• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2023 The Fuchsia Authors
2 //
3 // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4 // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5 // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6 // This file may not be copied, modified, or distributed except according to
7 // those terms.
8 
9 use core::{fmt, hash::Hash};
10 
11 use super::*;
12 
13 /// A type with no alignment requirement.
14 ///
15 /// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
16 /// has the same size and bit validity as `T`, but not necessarily the same
17 /// alignment [or ABI]. This is useful if a type with an alignment requirement
18 /// needs to be read from a chunk of memory which provides no alignment
19 /// guarantees.
20 ///
21 /// Since `Unalign` has no alignment requirement, the inner `T` may not be
22 /// properly aligned in memory. There are five ways to access the inner `T`:
23 /// - by value, using [`get`] or [`into_inner`]
24 /// - by reference inside of a callback, using [`update`]
25 /// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
26 ///   fail if the `Unalign` does not satisfy `T`'s alignment requirement at
27 ///   runtime
28 /// - unsafely by reference, using [`deref_unchecked`] or
29 ///   [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
30 ///   the `Unalign` satisfies `T`'s alignment requirement
31 /// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
32 ///   [`DerefMut::deref_mut`]
33 ///
34 /// [or ABI]: https://github.com/google/zerocopy/issues/164
35 /// [`get`]: Unalign::get
36 /// [`into_inner`]: Unalign::into_inner
37 /// [`update`]: Unalign::update
38 /// [`try_deref`]: Unalign::try_deref
39 /// [`try_deref_mut`]: Unalign::try_deref_mut
40 /// [`deref_unchecked`]: Unalign::deref_unchecked
41 /// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
42 ///
43 /// # Example
44 ///
45 /// In this example, we need `EthernetFrame` to have no alignment requirement -
46 /// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
47 /// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
48 /// alignment requirement so that `EthernetFrame` has no alignment requirement
49 /// and can implement `Unaligned`.
50 ///
51 /// ```rust
52 /// use zerocopy::*;
53 /// # use zerocopy_derive::*;
54 /// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
55 ///
56 /// # #[derive(PartialEq, Copy, Clone, Debug)]
57 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
58 /// #[repr(u16)]
59 /// enum EtherType {
60 ///     Ipv4 = 0x0800u16.to_be(),
61 ///     Arp = 0x0806u16.to_be(),
62 ///     Ipv6 = 0x86DDu16.to_be(),
63 ///     # /*
64 ///     ...
65 ///     # */
66 /// }
67 ///
68 /// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
69 /// #[repr(C)]
70 /// struct EthernetFrame {
71 ///     src: Mac,
72 ///     dst: Mac,
73 ///     ethertype: Unalign<EtherType>,
74 ///     payload: [u8],
75 /// }
76 ///
77 /// let bytes = &[
78 ///     # 0, 1, 2, 3, 4, 5,
79 ///     # 6, 7, 8, 9, 10, 11,
80 ///     # /*
81 ///     ...
82 ///     # */
83 ///     0x86, 0xDD,            // EtherType
84 ///     0xDE, 0xAD, 0xBE, 0xEF // Payload
85 /// ][..];
86 ///
87 /// // PANICS: Guaranteed not to panic because `bytes` is of the right
88 /// // length, has the right contents, and `EthernetFrame` has no
89 /// // alignment requirement.
90 /// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
91 ///
92 /// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
93 /// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
94 /// ```
95 ///
96 /// # Safety
97 ///
98 /// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
99 /// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
100 /// `Unalign<T>` is guaranteed to have alignment 1.
