1 // Copyright 2023 The Fuchsia Authors 2 // 3 // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 4 // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT 5 // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. 6 // This file may not be copied, modified, or distributed except according to 7 // those terms. 8 9 use core::{fmt, hash::Hash}; 10 11 use super::*; 12 13 /// A type with no alignment requirement. 14 /// 15 /// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>` 16 /// has the same size and bit validity as `T`, but not necessarily the same 17 /// alignment [or ABI]. This is useful if a type with an alignment requirement 18 /// needs to be read from a chunk of memory which provides no alignment 19 /// guarantees. 20 /// 21 /// Since `Unalign` has no alignment requirement, the inner `T` may not be 22 /// properly aligned in memory. There are five ways to access the inner `T`: 23 /// - by value, using [`get`] or [`into_inner`] 24 /// - by reference inside of a callback, using [`update`] 25 /// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can 26 /// fail if the `Unalign` does not satisfy `T`'s alignment requirement at 27 /// runtime 28 /// - unsafely by reference, using [`deref_unchecked`] or 29 /// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that 30 /// the `Unalign` satisfies `T`'s alignment requirement 31 /// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or 32 /// [`DerefMut::deref_mut`] 33 /// 34 /// [or ABI]: https://github.com/google/zerocopy/issues/164 35 /// [`get`]: Unalign::get 36 /// [`into_inner`]: Unalign::into_inner 37 /// [`update`]: Unalign::update 38 /// [`try_deref`]: Unalign::try_deref 39 /// [`try_deref_mut`]: Unalign::try_deref_mut 40 /// [`deref_unchecked`]: Unalign::deref_unchecked 41 /// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked 42 /// 43 /// # Example 44 /// 45 /// In this example, we need `EthernetFrame` to have no alignment requirement - 46 /// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so 47 /// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s 48 /// alignment requirement so that `EthernetFrame` has no alignment requirement 49 /// and can implement `Unaligned`. 50 /// 51 /// ```rust 52 /// use zerocopy::*; 53 /// # use zerocopy_derive::*; 54 /// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]); 55 /// 56 /// # #[derive(PartialEq, Copy, Clone, Debug)] 57 /// #[derive(TryFromBytes, KnownLayout, Immutable)] 58 /// #[repr(u16)] 59 /// enum EtherType { 60 /// Ipv4 = 0x0800u16.to_be(), 61 /// Arp = 0x0806u16.to_be(), 62 /// Ipv6 = 0x86DDu16.to_be(), 63 /// # /* 64 /// ... 65 /// # */ 66 /// } 67 /// 68 /// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)] 69 /// #[repr(C)] 70 /// struct EthernetFrame { 71 /// src: Mac, 72 /// dst: Mac, 73 /// ethertype: Unalign<EtherType>, 74 /// payload: [u8], 75 /// } 76 /// 77 /// let bytes = &[ 78 /// # 0, 1, 2, 3, 4, 5, 79 /// # 6, 7, 8, 9, 10, 11, 80 /// # /* 81 /// ... 82 /// # */ 83 /// 0x86, 0xDD, // EtherType 84 /// 0xDE, 0xAD, 0xBE, 0xEF // Payload 85 /// ][..]; 86 /// 87 /// // PANICS: Guaranteed not to panic because `bytes` is of the right 88 /// // length, has the right contents, and `EthernetFrame` has no 89 /// // alignment requirement. 90 /// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap(); 91 /// 92 /// assert_eq!(packet.ethertype.get(), EtherType::Ipv6); 93 /// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]); 94 /// ``` 95 /// 96 /// # Safety 97 /// 98 /// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`, 99 /// and to have [`UnsafeCell`]s covering the same byte ranges as `T`. 100 /// `Unalign<T>` is guaranteed to have alignment 1. 