```
146 //!
147 //! In these cases the types provide a choice of parser functions rather than a
148 //! single `Parse` implementation, and those parser functions can be invoked
149 //! through the [`Parser`] trait.
150 //!
151 //!
152 //! ```
153 //! # extern crate proc_macro;
154 //! #
155 //! use proc_macro::TokenStream;
156 //! use syn::parse::Parser;
157 //! use syn::punctuated::Punctuated;
158 //! use syn::{Attribute, Expr, PathSegment, Result, Token};
159 //!
160 //! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
161 //!     // Parse a nonempty sequence of path segments separated by `::` punctuation
162 //!     // with no trailing punctuation.
163 //!     let tokens = input.clone();
164 //!     let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
165 //!     let _path = parser.parse(tokens)?;
166 //!
167 //!     // Parse a possibly empty sequence of expressions terminated by commas with
168 //!     // an optional trailing punctuation.
169 //!     let tokens = input.clone();
170 //!     let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
171 //!     let _args = parser.parse(tokens)?;
172 //!
173 //!     // Parse zero or more outer attributes but not inner attributes.
174 //!     let tokens = input.clone();
175 //!     let parser = Attribute::parse_outer;
176 //!     let _attrs = parser.parse(tokens)?;
177 //!
178 //!     Ok(())
179 //! }
180 //! ```
181 
182 #[path = "discouraged.rs"]
183 pub mod discouraged;
184 
185 use crate::buffer::{Cursor, TokenBuffer};
186 use crate::error;
187 use crate::lookahead;
188 use crate::punctuated::Punctuated;
189 use crate::token::Token;
190 use proc_macro2::{Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
191 #[cfg(feature = "printing")]
192 use quote::ToTokens;
193 use std::cell::Cell;
194 use std::fmt::{self, Debug, Display};
195 #[cfg(feature = "extra-traits")]
196 use std::hash::{Hash, Hasher};
197 use std::marker::PhantomData;
198 use std::mem;
199 use std::ops::Deref;
200 use std::panic::{RefUnwindSafe, UnwindSafe};
201 use std::rc::Rc;
202 use std::str::FromStr;
203 
204 pub use crate::error::{Error, Result};
205 pub use crate::lookahead::{End, Lookahead1, Peek};
206 
207 /// Parsing interface implemented by all types that can be parsed in a default
208 /// way from a token stream.
209 ///
210 /// Refer to the [module documentation] for details about implementing and using
211 /// the `Parse` trait.
212 ///
213 /// [module documentation]: self
214 pub trait Parse: Sized {
parse(input: ParseStream) -> Result<Self>215     fn parse(input: ParseStream) -> Result<Self>;
216 }
217 
218 /// Input to a Syn parser function.
219 ///
220 /// See the methods of this type under the documentation of [`ParseBuffer`]. For
221 /// an overview of parsing in Syn, refer to the [module documentation].
222 ///
223 /// [module documentation]: self
224 pub type ParseStream<'a> = &'a ParseBuffer<'a>;
225 
226 /// Cursor position within a buffered token stream.
227 ///
228 /// This type is more commonly used through the type alias [`ParseStream`] which
229 /// is an alias for `&ParseBuffer`.
230 ///
231 /// `ParseStream` is the input type for all parser functions in Syn. They have
232 /// the signature `fn(ParseStream) -> Result<T>`.
233 ///
234 /// ## Calling a parser function
235 ///
236 /// There is no public way to construct a `ParseBuffer`. Instead, if you are
237 /// looking to invoke a parser function that requires `ParseStream` as input,
238 /// you will need to go through one of the public parsing entry points.
239 ///
240 /// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
241 /// - One of [the `syn::parse*` functions][syn-parse]; or
242 /// - A method of the [`Parser`] trait.
243 ///
244 /// [`parse_macro_input!`]: crate::parse_macro_input!
245 /// [syn-parse]: self#the-synparse-functions
246 pub struct ParseBuffer<'a> {
247     scope: Span,
248     // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
249     // The rest of the code in this module needs to be careful that only a
250     // cursor derived from this `cell` is ever assigned to this `cell`.
251     //
252     // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
253     // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
254     // than 'a, and then assign a Cursor<'short> into the Cell.
255     //
256     // By extension, it would not be safe to expose an API that accepts a
257     // Cursor<'a> and trusts that it lives as long as the cursor currently in
258     // the cell.
259     cell: Cell<Cursor<'static>>,
260     marker: PhantomData<Cursor<'a>>,
261     unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
262 }
263 
264 impl<'a> Drop for ParseBuffer<'a> {
drop(&mut self)265     fn drop(&mut self) {
266         if let Some((unexpected_span, delimiter)) = span_of_unexpected_ignoring_nones(self.cursor())
267         {
268             let (inner, old_span) = inner_unexpected(self);
269             if old_span.is_none() {
270                 inner.set(Unexpected::Some(unexpected_span, delimiter));
271             }
272         }
273     }
274 }
275 
276 impl<'a> Display for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result277     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
278         Display::fmt(&self.cursor().token_stream(), f)
279     }
280 }
281 
282 impl<'a> Debug for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result283     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
284         Debug::fmt(&self.cursor().token_stream(), f)
285     }
286 }
287 
288 impl<'a> UnwindSafe for ParseBuffer<'a> {}
289 impl<'a> RefUnwindSafe for ParseBuffer<'a> {}
290 
291 /// Cursor state associated with speculative parsing.
292 ///
293 /// This type is the input of the closure provided to [`ParseStream::step`].
294 ///
295 /// [`ParseStream::step`]: ParseBuffer::step
296 ///
297 /// # Example
298 ///
299 /// ```
300 /// use proc_macro2::TokenTree;
301 /// use syn::Result;
302 /// use syn::parse::ParseStream;
303 ///
304 /// // This function advances the stream past the next occurrence of `@`. If
305 /// // no `@` is present in the stream, the stream position is unchanged and
306 /// // an error is returned.