101 // NOTE: This type is sound to use with types that need to be dropped. The
102 // reason is that the compiler-generated drop code automatically moves all
103 // values to aligned memory slots before dropping them in-place. This is not
104 // well-documented, but it's hinted at in places like [1] and [2]. However, this
105 // also means that `T` must be `Sized`; unless something changes, we can never
106 // support unsized `T`. [3]
107 //
108 // [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
109 // [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
110 // [3] https://github.com/google/zerocopy/issues/209
111 #[allow(missing_debug_implementations)]
112 #[derive(Default, Copy)]
113 #[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
114 #[repr(C, packed)]
115 pub struct Unalign<T>(T);
116 
117 // We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
118 // smart enough to realize that `Unalign<T>` is always sized and thus emits a
119 // `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
120 impl_known_layout!(T => Unalign<T>);
121 
122 safety_comment! {
123     /// SAFETY:
124     /// - `Unalign<T>` promises to have alignment 1, and so we don't require
125     ///   that `T: Unaligned`.
126     /// - `Unalign<T>` has the same bit validity as `T`, and so it is
127     ///   `FromZeros`, `FromBytes`, or `IntoBytes` exactly when `T` is as well.
128     /// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
129     ///   `UnsafeCell`s exactly when `T` does.
130     /// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as
131     ///   `T`, so `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
132     ///   Furthermore:
133     ///   - Since `T` and `Unalign<T>` have the same layout, they have the same
134     ///     size (as required by `unsafe_impl!`).
135     ///   - Since `T` and `Unalign<T>` have the same fields, they have
136     ///     `UnsafeCell`s at the same byte ranges (as required by
137     ///     `unsafe_impl!`).
138     impl_or_verify!(T => Unaligned for Unalign<T>);
139     impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
140     impl_or_verify!(
141         T: TryFromBytes => TryFromBytes for Unalign<T>;
142         |c: Maybe<T>| T::is_bit_valid(c)
143     );
144     impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
145     impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
146     impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
147 }
148 
149 // Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
150 // aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
151 // is not sufficient to implement `Clone` for `Unalign`.
152 impl<T: Copy> Clone for Unalign<T> {
153     #[inline(always)]
clone(&self) -> Unalign<T>154     fn clone(&self) -> Unalign<T> {
155         *self
156     }
157 }
158 
159 impl<T> Unalign<T> {
160     /// Constructs a new `Unalign`.
161     #[inline(always)]
new(val: T) -> Unalign<T>162     pub const fn new(val: T) -> Unalign<T> {
163         Unalign(val)
164     }
165 
166     /// Consumes `self`, returning the inner `T`.
167     #[inline(always)]
into_inner(self) -> T168     pub const fn into_inner(self) -> T {
169         // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
170         // and bit validity as `T`.
171         //
172         // We do this instead of just destructuring in order to prevent
173         // `Unalign`'s `Drop::drop` from being run, since dropping is not
174         // supported in `const fn`s.
175         //
176         // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
177         // instead of using unsafe.
178         unsafe { crate::util::transmute_unchecked(self) }
179     }
180 
181     /// Attempts to return a reference to the wrapped `T`, failing if `self` is
182     /// not properly aligned.
183     ///
184     /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
185     /// `Err`.
186     ///
187     /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
188     /// may prefer [`Deref::deref`], which is infallible.
189     #[inline(always)]
try_deref(&self) -> Result<&T, AlignmentError<&Self, T>>190     pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
191         let inner = Ptr::from_ref(self).transparent_wrapper_into_inner();
192         match inner.bikeshed_try_into_aligned() {
193             Ok(aligned) => Ok(aligned.as_ref()),
194             Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
195         }
196     }
197 
198     /// Attempts to return a mutable reference to the wrapped `T`, failing if
199     /// `self` is not properly aligned.
200     ///
201     /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
202     /// `Err`.
203     ///
204     /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
205     /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
206     #[inline(always)]
try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>>207     pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
208         let inner = Ptr::from_mut(self).transparent_wrapper_into_inner();
209         match inner.bikeshed_try_into_aligned() {
210             Ok(aligned) => Ok(aligned.as_mut()),
211             Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
212         }
213     }
214 
215     /// Returns a reference to the wrapped `T` without checking alignment.