101 // NOTE: This type is sound to use with types that need to be dropped. The 102 // reason is that the compiler-generated drop code automatically moves all 103 // values to aligned memory slots before dropping them in-place. This is not 104 // well-documented, but it's hinted at in places like [1] and [2]. However, this 105 // also means that `T` must be `Sized`; unless something changes, we can never 106 // support unsized `T`. [3] 107 // 108 // [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646 109 // [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323 110 // [3] https://github.com/google/zerocopy/issues/209 111 #[allow(missing_debug_implementations)] 112 #[derive(Default, Copy)] 113 #[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))] 114 #[repr(C, packed)] 115 pub struct Unalign<T>(T); 116 117 // We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not 118 // smart enough to realize that `Unalign<T>` is always sized and thus emits a 119 // `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive. 120 impl_known_layout!(T => Unalign<T>); 121 122 safety_comment! { 123 /// SAFETY: 124 /// - `Unalign<T>` promises to have alignment 1, and so we don't require 125 /// that `T: Unaligned`. 126 /// - `Unalign<T>` has the same bit validity as `T`, and so it is 127 /// `FromZeros`, `FromBytes`, or `IntoBytes` exactly when `T` is as well. 128 /// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains 129 /// `UnsafeCell`s exactly when `T` does. 130 /// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as 131 /// `T`, so `T::is_bit_valid` is a sound implementation of `is_bit_valid`. 132 /// Furthermore: 133 /// - Since `T` and `Unalign<T>` have the same layout, they have the same 134 /// size (as required by `unsafe_impl!`). 135 /// - Since `T` and `Unalign<T>` have the same fields, they have 136 /// `UnsafeCell`s at the same byte ranges (as required by 137 /// `unsafe_impl!`). 138 impl_or_verify!(T => Unaligned for Unalign<T>); 139 impl_or_verify!(T: Immutable => Immutable for Unalign<T>); 140 impl_or_verify!( 141 T: TryFromBytes => TryFromBytes for Unalign<T>; 142 |c: Maybe<T>| T::is_bit_valid(c) 143 ); 144 impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>); 145 impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>); 146 impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>); 147 } 148 149 // Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be 150 // aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound 151 // is not sufficient to implement `Clone` for `Unalign`. 152 impl<T: Copy> Clone for Unalign<T> { 153 #[inline(always)] clone(&self) -> Unalign<T>154 fn clone(&self) -> Unalign<T> { 155 *self 156 } 157 } 158 159 impl<T> Unalign<T> { 160 /// Constructs a new `Unalign`. 161 #[inline(always)] new(val: T) -> Unalign<T>162 pub const fn new(val: T) -> Unalign<T> { 163 Unalign(val) 164 } 165 166 /// Consumes `self`, returning the inner `T`. 167 #[inline(always)] into_inner(self) -> T168 pub const fn into_inner(self) -> T { 169 // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size 170 // and bit validity as `T`. 171 // 172 // We do this instead of just destructuring in order to prevent 173 // `Unalign`'s `Drop::drop` from being run, since dropping is not 174 // supported in `const fn`s. 175 // 176 // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure 177 // instead of using unsafe. 178 unsafe { crate::util::transmute_unchecked(self) } 179 } 180 181 /// Attempts to return a reference to the wrapped `T`, failing if `self` is 182 /// not properly aligned. 183 /// 184 /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns 185 /// `Err`. 186 /// 187 /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers 188 /// may prefer [`Deref::deref`], which is infallible. 189 #[inline(always)] try_deref(&self) -> Result<&T, AlignmentError<&Self, T>>190 pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> { 191 let inner = Ptr::from_ref(self).transparent_wrapper_into_inner(); 192 match inner.bikeshed_try_into_aligned() { 193 Ok(aligned) => Ok(aligned.as_ref()), 194 Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())), 195 } 196 } 197 198 /// Attempts to return a mutable reference to the wrapped `T`, failing if 199 /// `self` is not properly aligned. 200 /// 201 /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns 202 /// `Err`. 203 /// 204 /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and 205 /// callers may prefer [`DerefMut::deref_mut`], which is infallible. 