307 /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
308 ///     input.step(|cursor| {
309 ///         let mut rest = *cursor;
310 ///         while let Some((tt, next)) = rest.token_tree() {
311 ///             match &tt {
312 ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
313 ///                     return Ok(((), next));
314 ///                 }
315 ///                 _ => rest = next,
316 ///             }
317 ///         }
318 ///         Err(cursor.error("no `@` was found after this point"))
319 ///     })
320 /// }
321 /// #
322 /// # fn remainder_after_skipping_past_next_at(
323 /// #     input: ParseStream,
324 /// # ) -> Result<proc_macro2::TokenStream> {
325 /// #     skip_past_next_at(input)?;
326 /// #     input.parse()
327 /// # }
328 /// #
329 /// # use syn::parse::Parser;
330 /// # let remainder = remainder_after_skipping_past_next_at
331 /// #     .parse_str("a @ b c")
332 /// #     .unwrap();
333 /// # assert_eq!(remainder.to_string(), "b c");
334 /// ```
335 pub struct StepCursor<'c, 'a> {
336     scope: Span,
337     // This field is covariant in 'c.
338     cursor: Cursor<'c>,
339     // This field is contravariant in 'c. Together these make StepCursor
340     // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
341     // different lifetime but can upcast into a StepCursor with a shorter
342     // lifetime 'a.
343     //
344     // As long as we only ever construct a StepCursor for which 'c outlives 'a,
345     // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
346     // outlives 'a.
347     marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
348 }
349 
350 impl<'c, 'a> Deref for StepCursor<'c, 'a> {
351     type Target = Cursor<'c>;
352 
deref(&self) -> &Self::Target353     fn deref(&self) -> &Self::Target {
354         &self.cursor
355     }
356 }
357 
358 impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
359 
360 impl<'c, 'a> Clone for StepCursor<'c, 'a> {
clone(&self) -> Self361     fn clone(&self) -> Self {
362         *self
363     }
364 }
365 
366 impl<'c, 'a> StepCursor<'c, 'a> {
367     /// Triggers an error at the current position of the parse stream.
368     ///
369     /// The `ParseStream::step` invocation will return this same error without
370     /// advancing the stream state.
error<T: Display>(self, message: T) -> Error371     pub fn error<T: Display>(self, message: T) -> Error {
372         error::new_at(self.scope, self.cursor, message)
373     }
374 }
375 
advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a>376 pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
377     // Refer to the comments within the StepCursor definition. We use the
378     // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
379     // Cursor is covariant in its lifetime parameter so we can cast a
380     // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
381     let _ = proof;
382     unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
383 }
384 
new_parse_buffer( scope: Span, cursor: Cursor, unexpected: Rc<Cell<Unexpected>>, ) -> ParseBuffer385 pub(crate) fn new_parse_buffer(
386     scope: Span,
387     cursor: Cursor,
388     unexpected: Rc<Cell<Unexpected>>,
389 ) -> ParseBuffer {
390     ParseBuffer {
391         scope,
392         // See comment on `cell` in the struct definition.
393         cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
394         marker: PhantomData,
395         unexpected: Cell::new(Some(unexpected)),
396     }
397 }
398 
399 pub(crate) enum Unexpected {
400     None,
401     Some(Span, Delimiter),
402     Chain(Rc<Cell<Unexpected>>),
403 }
404 
405 impl Default for Unexpected {
default() -> Self406     fn default() -> Self {
407         Unexpected::None
408     }
409 }
410 
411 impl Clone for Unexpected {
clone(&self) -> Self412     fn clone(&self) -> Self {
413         match self {
414             Unexpected::None => Unexpected::None,
415             Unexpected::Some(span, delimiter) => Unexpected::Some(*span, *delimiter),
416             Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
417         }
418     }
419 }
420 
421 // We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
422 // swapping in a None is cheap.
cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T423 fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
424     let prev = cell.take();
425     let ret = prev.clone();
426     cell.set(prev);
427     ret
428 }
429 
inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<(Span, Delimiter)>)430 fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<(Span, Delimiter)>) {
431     let mut unexpected = get_unexpected(buffer);
432     loop {
433         match cell_clone(&unexpected) {
434             Unexpected::None => return (unexpected, None),
435             Unexpected::Some(span, delimiter) => return (unexpected, Some((span, delimiter))),
436             Unexpected::Chain(next) => unexpected = next,
437         }
438     }
439 }
440 
get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>>441 pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
442     cell_clone(&buffer.unexpected).unwrap()
443 }
444 
span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<(Span, Delimiter)>445 fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<(Span, Delimiter)> {
446     if cursor.eof() {
447         return None;
448     }
449     while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
450         if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
451             return Some(unexpected);
452         }
453         cursor = rest;
454     }
455     if cursor.eof() {
456         None
457     } else {
458         Some((cursor.span(), cursor.scope_delimiter()))
459     }
460 }
461 
462 impl<'a> ParseBuffer<'a> {
463     /// Parses a syntax tree node of type `T`, advancing the position of our
464     /// parse stream past it.
parse<T: Parse>(&self) -> Result<T>465     pub fn parse<T: Parse>(&self) -> Result<T> {
466         T::parse(self)
467     }
468 
469     /// Calls the given parser function to parse a syntax tree node of type `T`
470     /// from this stream.
471     ///
472     /// # Example
473     ///
474     /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
475     /// zero or more outer attributes.
476     ///
477     /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
478     ///
479     /// ```
480     /// use syn::{Attribute, Ident, Result, Token};
481     /// use syn::parse::{Parse, ParseStream};
482     ///
483     /// // Parses a unit struct with attributes.