216     ///
217     /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
218     /// may prefer [`Deref::deref`], which is safe.
219     ///
220     /// # Safety
221     ///
222     /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
223     #[inline(always)]
deref_unchecked(&self) -> &T224     pub const unsafe fn deref_unchecked(&self) -> &T {
225         // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
226         // at the same memory location as `self`. It has no alignment guarantee,
227         // but the caller has promised that `self` is properly aligned, so we
228         // know that it is sound to create a reference to `T` at this memory
229         // location.
230         //
231         // We use `mem::transmute` instead of `&*self.get_ptr()` because
232         // dereferencing pointers is not stable in `const` on our current MSRV
233         // (1.56 as of this writing).
234         unsafe { mem::transmute(self) }
235     }
236 
237     /// Returns a mutable reference to the wrapped `T` without checking
238     /// alignment.
239     ///
240     /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
241     /// callers may prefer [`DerefMut::deref_mut`], which is safe.
242     ///
243     /// # Safety
244     ///
245     /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
246     #[inline(always)]
deref_mut_unchecked(&mut self) -> &mut T247     pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
248         // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
249         // the same memory location as `self`. It has no alignment guarantee,
250         // but the caller has promised that `self` is properly aligned, so we
251         // know that the pointer itself is aligned, and thus that it is sound to
252         // create a reference to a `T` at this memory location.
253         unsafe { &mut *self.get_mut_ptr() }
254     }
255 
256     /// Gets an unaligned raw pointer to the inner `T`.
257     ///
258     /// # Safety
259     ///
260     /// The returned raw pointer is not necessarily aligned to
261     /// `align_of::<T>()`. Most functions which operate on raw pointers require
262     /// those pointers to be aligned, so calling those functions with the result
263     /// of `get_ptr` will result in undefined behavior if alignment is not
264     /// guaranteed using some out-of-band mechanism. In general, the only
265     /// functions which are safe to call with this pointer are those which are
266     /// explicitly documented as being sound to use with an unaligned pointer,
267     /// such as [`read_unaligned`].
268     ///
269     /// Even if the caller is permitted to mutate `self` (e.g. they have
270     /// ownership or a mutable borrow), it is not guaranteed to be sound to
271     /// write through the returned pointer. If writing is required, prefer
272     /// [`get_mut_ptr`] instead.
273     ///
274     /// [`read_unaligned`]: core::ptr::read_unaligned
275     /// [`get_mut_ptr`]: Unalign::get_mut_ptr
276     #[inline(always)]
get_ptr(&self) -> *const T277     pub const fn get_ptr(&self) -> *const T {
278         ptr::addr_of!(self.0)
279     }
280 
281     /// Gets an unaligned mutable raw pointer to the inner `T`.
282     ///
283     /// # Safety
284     ///
285     /// The returned raw pointer is not necessarily aligned to
286     /// `align_of::<T>()`. Most functions which operate on raw pointers require
287     /// those pointers to be aligned, so calling those functions with the result
288     /// of `get_ptr` will result in undefined behavior if alignment is not
289     /// guaranteed using some out-of-band mechanism. In general, the only
290     /// functions which are safe to call with this pointer are those which are
291     /// explicitly documented as being sound to use with an unaligned pointer,
292     /// such as [`read_unaligned`].
293     ///
294     /// [`read_unaligned`]: core::ptr::read_unaligned
295     // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
296     #[inline(always)]
get_mut_ptr(&mut self) -> *mut T297     pub fn get_mut_ptr(&mut self) -> *mut T {
298         ptr::addr_of_mut!(self.0)
299     }
300 
301     /// Sets the inner `T`, dropping the previous value.
302     // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
303     #[inline(always)]
set(&mut self, t: T)304     pub fn set(&mut self, t: T) {
305         *self = Unalign::new(t);
306     }
307 
308     /// Updates the inner `T` by calling a function on it.