206 #[inline(always)] try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>>207 pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> { 208 let inner = Ptr::from_mut(self).transparent_wrapper_into_inner(); 209 match inner.bikeshed_try_into_aligned() { 210 Ok(aligned) => Ok(aligned.as_mut()), 211 Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())), 212 } 213 } 214 215 /// Returns a reference to the wrapped `T` without checking alignment. 216 /// 217 /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers 218 /// may prefer [`Deref::deref`], which is safe. 219 /// 220 /// # Safety 221 /// 222 /// The caller must guarantee that `self` satisfies `align_of::<T>()`. 223 #[inline(always)] deref_unchecked(&self) -> &T224 pub const unsafe fn deref_unchecked(&self) -> &T { 225 // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T` 226 // at the same memory location as `self`. It has no alignment guarantee, 227 // but the caller has promised that `self` is properly aligned, so we 228 // know that it is sound to create a reference to `T` at this memory 229 // location. 230 // 231 // We use `mem::transmute` instead of `&*self.get_ptr()` because 232 // dereferencing pointers is not stable in `const` on our current MSRV 233 // (1.56 as of this writing). 234 unsafe { mem::transmute(self) } 235 } 236 237 /// Returns a mutable reference to the wrapped `T` without checking 238 /// alignment. 239 /// 240 /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and 241 /// callers may prefer [`DerefMut::deref_mut`], which is safe. 242 /// 243 /// # Safety 244 /// 245 /// The caller must guarantee that `self` satisfies `align_of::<T>()`. 246 #[inline(always)] deref_mut_unchecked(&mut self) -> &mut T247 pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T { 248 // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at 249 // the same memory location as `self`. It has no alignment guarantee, 250 // but the caller has promised that `self` is properly aligned, so we 251 // know that the pointer itself is aligned, and thus that it is sound to 252 // create a reference to a `T` at this memory location. 253 unsafe { &mut *self.get_mut_ptr() } 254 } 255 256 /// Gets an unaligned raw pointer to the inner `T`. 257 /// 258 /// # Safety 259 /// 260 /// The returned raw pointer is not necessarily aligned to 261 /// `align_of::<T>()`. Most functions which operate on raw pointers require 262 /// those pointers to be aligned, so calling those functions with the result 263 /// of `get_ptr` will result in undefined behavior if alignment is not 264 /// guaranteed using some out-of-band mechanism. In general, the only 265 /// functions which are safe to call with this pointer are those which are 266 /// explicitly documented as being sound to use with an unaligned pointer, 267 /// such as [`read_unaligned`]. 268 /// 269 /// Even if the caller is permitted to mutate `self` (e.g. they have 270 /// ownership or a mutable borrow), it is not guaranteed to be sound to 271 /// write through the returned pointer. If writing is required, prefer 272 /// [`get_mut_ptr`] instead. 273 /// 274 /// [`read_unaligned`]: core::ptr::read_unaligned 275 /// [`get_mut_ptr`]: Unalign::get_mut_ptr 276 #[inline(always)] get_ptr(&self) -> *const T277 pub const fn get_ptr(&self) -> *const T { 278 ptr::addr_of!(self.0) 279 } 280 281 /// Gets an unaligned mutable raw pointer to the inner `T`. 282 /// 283 /// # Safety 284 /// 285 /// The returned raw pointer is not necessarily aligned to 286 /// `align_of::<T>()`. Most functions which operate on raw pointers require 287 /// those pointers to be aligned, so calling those functions with the result 288 /// of `get_ptr` will result in undefined behavior if alignment is not 289 /// guaranteed using some out-of-band mechanism. In general, the only 290 /// functions which are safe to call with this pointer are those which are 291 /// explicitly documented as being sound to use with an unaligned pointer, 292 /// such as [`read_unaligned`]. 293 /// 294 /// [`read_unaligned`]: core::ptr::read_unaligned 295 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. 296 #[inline(always)] get_mut_ptr(&mut self) -> *mut T297 pub fn get_mut_ptr(&mut self) -> *mut T { 298 ptr::addr_of_mut!(self.0) 299 } 300 301 /// Sets the inner `T`, dropping the previous value. 302 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. 