484     /// //
485     /// //     #[path = "s.tmpl"]
486     /// //     struct S;
487     /// struct UnitStruct {
488     ///     attrs: Vec<Attribute>,
489     ///     struct_token: Token![struct],
490     ///     name: Ident,
491     ///     semi_token: Token![;],
492     /// }
493     ///
494     /// impl Parse for UnitStruct {
495     ///     fn parse(input: ParseStream) -> Result<Self> {
496     ///         Ok(UnitStruct {
497     ///             attrs: input.call(Attribute::parse_outer)?,
498     ///             struct_token: input.parse()?,
499     ///             name: input.parse()?,
500     ///             semi_token: input.parse()?,
501     ///         })
502     ///     }
503     /// }
504     /// ```
call<T>(&'a self, function: fn(ParseStream<'a>) -> Result<T>) -> Result<T>505     pub fn call<T>(&'a self, function: fn(ParseStream<'a>) -> Result<T>) -> Result<T> {
506         function(self)
507     }
508 
509     /// Looks at the next token in the parse stream to determine whether it
510     /// matches the requested type of token.
511     ///
512     /// Does not advance the position of the parse stream.
513     ///
514     /// # Syntax
515     ///
516     /// Note that this method does not use turbofish syntax. Pass the peek type
517     /// inside of parentheses.
518     ///
519     /// - `input.peek(Token![struct])`
520     /// - `input.peek(Token![==])`
521     /// - `input.peek(syn::Ident)`&emsp;*(does not accept keywords)*
522     /// - `input.peek(syn::Ident::peek_any)`
523     /// - `input.peek(Lifetime)`
524     /// - `input.peek(token::Brace)`
525     ///
526     /// # Example
527     ///
528     /// In this example we finish parsing the list of supertraits when the next
529     /// token in the input is either `where` or an opening curly brace.
530     ///
531     /// ```
532     /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
533     /// use syn::parse::{Parse, ParseStream};
534     /// use syn::punctuated::Punctuated;
535     ///
536     /// // Parses a trait definition containing no associated items.
537     /// //
538     /// //     trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
539     /// struct MarkerTrait {
540     ///     trait_token: Token![trait],
541     ///     ident: Ident,
542     ///     generics: Generics,
543     ///     colon_token: Option<Token![:]>,
544     ///     supertraits: Punctuated<TypeParamBound, Token![+]>,
545     ///     brace_token: token::Brace,
546     /// }
547     ///
548     /// impl Parse for MarkerTrait {
549     ///     fn parse(input: ParseStream) -> Result<Self> {
550     ///         let trait_token: Token![trait] = input.parse()?;
551     ///         let ident: Ident = input.parse()?;
552     ///         let mut generics: Generics = input.parse()?;
553     ///         let colon_token: Option<Token![:]> = input.parse()?;
554     ///
555     ///         let mut supertraits = Punctuated::new();
556     ///         if colon_token.is_some() {
557     ///             loop {
558     ///                 supertraits.push_value(input.parse()?);
559     ///                 if input.peek(Token![where]) || input.peek(token::Brace) {
560     ///                     break;
561     ///                 }
562     ///                 supertraits.push_punct(input.parse()?);
563     ///             }
564     ///         }
565     ///
566     ///         generics.where_clause = input.parse()?;
567     ///         let content;
568     ///         let empty_brace_token = braced!(content in input);
569     ///
570     ///         Ok(MarkerTrait {
571     ///             trait_token,
572     ///             ident,
573     ///             generics,
574     ///             colon_token,
575     ///             supertraits,
576     ///             brace_token: empty_brace_token,
577     ///         })
578     ///     }
579     /// }
580     /// ```
peek<T: Peek>(&self, token: T) -> bool581     pub fn peek<T: Peek>(&self, token: T) -> bool {
582         let _ = token;
583         T::Token::peek(self.cursor())
584     }
585 
586     /// Looks at the second-next token in the parse stream.
587     ///
588     /// This is commonly useful as a way to implement contextual keywords.
589     ///
590     /// # Example
591     ///
592     /// This example needs to use `peek2` because the symbol `union` is not a
593     /// keyword in Rust. We can't use just `peek` and decide to parse a union if
594     /// the very next token is `union`, because someone is free to write a `mod
595     /// union` and a macro invocation that looks like `union::some_macro! { ...
596     /// }`. In other words `union` is a contextual keyword.
597     ///
598     /// ```
599     /// use syn::{Ident, ItemUnion, Macro, Result, Token};
600     /// use syn::parse::{Parse, ParseStream};
601     ///
602     /// // Parses either a union or a macro invocation.
603     /// enum UnionOrMacro {
604     ///     // union MaybeUninit<T> { uninit: (), value: T }
605     ///     Union(ItemUnion),
606     ///     // lazy_static! { ... }
607     ///     Macro(Macro),
608     /// }
609     ///
610     /// impl Parse for UnionOrMacro {
611     ///     fn parse(input: ParseStream) -> Result<Self> {
612     ///         if input.peek(Token![union]) && input.peek2(Ident) {
613     ///             input.parse().map(UnionOrMacro::Union)
614     ///         } else {
615     ///             input.parse().map(UnionOrMacro::Macro)
616     ///         }
617     ///     }
618     /// }
619     /// ```
peek2<T: Peek>(&self, token: T) -> bool620     pub fn peek2<T: Peek>(&self, token: T) -> bool {
621         fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
622             buffer.cursor().skip().map_or(false, peek)
623         }
624 
625         let _ = token;
626         peek2(self, T::Token::peek)
627     }
628 
629     /// Looks at the third-next token in the parse stream.
peek3<T: Peek>(&self, token: T) -> bool630     pub fn peek3<T: Peek>(&self, token: T) -> bool {
631         fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
632             buffer
633                 .cursor()
634                 .skip()
635                 .and_then(Cursor::skip)
636                 .map_or(false, peek)
637         }
638 
639         let _ = token;
640         peek3(self, T::Token::peek)
641     }
642 
643     /// Parses zero or more occurrences of `T` separated by punctuation of type
644     /// `P`, with optional trailing punctuation.