309     ///
310     /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
311     /// impl should be preferred over this method when performing updates, as it
312     /// will usually be faster and more ergonomic.
313     ///
314     /// For large types, this method may be expensive, as it requires copying
315     /// `2 * size_of::<T>()` bytes. \[1\]
316     ///
317     /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
318     /// invoke `f` on it directly. Instead, `update` moves it into a
319     /// properly-aligned location in the local stack frame, calls `f` on it, and
320     /// then moves it back to its original location in `self`.
321     ///
322     /// [`T: Unaligned`]: Unaligned
323     #[inline]
update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O324     pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
325         if mem::align_of::<T>() == 1 {
326             // While we advise callers to use `DerefMut` when `T: Unaligned`,
327             // not all callers will be able to guarantee `T: Unaligned` in all
328             // cases. In particular, callers who are themselves providing an API
329             // which is generic over `T` may sometimes be called by *their*
330             // callers with `T` such that `align_of::<T>() == 1`, but cannot
331             // guarantee this in the general case. Thus, this optimization may
332             // sometimes be helpful.
333 
334             // SAFETY: Since `T`'s alignment is 1, `self` satisfies its
335             // alignment by definition.
336             let t = unsafe { self.deref_mut_unchecked() };
337             return f(t);
338         }
339 
340         // On drop, this moves `copy` out of itself and uses `ptr::write` to
341         // overwrite `slf`.
342         struct WriteBackOnDrop<T> {
343             copy: ManuallyDrop<T>,
344             slf: *mut Unalign<T>,
345         }
346 
347         impl<T> Drop for WriteBackOnDrop<T> {
348             fn drop(&mut self) {
349                 // SAFETY: We never use `copy` again as required by
350                 // `ManuallyDrop::take`.
351                 let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
352                 // SAFETY: `slf` is the raw pointer value of `self`. We know it
353                 // is valid for writes and properly aligned because `self` is a
354                 // mutable reference, which guarantees both of these properties.
355                 unsafe { ptr::write(self.slf, Unalign::new(copy)) };
356             }
357         }
358 
359         // SAFETY: We know that `self` is valid for reads, properly aligned, and
360         // points to an initialized `Unalign<T>` because it is a mutable
361         // reference, which guarantees all of these properties.
362         //
363         // Since `T: !Copy`, it would be unsound in the general case to allow
364         // both the original `Unalign<T>` and the copy to be used by safe code.
365         // We guarantee that the copy is used to overwrite the original in the
366         // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
367         // called before any other safe code executes, soundness is upheld.
368         // While this method can terminate in two ways (by returning normally or
369         // by unwinding due to a panic in `f`), in both cases, `write_back` is
370         // dropped - and its `drop` called - before any other safe code can
371         // execute.
372         let copy = unsafe { ptr::read(self) }.into_inner();
373         let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
374 
375         let ret = f(&mut write_back.copy);
376 
377         drop(write_back);
378         ret
379     }
380 }
381 
382 impl<T: Copy> Unalign<T> {
383     /// Gets a copy of the inner `T`.