303 #[inline(always)] set(&mut self, t: T)304 pub fn set(&mut self, t: T) { 305 *self = Unalign::new(t); 306 } 307 308 /// Updates the inner `T` by calling a function on it. 309 /// 310 /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that 311 /// impl should be preferred over this method when performing updates, as it 312 /// will usually be faster and more ergonomic. 313 /// 314 /// For large types, this method may be expensive, as it requires copying 315 /// `2 * size_of::<T>()` bytes. \[1\] 316 /// 317 /// \[1\] Since the inner `T` may not be aligned, it would not be sound to 318 /// invoke `f` on it directly. Instead, `update` moves it into a 319 /// properly-aligned location in the local stack frame, calls `f` on it, and 320 /// then moves it back to its original location in `self`. 321 /// 322 /// [`T: Unaligned`]: Unaligned 323 #[inline] update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O324 pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O { 325 if mem::align_of::<T>() == 1 { 326 // While we advise callers to use `DerefMut` when `T: Unaligned`, 327 // not all callers will be able to guarantee `T: Unaligned` in all 328 // cases. In particular, callers who are themselves providing an API 329 // which is generic over `T` may sometimes be called by *their* 330 // callers with `T` such that `align_of::<T>() == 1`, but cannot 331 // guarantee this in the general case. Thus, this optimization may 332 // sometimes be helpful. 333 334 // SAFETY: Since `T`'s alignment is 1, `self` satisfies its 335 // alignment by definition. 336 let t = unsafe { self.deref_mut_unchecked() }; 337 return f(t); 338 } 339 340 // On drop, this moves `copy` out of itself and uses `ptr::write` to 341 // overwrite `slf`. 342 struct WriteBackOnDrop<T> { 343 copy: ManuallyDrop<T>, 344 slf: *mut Unalign<T>, 345 } 346 347 impl<T> Drop for WriteBackOnDrop<T> { 348 fn drop(&mut self) { 349 // SAFETY: We never use `copy` again as required by 350 // `ManuallyDrop::take`. 351 let copy = unsafe { ManuallyDrop::take(&mut self.copy) }; 352 // SAFETY: `slf` is the raw pointer value of `self`. We know it 353 // is valid for writes and properly aligned because `self` is a 354 // mutable reference, which guarantees both of these properties. 355 unsafe { ptr::write(self.slf, Unalign::new(copy)) }; 356 } 357 } 358 359 // SAFETY: We know that `self` is valid for reads, properly aligned, and 360 // points to an initialized `Unalign<T>` because it is a mutable 361 // reference, which guarantees all of these properties. 362 // 363 // Since `T: !Copy`, it would be unsound in the general case to allow 364 // both the original `Unalign<T>` and the copy to be used by safe code. 365 // We guarantee that the copy is used to overwrite the original in the 366 // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is 367 // called before any other safe code executes, soundness is upheld. 368 // While this method can terminate in two ways (by returning normally or 369 // by unwinding due to a panic in `f`), in both cases, `write_back` is 370 // dropped - and its `drop` called - before any other safe code can 371 // execute. 372 let copy = unsafe { ptr::read(self) }.into_inner(); 373 let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self }; 374 375 let ret = f(&mut write_back.copy); 376 377 drop(write_back); 378 ret 379 } 380 } 381 382 impl<T: Copy> Unalign<T> { 383 /// Gets a copy of the inner `T`. 384 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. 385 #[inline(always)] get(&self) -> T386 pub fn get(&self) -> T { 387 let Unalign(val) = *self; 388 val 389 } 390 } 391 392 impl<T: Unaligned> Deref for Unalign<T> { 393 type Target = T; 394 395 #[inline(always)] deref(&self) -> &T396 fn deref(&self) -> &T { 397 Ptr::from_ref(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_ref() 398 } 399 } 400 401 impl<T: Unaligned> DerefMut for Unalign<T> { 402 #[inline(always)] deref_mut(&mut self) -> &mut T403 fn deref_mut(&mut self) -> &mut T { 404 Ptr::from_mut(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_mut() 405 } 406 } 407 408 impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> { 409 #[inline(always)] partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering>410 fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> { 411 PartialOrd::partial_cmp(self.deref(), other.deref()) 412 } 413 } 414 415 impl<T: Unaligned + Ord> Ord for Unalign<T> { 416 #[inline(always)] cmp(&self, other: &Unalign<T>) -> Ordering417 fn cmp(&self, other: &Unalign<T>) -> Ordering { 418 Ord::cmp(self.deref(), other.deref()) 419 } 420 } 421 422 impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> { 423 #[inline(always)] eq(&self, other: &Unalign<T>) -> bool424 fn eq(&self, other: &Unalign<T>) -> bool { 425 PartialEq::eq(self.deref(), other.deref()) 426 } 427 } 428 429 impl<T: Unaligned + Eq> Eq for Unalign<T> {} 430 431 impl<T: Unaligned + Hash> Hash for Unalign<T> { 432 #[inline(always)] hash<H>(&self, state: &mut H) where H: Hasher,433 fn hash<H>(&self, state: &mut H) 434 where 435 H: Hasher, 436 { 437 self.deref().hash(state); 438 } 439 } 440 441 impl<T: Unaligned + Debug> Debug for Unalign<T> { 442 #[inline(always)] fmt(&self, f: &mut Formatter<'_>) -> fmt::Result443 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 444 Debug::fmt(self.deref(), f) 445 } 446 } 447 448 impl<T: Unaligned + Display> Display for Unalign<T> { 449 #[inline(always)] fmt(&self, f: &mut Formatter<'_>) -> fmt::Result450 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 451 Display::fmt(self.deref(), f) 452 } 453 } 454 455 /// A wrapper type to construct uninitialized instances of `T`. 456 /// 457 /// `MaybeUninit` is identical to the [standard library 458 /// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized 459 /// types. 460 /// 461 /// # Layout 462 /// 463 /// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to 464 /// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception: 465 /// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such 466 /// types, the following are guaranteed: 467 /// - Every [valid size][valid-size] for `T` is a valid size for 468 /// `MaybeUninit<T>` and vice versa 469 /// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat 470 /// pointer metadata, `t` and `m` address the same number of bytes (and 471 /// likewise for `*mut`) 472 /// 473 /// [core-maybe-uninit]: core::mem::MaybeUninit 474 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size 475 #[repr(transparent)] 476 #[doc(hidden)] 477 pub struct MaybeUninit<T: ?Sized + KnownLayout>( 478 // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant 479 // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`, 480 // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT` 481 // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`, 482 // it admits uninitialized bytes in all positions. Because `MabyeUninit` is 483 // marked `repr(transparent)`, these properties additionally hold true for 484 // `Self`. 485 T::MaybeUninit, 486 ); 487 488 #[doc(hidden)] 489 impl<T: ?Sized + KnownLayout> MaybeUninit<T> { 490 /// Constructs a `MaybeUninit<T>` initialized with the given value. 491 #[inline(always)] new(val: T) -> Self where T: Sized, Self: Sized,492 pub fn new(val: T) -> Self 493 where 494 T: Sized, 495 Self: Sized, 496 { 497 // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it 498 // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid 499 // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`. 500 // 501 // First, it is valid to transmute `val` to `T::MaybeUninit` because, by 502 // invariant on `T::MaybeUninit`: 503 // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size. 504 // - All byte sequences of the correct size are valid values of 505 // `T::MaybeUninit`. 506 // 507 // Second, it is additionally valid to transmute from `T::MaybeUninit` 508 // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a 509 // `repr(transparent)` wrapper around `T::MaybeUninit`. 510 // 511 // These two transmutes are collapsed into one so we don't need to add a 512 // `T::MaybeUninit: Sized` bound to this function's `where` clause. 513 unsafe { crate::util::transmute_unchecked(val) } 514 } 515 516 /// Constructs an uninitialized `MaybeUninit<T>`. 