645     ///
646     /// Parsing continues until the end of this parse stream. The entire content
647     /// of this parse stream must consist of `T` and `P`.
648     ///
649     /// # Example
650     ///
651     /// ```
652     /// # use quote::quote;
653     /// #
654     /// use syn::{parenthesized, token, Ident, Result, Token, Type};
655     /// use syn::parse::{Parse, ParseStream};
656     /// use syn::punctuated::Punctuated;
657     ///
658     /// // Parse a simplified tuple struct syntax like:
659     /// //
660     /// //     struct S(A, B);
661     /// struct TupleStruct {
662     ///     struct_token: Token![struct],
663     ///     ident: Ident,
664     ///     paren_token: token::Paren,
665     ///     fields: Punctuated<Type, Token![,]>,
666     ///     semi_token: Token![;],
667     /// }
668     ///
669     /// impl Parse for TupleStruct {
670     ///     fn parse(input: ParseStream) -> Result<Self> {
671     ///         let content;
672     ///         Ok(TupleStruct {
673     ///             struct_token: input.parse()?,
674     ///             ident: input.parse()?,
675     ///             paren_token: parenthesized!(content in input),
676     ///             fields: content.parse_terminated(Type::parse, Token![,])?,
677     ///             semi_token: input.parse()?,
678     ///         })
679     ///     }
680     /// }
681     /// #
682     /// # let input = quote! {
683     /// #     struct S(A, B);
684     /// # };
685     /// # syn::parse2::<TupleStruct>(input).unwrap();
686     /// ```
687     ///
688     /// # See also
689     ///
690     /// If your separator is anything more complicated than an invocation of the
691     /// `Token!` macro, this method won't be applicable and you can instead
692     /// directly use `Punctuated`'s parser functions: [`parse_terminated`],
693     /// [`parse_separated_nonempty`] etc.
694     ///
695     /// [`parse_terminated`]: Punctuated::parse_terminated
696     /// [`parse_separated_nonempty`]: Punctuated::parse_separated_nonempty
697     ///
698     /// ```
699     /// use syn::{custom_keyword, Expr, Result, Token};
700     /// use syn::parse::{Parse, ParseStream};
701     /// use syn::punctuated::Punctuated;
702     ///
703     /// mod kw {
704     ///     syn::custom_keyword!(fin);
705     /// }
706     ///
707     /// struct Fin(kw::fin, Token![;]);
708     ///
709     /// impl Parse for Fin {
710     ///     fn parse(input: ParseStream) -> Result<Self> {
711     ///         Ok(Self(input.parse()?, input.parse()?))
712     ///     }
713     /// }
714     ///
715     /// struct Thing {
716     ///     steps: Punctuated<Expr, Fin>,
717     /// }
718     ///
719     /// impl Parse for Thing {
720     ///     fn parse(input: ParseStream) -> Result<Self> {
721     /// # if true {
722     ///         Ok(Thing {
723     ///             steps: Punctuated::parse_terminated(input)?,
724     ///         })
725     /// # } else {
726     ///         // or equivalently, this means the same thing:
727     /// #       Ok(Thing {
728     ///             steps: input.call(Punctuated::parse_terminated)?,
729     /// #       })
730     /// # }
731     ///     }
732     /// }
733     /// ```
parse_terminated<T, P>( &'a self, parser: fn(ParseStream<'a>) -> Result<T>, separator: P, ) -> Result<Punctuated<T, P::Token>> where P: Peek, P::Token: Parse,734     pub fn parse_terminated<T, P>(
735         &'a self,
736         parser: fn(ParseStream<'a>) -> Result<T>,
737         separator: P,
738     ) -> Result<Punctuated<T, P::Token>>
739     where
740         P: Peek,
741         P::Token: Parse,
742     {
743         let _ = separator;
744         Punctuated::parse_terminated_with(self, parser)
745     }
746 
747     /// Returns whether there are no more tokens remaining to be parsed from
748     /// this stream.
749     ///
750     /// This method returns true upon reaching the end of the content within a
751     /// set of delimiters, as well as at the end of the tokens provided to the
752     /// outermost parsing entry point.
753     ///
754     /// This is equivalent to
755     /// <code>.<a href="#method.peek">peek</a>(<a href="struct.End.html">syn::parse::End</a>)</code>.
756     /// Use `.peek2(End)` or `.peek3(End)` to look for the end of a parse stream
757     /// further ahead than the current position.
758     ///
759     /// # Example
760     ///
761     /// ```
762     /// use syn::{braced, token, Ident, Item, Result, Token};
763     /// use syn::parse::{Parse, ParseStream};
764     ///
765     /// // Parses a Rust `mod m { ... }` containing zero or more items.
766     /// struct Mod {
767     ///     mod_token: Token![mod],
768     ///     name: Ident,
769     ///     brace_token: token::Brace,
770     ///     items: Vec<Item>,
771     /// }
772     ///
773     /// impl Parse for Mod {
774     ///     fn parse(input: ParseStream) -> Result<Self> {
775     ///         let content;
776     ///         Ok(Mod {
777     ///             mod_token: input.parse()?,
778     ///             name: input.parse()?,
779     ///             brace_token: braced!(content in input),
780     ///             items: {
781     ///                 let mut items = Vec::new();
782     ///                 while !content.is_empty() {
783     ///                     items.push(content.parse()?);
784     ///                 }
785     ///                 items
786     ///             },
787     ///         })
788     ///     }
789     /// }
790     /// ```
is_empty(&self) -> bool791     pub fn is_empty(&self) -> bool {
792         self.cursor().eof()
793     }
794 
795     /// Constructs a helper for peeking at the next token in this stream and
796     /// building an error message if it is not one of a set of expected tokens.