384     // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
385     #[inline(always)]
get(&self) -> T386     pub fn get(&self) -> T {
387         let Unalign(val) = *self;
388         val
389     }
390 }
391 
392 impl<T: Unaligned> Deref for Unalign<T> {
393     type Target = T;
394 
395     #[inline(always)]
deref(&self) -> &T396     fn deref(&self) -> &T {
397         Ptr::from_ref(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_ref()
398     }
399 }
400 
401 impl<T: Unaligned> DerefMut for Unalign<T> {
402     #[inline(always)]
deref_mut(&mut self) -> &mut T403     fn deref_mut(&mut self) -> &mut T {
404         Ptr::from_mut(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_mut()
405     }
406 }
407 
408 impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
409     #[inline(always)]
partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering>410     fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
411         PartialOrd::partial_cmp(self.deref(), other.deref())
412     }
413 }
414 
415 impl<T: Unaligned + Ord> Ord for Unalign<T> {
416     #[inline(always)]
cmp(&self, other: &Unalign<T>) -> Ordering417     fn cmp(&self, other: &Unalign<T>) -> Ordering {
418         Ord::cmp(self.deref(), other.deref())
419     }
420 }
421 
422 impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
423     #[inline(always)]
eq(&self, other: &Unalign<T>) -> bool424     fn eq(&self, other: &Unalign<T>) -> bool {
425         PartialEq::eq(self.deref(), other.deref())
426     }
427 }
428 
429 impl<T: Unaligned + Eq> Eq for Unalign<T> {}
430 
431 impl<T: Unaligned + Hash> Hash for Unalign<T> {
432     #[inline(always)]
hash<H>(&self, state: &mut H) where H: Hasher,433     fn hash<H>(&self, state: &mut H)
434     where
435         H: Hasher,
436     {
437         self.deref().hash(state);
438     }
439 }
440 
441 impl<T: Unaligned + Debug> Debug for Unalign<T> {
442     #[inline(always)]
fmt(&self, f: &mut Formatter<'_>) -> fmt::Result443     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
444         Debug::fmt(self.deref(), f)
445     }
446 }
447 
448 impl<T: Unaligned + Display> Display for Unalign<T> {
449     #[inline(always)]
fmt(&self, f: &mut Formatter<'_>) -> fmt::Result450     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
451         Display::fmt(self.deref(), f)
452     }
453 }
454 
455 /// A wrapper type to construct uninitialized instances of `T`.
456 ///
457 /// `MaybeUninit` is identical to the [standard library
458 /// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
459 /// types.
460 ///
461 /// # Layout
462 ///
463 /// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
464 /// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
465 /// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
466 /// types, the following are guaranteed:
467 /// - Every [valid size][valid-size] for `T` is a valid size for
468 ///   `MaybeUninit<T>` and vice versa
469 /// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
470 ///   pointer metadata, `t` and `m` address the same number of bytes (and
471 ///   likewise for `*mut`)
472 ///
473 /// [core-maybe-uninit]: core::mem::MaybeUninit
474 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
475 #[repr(transparent)]
476 #[doc(hidden)]
477 pub struct MaybeUninit<T: ?Sized + KnownLayout>(
478     // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
479     // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
480     // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
481     // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
482     // it admits uninitialized bytes in all positions. Because `MabyeUninit` is
483     // marked `repr(transparent)`, these properties additionally hold true for
484     // `Self`.
485     T::MaybeUninit,
486 );
487 
488 #[doc(hidden)]
489 impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
490     /// Constructs a `MaybeUninit<T>` initialized with the given value.
491     #[inline(always)]
new(val: T) -> Self where T: Sized, Self: Sized,492     pub fn new(val: T) -> Self
493     where
494         T: Sized,
495         Self: Sized,
496     {
497         // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
498         // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
499         // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
500         //
501         // First, it is valid to transmute `val` to `T::MaybeUninit` because, by
502         // invariant on `T::MaybeUninit`:
503         // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
504         // - All byte sequences of the correct size are valid values of
505         //   `T::MaybeUninit`.
506         //
507         // Second, it is additionally valid to transmute from `T::MaybeUninit`
508         // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
509         // `repr(transparent)` wrapper around `T::MaybeUninit`.
510         //
511         // These two transmutes are collapsed into one so we don't need to add a
512         // `T::MaybeUninit: Sized` bound to this function's `where` clause.
513         unsafe { crate::util::transmute_unchecked(val) }
514     }
515 
516     /// Constructs an uninitialized `MaybeUninit<T>`.
517     #[must_use]
518     #[inline(always)]
uninit() -> Self where T: Sized, Self: Sized,519     pub fn uninit() -> Self
520     where
521         T: Sized,
522         Self: Sized,
523     {
524         let uninit = CoreMaybeUninit::<T>::uninit();
525         // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
526         // `MaybeUninit<T>` since they both admit uninitialized bytes in all
527         // positions, and they have the same size (i.e., that of `T`).