517 #[must_use] 518 #[inline(always)] uninit() -> Self where T: Sized, Self: Sized,519 pub fn uninit() -> Self 520 where 521 T: Sized, 522 Self: Sized, 523 { 524 let uninit = CoreMaybeUninit::<T>::uninit(); 525 // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to 526 // `MaybeUninit<T>` since they both admit uninitialized bytes in all 527 // positions, and they have the same size (i.e., that of `T`). 528 // 529 // `MaybeUninit<T>` has the same size as `T`, because (by invariant on 530 // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`, 531 // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT` 532 // accurately reflects the layout of `T`. 533 // 534 // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits 535 // uninitialized bytes in all positions. 536 // 537 // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1: 538 // 539 // `MaybeUninit<T>` is guaranteed to have the same size, alignment, 540 // and ABI as `T` 541 unsafe { crate::util::transmute_unchecked(uninit) } 542 } 543 544 /// Creates a `Box<MaybeUninit<T>>`. 545 /// 546 /// This function is useful for allocating large, uninit values on the heap 547 /// without ever creating a temporary instance of `Self` on the stack. 548 /// 549 /// # Errors 550 /// 551 /// Returns an error on allocation failure. Allocation failure is guaranteed 552 /// never to cause a panic or an abort. 553 #[cfg(feature = "alloc")] 554 #[inline] new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError>555 pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> { 556 // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of 557 // `new_box`. The referent of the pointer returned by `alloc` (and, 558 // consequently, the `Box` derived from it) is a valid instance of 559 // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary 560 // (un)initialized bytes. 561 unsafe { crate::util::new_box(meta, alloc::alloc::alloc) } 562 } 563 564 /// Extracts the value from the `MaybeUninit<T>` container. 565 /// 566 /// # Safety 567 /// 568 /// The caller must ensure that `self` is in an bit-valid state. Depending 569 /// on subsequent use, it may also need to be in a library-valid state. 570 #[inline(always)] assume_init(self) -> T where T: Sized, Self: Sized,571 pub unsafe fn assume_init(self) -> T 572 where 573 T: Sized, 574 Self: Sized, 575 { 576 // SAFETY: The caller guarantees that `self` is in an bit-valid state. 577 unsafe { crate::util::transmute_unchecked(self) } 578 } 579 } 580 581 impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> { 582 #[inline] fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result583 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 584 f.pad(core::any::type_name::<Self>()) 585 } 586 } 587 588 #[cfg(test)] 589 mod tests { 590 use core::panic::AssertUnwindSafe; 591 592 use super::*; 593 use crate::util::testutil::*; 594 595 #[test] test_unalign()596 fn test_unalign() { 597 // Test methods that don't depend on alignment. 598 let mut u = Unalign::new(AU64(123)); 599 assert_eq!(u.get(), AU64(123)); 600 assert_eq!(u.into_inner(), AU64(123)); 601 assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u)); 602 assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u)); 603 u.set(AU64(321)); 604 assert_eq!(u.get(), AU64(321)); 605 606 // Test methods that depend on alignment (when alignment is satisfied). 607 let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); 608 assert_eq!(u.t.try_deref().unwrap(), &AU64(123)); 609 assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123)); 610 // SAFETY: The `Align<_, AU64>` guarantees proper alignment. 611 assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123)); 612 // SAFETY: The `Align<_, AU64>` guarantees proper alignment. 613 assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123)); 614 *u.t.try_deref_mut().unwrap() = AU64(321); 615 assert_eq!(u.t.get(), AU64(321)); 616 617 // Test methods that depend on alignment (when alignment is not 618 // satisfied). 619 let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123))); 620 assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. }))); 621 assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. }))); 622 623 // Test methods that depend on `T: Unaligned`. 624 let mut u = Unalign::new(123u8); 625 assert_eq!(u.try_deref(), Ok(&123)); 626 assert_eq!