• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[/============================================================================
2  Boost.odeint
3
4  Copyright 2010-2012 Karsten Ahnert
5  Copyright 2010-2012 Mario Mulansky
6
7  Use, modification and distribution is subject to the Boost Software License,
8  Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9  http://www.boost.org/LICENSE_1_0.txt)
10=============================================================================/]
11
12
13[section Literature]
14
15[*General information about numerical integration of ordinary differential equations:]
16
17[#numerical_recipies]
18[1] Press William H et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007).
19
20[#hairer_solving_odes_1]
21[2] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed. (Springer, Berlin, 2009).
22
23[#hairer_solving_odes_2]
24[3] Ernst Hairer and Gerhard Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed. (Springer, Berlin, 2010).
25
26
27[*Symplectic integration of numerical integration:]
28
29[#hairer_geometrical_numeric_integration]
30[4] Ernst Hairer, Gerhard Wanner, and Christian Lubich, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed. (Springer-Verlag Gmbh, 2006).
31
32[#leimkuhler_reich_simulating_hamiltonian_dynamics]
33[5] Leimkuhler Benedict and Reich Sebastian, Simulating Hamiltonian Dynamics (Cambridge University Press, 2005).
34
35
36[*Special symplectic methods:]
37
38[#symplectic_yoshida_symplectic_integrators]
39[6] Haruo Yoshida, “Construction of higher order symplectic integrators,” Physics Letters A 150, no. 5 (November 12, 1990): 262-268.
40
41[#symplectic_mylachlan_symmetric_composition_mehtods]
42[7] Robert I. McLachlan, “On the numerical integration of ordinary differential equations by symmetric composition methods,” SIAM J. Sci. Comput. 16, no. 1 (1995): 151-168.
43
44
45[*Special systems:]
46
47[#fpu_scholarpedia]
48[8]  [@http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations Fermi-Pasta-Ulam nonlinear lattice oscillations]
49
50[#synchronization_pikovsky_rosenblum]
51[9] Arkady Pikovsky, Michael Rosemblum, and Jürgen Kurths, Synchronization: A Universal Concept in Nonlinear Sciences. (Cambridge University Press, 2001).
52
53[endsect]
54