528         //
529         // `MaybeUninit<T>` has the same size as `T`, because (by invariant on
530         // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
531         // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
532         // accurately reflects the layout of `T`.
533         //
534         // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
535         // uninitialized bytes in all positions.
536         //
537         // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
538         //
539         //   `MaybeUninit<T>` is guaranteed to have the same size, alignment,
540         //   and ABI as `T`
541         unsafe { crate::util::transmute_unchecked(uninit) }
542     }
543 
544     /// Creates a `Box<MaybeUninit<T>>`.
545     ///
546     /// This function is useful for allocating large, uninit values on the heap
547     /// without ever creating a temporary instance of `Self` on the stack.
548     ///
549     /// # Errors
550     ///
551     /// Returns an error on allocation failure. Allocation failure is guaranteed
552     /// never to cause a panic or an abort.
553     #[cfg(feature = "alloc")]
554     #[inline]
new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError>555     pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
556         // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
557         // `new_box`. The referent of the pointer returned by `alloc` (and,
558         // consequently, the `Box` derived from it) is a valid instance of
559         // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
560         // (un)initialized bytes.
561         unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
562     }
563 
564     /// Extracts the value from the `MaybeUninit<T>` container.
565     ///
566     /// # Safety
567     ///
568     /// The caller must ensure that `self` is in an bit-valid state. Depending
569     /// on subsequent use, it may also need to be in a library-valid state.
570     #[inline(always)]
assume_init(self) -> T where T: Sized, Self: Sized,571     pub unsafe fn assume_init(self) -> T
572     where
573         T: Sized,
574         Self: Sized,
575     {
576         // SAFETY: The caller guarantees that `self` is in an bit-valid state.
577         unsafe { crate::util::transmute_unchecked(self) }
578     }
579 }
580 
581 impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
582     #[inline]
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result583     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
584         f.pad(core::any::type_name::<Self>())
585     }
586 }
587 
588 #[cfg(test)]
589 mod tests {
590     use core::panic::AssertUnwindSafe;
591 
592     use super::*;
593     use crate::util::testutil::*;
594 
595     #[test]
test_unalign()596     fn test_unalign() {
597         // Test methods that don't depend on alignment.
598         let mut u = Unalign::new(AU64(123));
599         assert_eq!(u.get(), AU64(123));
600         assert_eq!(u.into_inner(), AU64(123));
601         assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
602         assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
603         u.set(AU64(321));
604         assert_eq!(u.get(), AU64(321));
605 
606         // Test methods that depend on alignment (when alignment is satisfied).
607         let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
608         assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
609         assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
610         // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
611         assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
612         // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
613         assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
614         *u.t.try_deref_mut().unwrap() = AU64(321);
615         assert_eq!(u.t.get(), AU64(321));
616 
617         // Test methods that depend on alignment (when alignment is not
618         // satisfied).
619         let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
620         assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
621         assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
622 
623         // Test methods that depend on `T: Unaligned`.
624         let mut u = Unalign::new(123u8);
625         assert_eq!(u.try_deref(), Ok(&123));
626         assert_eq!(u.try_deref_mut(), Ok(&mut 123));
627         assert_eq!(u.deref(), &123);
628         assert_eq!(u.deref_mut(), &mut 123);
629         *u = 21;
630         assert_eq!(u.get(), 21);
631 
632         // Test that some `Unalign` functions and methods are `const`.
633         const _UNALIGN: Unalign<u64> = Unalign::new(0);
634         const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
635         const _U64: u64 = _UNALIGN.into_inner();
636         // Make sure all code is considered "used".
637         //
638         // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
639         // attribute.
640         #[allow(dead_code)]
641         const _: () = {
642             let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
643             // Make sure that `deref_unchecked` is `const`.