797     ///
798     /// # Example
799     ///
800     /// ```
801     /// use syn::{ConstParam, Ident, Lifetime, LifetimeParam, Result, Token, TypeParam};
802     /// use syn::parse::{Parse, ParseStream};
803     ///
804     /// // A generic parameter, a single one of the comma-separated elements inside
805     /// // angle brackets in:
806     /// //
807     /// //     fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
808     /// //
809     /// // On invalid input, lookahead gives us a reasonable error message.
810     /// //
811     /// //     error: expected one of: identifier, lifetime, `const`
812     /// //       |
813     /// //     5 |     fn f<!Sized>() {}
814     /// //       |          ^
815     /// enum GenericParam {
816     ///     Type(TypeParam),
817     ///     Lifetime(LifetimeParam),
818     ///     Const(ConstParam),
819     /// }
820     ///
821     /// impl Parse for GenericParam {
822     ///     fn parse(input: ParseStream) -> Result<Self> {
823     ///         let lookahead = input.lookahead1();
824     ///         if lookahead.peek(Ident) {
825     ///             input.parse().map(GenericParam::Type)
826     ///         } else if lookahead.peek(Lifetime) {
827     ///             input.parse().map(GenericParam::Lifetime)
828     ///         } else if lookahead.peek(Token![const]) {
829     ///             input.parse().map(GenericParam::Const)
830     ///         } else {
831     ///             Err(lookahead.error())
832     ///         }
833     ///     }
834     /// }
835     /// ```
lookahead1(&self) -> Lookahead1<'a>836     pub fn lookahead1(&self) -> Lookahead1<'a> {
837         lookahead::new(self.scope, self.cursor())
838     }
839 
840     /// Forks a parse stream so that parsing tokens out of either the original
841     /// or the fork does not advance the position of the other.
842     ///
843     /// # Performance
844     ///
845     /// Forking a parse stream is a cheap fixed amount of work and does not
846     /// involve copying token buffers. Where you might hit performance problems
847     /// is if your macro ends up parsing a large amount of content more than
848     /// once.
849     ///
850     /// ```
851     /// # use syn::{Expr, Result};
852     /// # use syn::parse::ParseStream;
853     /// #
854     /// # fn bad(input: ParseStream) -> Result<Expr> {
855     /// // Do not do this.
856     /// if input.fork().parse::<Expr>().is_ok() {
857     ///     return input.parse::<Expr>();
858     /// }
859     /// # unimplemented!()
860     /// # }
861     /// ```
862     ///
863     /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
864     /// parse stream. Only use a fork when the amount of work performed against
865     /// the fork is small and bounded.
866     ///
867     /// When complex speculative parsing against the forked stream is
868     /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
869     /// original stream once the fork's parse is determined to have been
870     /// successful.
871     ///
872     /// For a lower level way to perform speculative parsing at the token level,
873     /// consider using [`ParseStream::step`] instead.
874     ///
875     /// [`parse::discouraged::Speculative`]: discouraged::Speculative
876     /// [`ParseStream::step`]: ParseBuffer::step
877     ///
878     /// # Example
879     ///
880     /// The parse implementation shown here parses possibly restricted `pub`
881     /// visibilities.
882     ///
883     /// - `pub`
884     /// - `pub(crate)`
885     /// - `pub(self)`
886     /// - `pub(super)`
887     /// - `pub(in some::path)`
888     ///
889     /// To handle the case of visibilities inside of tuple structs, the parser
890     /// needs to distinguish parentheses that specify visibility restrictions
891     /// from parentheses that form part of a tuple type.
892     ///
893     /// ```
894     /// # struct A;
895     /// # struct B;
896     /// # struct C;
897     /// #
898     /// struct S(pub(crate) A, pub (B, C));
899     /// ```
900     ///
901     /// In this example input the first tuple struct element of `S` has
902     /// `pub(crate)` visibility while the second tuple struct element has `pub`
903     /// visibility; the parentheses around `(B, C)` are part of the type rather
904     /// than part of a visibility restriction.
905     ///
906     /// The parser uses a forked parse stream to check the first token inside of
907     /// parentheses after the `pub` keyword. This is a small bounded amount of
908     /// work performed against the forked parse stream.
909     ///
910     /// ```
911     /// use syn::{parenthesized, token, Ident, Path, Result, Token};
912     /// use syn::ext::IdentExt;
913     /// use syn::parse::{Parse, ParseStream};
914     ///
915     /// struct PubVisibility {
916     ///     pub_token: Token![pub],
917     ///     restricted: Option<Restricted>,
918     /// }
919     ///
920     /// struct Restricted {
921     ///     paren_token: token::Paren,
922     ///     in_token: Option<Token![in]>,
923     ///     path: Path,
924     /// }
925     ///
926     /// impl Parse for PubVisibility {
927     ///     fn parse(input: ParseStream) -> Result<Self> {
928     ///         let pub_token: Token![pub] = input.parse()?;
929     ///
930     ///         if input.peek(token::Paren) {
931     ///             let ahead = input.fork();
932     ///             let mut content;
933     ///             parenthesized!(content in ahead);
934     ///
935     ///             if content.peek(Token![crate])
936     ///                 || content.peek(Token![self])
937     ///                 || content.peek(Token![super])
938     ///             {
939     ///                 return Ok(PubVisibility {
940     ///                     pub_token,
941     ///                     restricted: Some(Restricted {
942     ///                         paren_token: parenthesized!(content in input),
943     ///                         in_token: None,
944     ///                         path: Path::from(content.call(Ident::parse_any)?),
945     ///                     }),
946     ///                 });
947     ///             } else if content.peek(Token![in]) {
948     ///                 return Ok(PubVisibility {
949     ///                     pub_token,
950     ///                     restricted: Some(Restricted {
951     ///                         paren_token: parenthesized!(content in input),
952     ///                         in_token: Some(content.parse()?),
953     ///                         path: content.call(Path::parse_mod_style)?,
954     ///                     }),
955     ///                 });
956     ///             }
957     ///         }
958     ///
959     ///         Ok(PubVisibility {
960     ///             pub_token,
961     ///             restricted: None,
962     ///         })
963     ///     }
964     /// }
965     /// ```
fork(&self) -> Self966     pub fn fork(&self) -> Self {
967         ParseBuffer {
968             scope: self.scope,
969             cell: self.cell.clone(),
970             marker: PhantomData,
971             // Not the parent's unexpected. Nothing cares whether the clone
972             // parses all the way unless we `advance_to`.