(u.try_deref_mut(), Ok(&mut 123)); 627 assert_eq!(u.deref(), &123); 628 assert_eq!(u.deref_mut(), &mut 123); 629 *u = 21; 630 assert_eq!(u.get(), 21); 631 632 // Test that some `Unalign` functions and methods are `const`. 633 const _UNALIGN: Unalign<u64> = Unalign::new(0); 634 const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr(); 635 const _U64: u64 = _UNALIGN.into_inner(); 636 // Make sure all code is considered "used". 637 // 638 // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this 639 // attribute. 640 #[allow(dead_code)] 641 const _: () = { 642 let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); 643 // Make sure that `deref_unchecked` is `const`. 644 // 645 // SAFETY: The `Align<_, AU64>` guarantees proper alignment. 646 let au64 = unsafe { x.t.deref_unchecked() }; 647 match au64 { 648 AU64(123) => {} 649 _ => const_unreachable!(), 650 } 651 }; 652 } 653 654 #[test] test_unalign_update()655 fn test_unalign_update() { 656 let mut u = Unalign::new(AU64(123)); 657 u.update(|a| a.0 += 1); 658 assert_eq!(u.get(), AU64(124)); 659 660 // Test that, even if the callback panics, the original is still 661 // correctly overwritten. Use a `Box` so that Miri is more likely to 662 // catch any unsoundness (which would likely result in two `Box`es for 663 // the same heap object, which is the sort of thing that Miri would 664 // probably catch). 665 let mut u = Unalign::new(Box::new(AU64(123))); 666 let res = std::panic::catch_unwind(AssertUnwindSafe(|| { 667 u.update(|a| { 668 a.0 += 1; 669 panic!(); 670 }) 671 })); 672 assert!(res.is_err()); 673 assert_eq!(u.into_inner(), Box::new(AU64(124))); 674 675 // Test the align_of::<T>() == 1 optimization. 676 let mut u = Unalign::new([0u8, 1]); 677 u.update(|a| a[0] += 1); 678 assert_eq!(u.get(), [1u8, 1]); 679 } 680 681 #[test] test_unalign_copy_clone()682 fn test_unalign_copy_clone() { 683 // Test that `Copy` and `Clone` do not cause soundness issues. This test 684 // is mainly meant to exercise UB that would be caught by Miri. 685 686 // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8. 687 let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123))); 688 #[allow(clippy::clone_on_copy)] 689 let v = u.t.clone(); 690 let w = u.t; 691 assert_eq!(u.t.get(), v.get()); 692 assert_eq!(u.t.get(), w.get()); 693 assert_eq!(v.get(), w.get()); 694 } 695 696 #[test] test_unalign_trait_impls()697 fn test_unalign_trait_impls() { 698 let zero = Unalign::new(0u8); 699 let one = Unalign::new(1u8); 700 701 assert!(zero < one); 702 assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less)); 703 assert_eq!(Ord::cmp(&zero, &one), Ordering::Less); 704 705 assert_ne!(zero, one); 706 assert_eq!(zero, zero); 707 assert!(!PartialEq::eq(&zero, &one)); 708 assert!(PartialEq::eq(&zero, &zero)); 709 710 fn hash<T: Hash>(t: &T) -> u64 { 711 let mut h = std::collections::hash_map::DefaultHasher::new(); 712 t.hash(&mut h); 713 h.finish() 714 } 715 716 assert_eq!(hash(&zero), hash(&0u8)); 717 assert_eq!(hash(&one), hash(&1u8)); 718 719 assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8)); 720 assert_eq!(format!("{:?}", one), format!("{:?}", 1u8)); 721 assert_eq!(format!("{}", zero), format!("{}", 0u8)); 722 assert_eq!(format!("{}", one), format!("{}", 1u8)); 723 } 724 725 #[test] 726 #[allow(clippy::as_conversions)] test_maybe_uninit()727 fn test_maybe_uninit() { 728 // int 729 { 730 let input = 42; 731 let uninit = MaybeUninit::new(input); 732 // SAFETY: `uninit` is in an initialized state 733 let output = unsafe { uninit.assume_init() }; 734 assert_eq!(input, output); 735 } 736 737 // thin ref 738 { 739 let input = 42; 740 let uninit = MaybeUninit::new(&input); 741 // SAFETY: `uninit` is in an initialized state 742 let output = unsafe { uninit.assume_init() }; 743 assert_eq!(&input as *const _, output as *const _); 744 assert_eq!(input, *output); 745 } 746 747 // wide ref 748 { 749 let input = [1, 2, 3, 4]; 750 let uninit = MaybeUninit::new(&input[..]); 751 // SAFETY: `uninit` is in an initialized state 752 let output = unsafe { uninit.assume_init() }; 753 assert_eq!(&input[..] as *const _, output as *const _); 754 assert_eq!(input, *output); 755 } 756 } 757 } 758