644             //
645             // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
646             let au64 = unsafe { x.t.deref_unchecked() };
647             match au64 {
648                 AU64(123) => {}
649                 _ => const_unreachable!(),
650             }
651         };
652     }
653 
654     #[test]
test_unalign_update()655     fn test_unalign_update() {
656         let mut u = Unalign::new(AU64(123));
657         u.update(|a| a.0 += 1);
658         assert_eq!(u.get(), AU64(124));
659 
660         // Test that, even if the callback panics, the original is still
661         // correctly overwritten. Use a `Box` so that Miri is more likely to
662         // catch any unsoundness (which would likely result in two `Box`es for
663         // the same heap object, which is the sort of thing that Miri would
664         // probably catch).
665         let mut u = Unalign::new(Box::new(AU64(123)));
666         let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
667             u.update(|a| {
668                 a.0 += 1;
669                 panic!();
670             })
671         }));
672         assert!(res.is_err());
673         assert_eq!(u.into_inner(), Box::new(AU64(124)));
674 
675         // Test the align_of::<T>() == 1 optimization.
676         let mut u = Unalign::new([0u8, 1]);
677         u.update(|a| a[0] += 1);
678         assert_eq!(u.get(), [1u8, 1]);
679     }
680 
681     #[test]
test_unalign_copy_clone()682     fn test_unalign_copy_clone() {
683         // Test that `Copy` and `Clone` do not cause soundness issues. This test
684         // is mainly meant to exercise UB that would be caught by Miri.
685 
686         // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
687         let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
688         #[allow(clippy::clone_on_copy)]
689         let v = u.t.clone();
690         let w = u.t;
691         assert_eq!(u.t.get(), v.get());
692         assert_eq!(u.t.get(), w.get());
693         assert_eq!(v.get(), w.get());
694     }
695 
696     #[test]
test_unalign_trait_impls()697     fn test_unalign_trait_impls() {
698         let zero = Unalign::new(0u8);
699         let one = Unalign::new(1u8);
700 
701         assert!(zero < one);
702         assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
703         assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
704 
705         assert_ne!(zero, one);
706         assert_eq!(zero, zero);
707         assert!(!PartialEq::eq(&zero, &one));
708         assert!(PartialEq::eq(&zero, &zero));
709 
710         fn hash<T: Hash>(t: &T) -> u64 {
711             let mut h = std::collections::hash_map::DefaultHasher::new();
712             t.hash(&mut h);
713             h.finish()
714         }
715 
716         assert_eq!(hash(&zero), hash(&0u8));
717         assert_eq!(hash(&one), hash(&1u8));
718 
719         assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
720         assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
721         assert_eq!(format!("{}", zero), format!("{}", 0u8));
722         assert_eq!(format!("{}", one), format!("{}", 1u8));
723     }
724 
725     #[test]
726     #[allow(clippy::as_conversions)]
test_maybe_uninit()727     fn test_maybe_uninit() {
728         // int
729         {
730             let input = 42;
731             let uninit = MaybeUninit::new(input);
732             // SAFETY: `uninit` is in an initialized state
733             let output = unsafe { uninit.assume_init() };
734             assert_eq!(input, output);
735         }
736 
737         // thin ref
738         {
739             let input = 42;
740             let uninit = MaybeUninit::new(&input);
741             // SAFETY: `uninit` is in an initialized state
742             let output = unsafe { uninit.assume_init() };
743             assert_eq!(&input as *const _, output as *const _);
744             assert_eq!(input, *output);
745         }
746 
747         // wide ref
748         {
749             let input = [1, 2, 3, 4];
750             let uninit = MaybeUninit::new(&input[..]);
751             // SAFETY: `uninit` is in an initialized state
752             let output = unsafe { uninit.assume_init() };
753             assert_eq!(&input[..] as *const _, output as *const _);
754             assert_eq!(input, *output);
755         }
756     }
757 }
758