973             unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
974         }
975     }
976 
977     /// Triggers an error at the current position of the parse stream.
978     ///
979     /// # Example
980     ///
981     /// ```
982     /// use syn::{Expr, Result, Token};
983     /// use syn::parse::{Parse, ParseStream};
984     ///
985     /// // Some kind of loop: `while` or `for` or `loop`.
986     /// struct Loop {
987     ///     expr: Expr,
988     /// }
989     ///
990     /// impl Parse for Loop {
991     ///     fn parse(input: ParseStream) -> Result<Self> {
992     ///         if input.peek(Token![while])
993     ///             || input.peek(Token![for])
994     ///             || input.peek(Token![loop])
995     ///         {
996     ///             Ok(Loop {
997     ///                 expr: input.parse()?,
998     ///             })
999     ///         } else {
1000     ///             Err(input.error("expected some kind of loop"))
1001     ///         }
1002     ///     }
1003     /// }
1004     /// ```
error<T: Display>(&self, message: T) -> Error1005     pub fn error<T: Display>(&self, message: T) -> Error {
1006         error::new_at(self.scope, self.cursor(), message)
1007     }
1008 
1009     /// Speculatively parses tokens from this parse stream, advancing the
1010     /// position of this stream only if parsing succeeds.
1011     ///
1012     /// This is a powerful low-level API used for defining the `Parse` impls of
1013     /// the basic built-in token types. It is not something that will be used
1014     /// widely outside of the Syn codebase.
1015     ///
1016     /// # Example
1017     ///
1018     /// ```
1019     /// use proc_macro2::TokenTree;
1020     /// use syn::Result;
1021     /// use syn::parse::ParseStream;
1022     ///
1023     /// // This function advances the stream past the next occurrence of `@`. If
1024     /// // no `@` is present in the stream, the stream position is unchanged and
1025     /// // an error is returned.
1026     /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
1027     ///     input.step(|cursor| {
1028     ///         let mut rest = *cursor;
1029     ///         while let Some((tt, next)) = rest.token_tree() {
1030     ///             match &tt {
1031     ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
1032     ///                     return Ok(((), next));
1033     ///                 }
1034     ///                 _ => rest = next,
1035     ///             }
1036     ///         }
1037     ///         Err(cursor.error("no `@` was found after this point"))
1038     ///     })
1039     /// }
1040     /// #
1041     /// # fn remainder_after_skipping_past_next_at(
1042     /// #     input: ParseStream,
1043     /// # ) -> Result<proc_macro2::TokenStream> {
1044     /// #     skip_past_next_at(input)?;
1045     /// #     input.parse()
1046     /// # }
1047     /// #
1048     /// # use syn::parse::Parser;
1049     /// # let remainder = remainder_after_skipping_past_next_at
1050     /// #     .parse_str("a @ b c")
1051     /// #     .unwrap();
1052     /// # assert_eq!(remainder.to_string(), "b c");
1053     /// ```
step<F, R>(&self, function: F) -> Result<R> where F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,1054     pub fn step<F, R>(&self, function: F) -> Result<R>
1055     where
1056         F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
1057     {
1058         // Since the user's function is required to work for any 'c, we know
1059         // that the Cursor<'c> they return is either derived from the input
1060         // StepCursor<'c, 'a> or from a Cursor<'static>.
1061         //
1062         // It would not be legal to write this function without the invariant
1063         // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
1064         // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
1065         // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
1066         // `step` on their ParseBuffer<'short> with a closure that returns
1067         // Cursor<'short>, and we would wrongly write that Cursor<'short> into
1068         // the Cell intended to hold Cursor<'a>.
1069         //
1070         // In some cases it may be necessary for R to contain a Cursor<'a>.
1071         // Within Syn we solve this using `advance_step_cursor` which uses the
1072         // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
1073         // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
1074         // safe to expose that API as a method on StepCursor.
1075         let (node, rest) = function(StepCursor {
1076             scope: self.scope,
1077             cursor: self.cell.get(),
1078             marker: PhantomData,
1079         })?;
1080         self.cell.set(rest);
1081         Ok(node)
1082     }
1083 
1084     /// Returns the `Span` of the next token in the parse stream, or
1085     /// `Span::call_site()` if this parse stream has completely exhausted its
1086     /// input `TokenStream`.
span(&self) -> Span1087     pub fn span(&self) -> Span {
1088         let cursor = self.cursor();
1089         if cursor.eof() {
1090             self.scope
1091         } else {
1092             crate::buffer::open_span_of_group(cursor)
1093         }
1094     }
1095 
1096     /// Provides low-level access to the token representation underlying this
1097     /// parse stream.
1098     ///
1099     /// Cursors are immutable so no operations you perform against the cursor
1100     /// will affect the state of this parse stream.
1101     ///
1102     /// # Example
1103     ///
1104     /// ```
1105     /// use proc_macro2::TokenStream;
1106     /// use syn::buffer::Cursor;
1107     /// use syn::parse::{ParseStream, Result};
1108     ///
1109     /// // Run a parser that returns T, but get its output as TokenStream instead of T.
