1[/============================================================================ 2 Boost.odeint 3 4 Copyright 2010-2012 Karsten Ahnert 5 Copyright 2010-2012 Mario Mulansky 6 7 Use, modification and distribution is subject to the Boost Software License, 8 Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at 9 http://www.boost.org/LICENSE_1_0.txt) 10=============================================================================/] 11 12 13[section Literature] 14 15[*General information about numerical integration of ordinary differential equations:] 16 17[#numerical_recipies] 18[1] Press William H et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007). 19 20[#hairer_solving_odes_1] 21[2] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed. (Springer, Berlin, 2009). 22 23[#hairer_solving_odes_2] 24[3] Ernst Hairer and Gerhard Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, Berlin, 2010). 25 26 27[*Symplectic integration of numerical integration:] 28 29[#hairer_geometrical_numeric_integration] 30[4] Ernst Hairer, Gerhard Wanner, and Christian Lubich, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. (Springer-Verlag Gmbh, 2006). 31 32[#leimkuhler_reich_simulating_hamiltonian_dynamics] 33[5] Leimkuhler Benedict and Reich Sebastian, Simulating Hamiltonian Dynamics (Cambridge University Press, 2005). 34 35 36[*Special symplectic methods:] 37 38[#symplectic_yoshida_symplectic_integrators] 39[6] Haruo Yoshida, “Construction of higher order symplectic integrators,” Physics Letters A 150, no. 5 (November 12, 1990): 262-268. 40 41[#symplectic_mylachlan_symmetric_composition_mehtods] 42[7] Robert I. McLachlan, “On the numerical integration of ordinary differential equations by symmetric composition methods,” SIAM J. Sci. Comput. 16, no. 1 (1995): 151-168. 43 44 45[*Special systems:] 46 47[#fpu_scholarpedia] 48[8] [@http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations Fermi-Pasta-Ulam nonlinear lattice oscillations] 49 50[#synchronization_pikovsky_rosenblum] 51[9] Arkady Pikovsky, Michael Rosemblum, and Jürgen Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. (Cambridge University Press, 2001). 52 53[endsect] 54