1110     /// // This works without T needing to implement ToTokens.
1111     /// fn recognize_token_stream<T>(
1112     ///     recognizer: fn(ParseStream) -> Result<T>,
1113     /// ) -> impl Fn(ParseStream) -> Result<TokenStream> {
1114     ///     move |input| {
1115     ///         let begin = input.cursor();
1116     ///         recognizer(input)?;
1117     ///         let end = input.cursor();
1118     ///         Ok(tokens_between(begin, end))
1119     ///     }
1120     /// }
1121     ///
1122     /// // Collect tokens between two cursors as a TokenStream.
1123     /// fn tokens_between(begin: Cursor, end: Cursor) -> TokenStream {
1124     ///     assert!(begin <= end);
1125     ///
1126     ///     let mut cursor = begin;
1127     ///     let mut tokens = TokenStream::new();
1128     ///     while cursor < end {
1129     ///         let (token, next) = cursor.token_tree().unwrap();
1130     ///         tokens.extend(std::iter::once(token));
1131     ///         cursor = next;
1132     ///     }
1133     ///     tokens
1134     /// }
1135     ///
1136     /// fn main() {
1137     ///     use quote::quote;
1138     ///     use syn::parse::{Parse, Parser};
1139     ///     use syn::Token;
1140     ///
1141     ///     // Parse syn::Type as a TokenStream, surrounded by angle brackets.
1142     ///     fn example(input: ParseStream) -> Result<TokenStream> {
1143     ///         let _langle: Token![<] = input.parse()?;
1144     ///         let ty = recognize_token_stream(syn::Type::parse)(input)?;
1145     ///         let _rangle: Token![>] = input.parse()?;
1146     ///         Ok(ty)
1147     ///     }
1148     ///
1149     ///     let tokens = quote! { <fn() -> u8> };
1150     ///     println!("{}", example.parse2(tokens).unwrap());
1151     /// }
1152     /// ```
cursor(&self) -> Cursor<'a>1153     pub fn cursor(&self) -> Cursor<'a> {
1154         self.cell.get()
1155     }
1156 
check_unexpected(&self) -> Result<()>1157     fn check_unexpected(&self) -> Result<()> {
1158         match inner_unexpected(self).1 {
1159             Some((span, delimiter)) => Err(err_unexpected_token(span, delimiter)),
1160             None => Ok(()),
1161         }
1162     }
1163 }
1164 
1165 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1166 impl<T: Parse> Parse for Box<T> {
parse(input: ParseStream) -> Result<Self>1167     fn parse(input: ParseStream) -> Result<Self> {
1168         input.parse().map(Box::new)
1169     }
1170 }
1171 
1172 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1173 impl<T: Parse + Token> Parse for Option<T> {
parse(input: ParseStream) -> Result<Self>1174     fn parse(input: ParseStream) -> Result<Self> {
1175         if T::peek(input.cursor()) {
1176             Ok(Some(input.parse()?))
1177         } else {
1178             Ok(None)
1179         }
1180     }
1181 }
1182 
1183 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1184 impl Parse for TokenStream {
parse(input: ParseStream) -> Result<Self>1185     fn parse(input: ParseStream) -> Result<Self> {
1186         input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1187     }
1188 }
1189 
1190 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1191 impl Parse for TokenTree {
parse(input: ParseStream) -> Result<Self>1192     fn parse(input: ParseStream) -> Result<Self> {
1193         input.step(|cursor| match cursor.token_tree() {
1194             Some((tt, rest)) => Ok((tt, rest)),
1195             None => Err(cursor.error("expected token tree")),
1196         })
1197     }
1198 }
1199 
1200 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1201 impl Parse for Group {
parse(input: ParseStream) -> Result<Self>1202     fn parse(input: ParseStream) -> Result<Self> {
1203         input.step(|cursor| {
1204             if let Some((group, rest)) = cursor.any_group_token() {
1205                 if group.delimiter() != Delimiter::None {
1206                     return Ok((group, rest));
1207                 }
1208             }
1209             Err(cursor.error("expected group token"))
1210         })
1211     }
1212 }
1213 
1214 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1215 impl Parse for Punct {
parse(input: ParseStream) -> Result<Self>1216     fn parse(input: ParseStream) -> Result<Self> {
1217         input.step(|cursor| match cursor.punct() {
1218             Some((punct, rest)) => Ok((punct, rest)),
1219             None => Err(cursor.error("expected punctuation token")),
1220         })
1221     }
1222 }
1223 
1224 #[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1225 impl Parse for Literal {
parse(input: ParseStream) -> Result<Self>1226     fn parse(input: ParseStream) -> Result<Self> {
1227         input.step(|cursor| match cursor.literal() {
1228             Some((literal, rest)) => Ok((literal, rest)),
1229             None => Err(cursor.error("expected literal token")),
1230         })
1231     }
1232 }
1233 
1234 /// Parser that can parse Rust tokens into a particular syntax tree node.
1235 ///
1236 /// Refer to the [module documentation] for details about parsing in Syn.
1237 ///
1238 /// [module documentation]: self
1239 pub trait Parser: Sized {
1240     type Output;
1241 
1242     /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1243     ///
1244     /// This function enforces that the input is fully parsed. If there are any
1245     /// unparsed tokens at the end of the stream, an error is returned.
parse2(self, tokens: TokenStream) -> Result<Self::Output>1246     fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1247 
1248     /// Parse tokens of source code into the chosen syntax tree node.
1249     ///
1250     /// This function enforces that the input is fully parsed. If there are any
1251     /// unparsed tokens at the end of the stream, an error is returned.
1252     #[cfg(feature = "proc-macro")]
1253     #[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output>1254     fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1255         self.parse2(proc_macro2::TokenStream::from(tokens))
1256     }
1257 
1258     /// Parse a string of Rust code into the chosen syntax tree node.
1259     ///
1260     /// This function enforces that the input is fully parsed. If there are any
1261     /// unparsed tokens at the end of the string, an error is returned.
1262     ///
1263     /// # Hygiene
1264     ///
1265     /// Every span in the resulting syntax tree will be set to resolve at the
1266     /// macro call site.
parse_str(self, s: &str) -> Result<Self::Output>1267     fn parse_str(self, s: &str) -> Result<Self::Output> {
1268         self.parse2(proc_macro2::TokenStream::from_str(s)?)
1269     }
1270 
1271     // Not public API.
1272     #[doc(hidden)]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1273     fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1274         let _ = scope;
1275         self.parse2(tokens)
1276     }
1277 }
1278 
tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer1279 fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1280     let scope = Span::call_site();
1281     let cursor = tokens.begin();
1282     let unexpected = Rc::new(Cell::new(Unexpected::None));
1283     new_parse_buffer(scope, cursor, unexpected)
1284 }
1285 
1286 impl<F, T> Parser for F
1287 where
1288     F: FnOnce(ParseStream) -> Result<T>,
1289 {
1290     type Output = T;
1291 
parse2(self, tokens: TokenStream) -> Result<T>1292     fn parse2(self, tokens: TokenStream) -> Result<T> {
1293         let buf = TokenBuffer::new2(tokens);
1294         let state = tokens_to_parse_buffer(&buf);
1295         let node = self(&state)?;
1296         state.check_unexpected()?;
1297         if let Some((unexpected_span, delimiter)) =
1298             span_of_unexpected_ignoring_nones(state.cursor())
1299         {
1300             Err(err_unexpected_token(unexpected_span, delimiter))
1301         } else {
1302             Ok(node)
1303         }
1304     }
1305 
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1306     fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1307         let buf = TokenBuffer::new2(tokens);
1308         let cursor = buf.begin();
1309         let unexpected = Rc::new(Cell::new(Unexpected::None));
1310         let state = new_parse_buffer(scope, cursor, unexpected);
1311         let node = self(&state)?;
1312         state.check_unexpected()?;
1313         if let Some((unexpected_span, delimiter)) =
1314             span_of_unexpected_ignoring_nones(state.cursor())
1315         {
1316             Err(err_unexpected_token(unexpected_span, delimiter))
1317         } else {
1318             Ok(node)
1319         }
1320     }
1321 }
1322 
parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output>1323 pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1324     f.__parse_scoped(scope, tokens)
1325 }
1326 
err_unexpected_token(span: Span, delimiter: Delimiter) -> Error1327 fn err_unexpected_token(span: Span, delimiter: Delimiter) -> Error {
1328     let msg = match delimiter {
1329         Delimiter::Parenthesis => "unexpected token, expected `)`",
1330         Delimiter::Brace => "unexpected token, expected `}`",
1331         Delimiter::Bracket => "unexpected token, expected `]`",
1332         Delimiter::None => "unexpected token",
1333     };
1334     Error::new(span, msg)
1335 }
1336 
1337 /// An empty syntax tree node that consumes no tokens when parsed.
1338 ///
1339 /// This is useful for attribute macros that want to ensure they are not
1340 /// provided any attribute args.
1341 ///
1342 /// ```
1343 /// # extern crate proc_macro;
1344 /// #
1345 /// use proc_macro::TokenStream;
1346 /// use syn::parse_macro_input;
1347 /// use syn::parse::Nothing;
1348 ///
1349 /// # const IGNORE: &str = stringify! {
1350 /// #[proc_macro_attribute]
1351 /// # };
1352 /// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1353 ///     parse_macro_input!(args as Nothing);
1354 ///
1355 ///     /* ... */
1356 /// #   TokenStream::new()
1357 /// }
1358 /// ```
1359 ///
1360 /// ```text
1361 /// error: unexpected token
1362 ///  --> src/main.rs:3:19
1363 ///   |
1364 /// 3 | #[my_attr(asdf)]
1365 ///   |           ^^^^
1366 /// ```
1367 pub struct Nothing;
1368 
1369 impl Parse for Nothing {
parse(_input: ParseStream) -> Result<Self>1370     fn parse(_input: ParseStream) -> Result<Self> {
1371         Ok(Nothing)
1372     }
1373 }
1374 
1375 #[cfg(feature = "printing")]
1376 #[cfg_attr(docsrs, doc(cfg(feature = "printing")))]
1377 impl ToTokens for Nothing {
to_tokens(&self, tokens: &mut TokenStream)1378     fn to_tokens(&self, tokens: &mut TokenStream) {
1379         let _ = tokens;
1380     }
1381 }
1382 
1383 #[cfg(feature = "clone-impls")]
1384 #[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
1385 impl Clone for Nothing {
clone(&self) -> Self1386     fn clone(&self) -> Self {
1387         *self
1388     }
1389 }
1390 
1391 #[cfg(feature = "clone-impls")]
1392 #[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
1393 impl Copy for Nothing {}
1394 
1395 #[cfg(feature = "extra-traits")]
1396 #[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1397 impl Debug for Nothing {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1398     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1399         f.write_str("Nothing")
1400     }
1401 }
1402 
1403 #[cfg(feature = "extra-traits")]
1404 #[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1405 impl Eq for Nothing {}
1406 
1407 #[cfg(feature = "extra-traits")]
1408 #[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1409 impl PartialEq for Nothing {
eq(&self, _other: &Self) -> bool1410     fn eq(&self, _other: &Self) -> bool {
1411         true
1412     }
1413 }
1414 
1415 #[cfg(feature = "extra-traits")]
1416 #[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1417 impl Hash for Nothing {
hash<H: Hasher>(&self, _state: &mut H)1418     fn hash<H: Hasher>(&self, _state: &mut H) {}
1419 }
1420