1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ganesh/GrResourceCache.h"
9
10 #include "include/core/SkString.h"
11 #include "include/gpu/ganesh/GrDirectContext.h"
12 #include "include/gpu/ganesh/GrTypes.h"
13 #include "include/private/base/SingleOwner.h"
14 #include "include/private/base/SkNoncopyable.h"
15 #include "include/private/base/SkTo.h"
16 #include "src/base/SkMathPriv.h"
17 #include "src/base/SkRandom.h"
18 #include "src/base/SkTSort.h"
19 #include "src/core/SkMessageBus.h"
20 #include "src/core/SkTraceEvent.h"
21 #include "src/gpu/ganesh/GrDirectContextPriv.h"
22 #include "src/gpu/ganesh/GrGpuResourceCacheAccess.h"
23 #include "src/gpu/ganesh/GrProxyProvider.h"
24 #include "src/gpu/ganesh/GrThreadSafeCache.h"
25
26 #include <algorithm>
27 #include <chrono>
28 #include <cstring>
29 #include <vector>
30
31 using namespace skia_private;
32
33 DECLARE_SKMESSAGEBUS_MESSAGE(skgpu::UniqueKeyInvalidatedMessage, uint32_t, true)
34
35 DECLARE_SKMESSAGEBUS_MESSAGE(GrResourceCache::UnrefResourceMessage,
36 GrDirectContext::DirectContextID,
37 /*AllowCopyableMessage=*/false)
38
39 #define ASSERT_SINGLE_OWNER SKGPU_ASSERT_SINGLE_OWNER(fSingleOwner)
40
41 //////////////////////////////////////////////////////////////////////////////
42
43 class GrResourceCache::AutoValidate : ::SkNoncopyable {
44 public:
AutoValidate(GrResourceCache * cache)45 AutoValidate(GrResourceCache* cache) : fCache(cache) { cache->validate(); }
~AutoValidate()46 ~AutoValidate() { fCache->validate(); }
47 private:
48 GrResourceCache* fCache;
49 };
50
51 //////////////////////////////////////////////////////////////////////////////
52
GrResourceCache(skgpu::SingleOwner * singleOwner,GrDirectContext::DirectContextID owningContextID,uint32_t familyID)53 GrResourceCache::GrResourceCache(skgpu::SingleOwner* singleOwner,
54 GrDirectContext::DirectContextID owningContextID,
55 uint32_t familyID)
56 : fInvalidUniqueKeyInbox(familyID)
57 , fUnrefResourceInbox(owningContextID)
58 , fOwningContextID(owningContextID)
59 , fContextUniqueID(familyID)
60 , fSingleOwner(singleOwner) {
61 SkASSERT(owningContextID.isValid());
62 SkASSERT(familyID != SK_InvalidUniqueID);
63 }
64
~GrResourceCache()65 GrResourceCache::~GrResourceCache() {
66 this->releaseAll();
67 }
68
setLimit(size_t bytes)69 void GrResourceCache::setLimit(size_t bytes) {
70 fMaxBytes = bytes;
71 this->purgeAsNeeded();
72 }
73
insertResource(GrGpuResource * resource)74 void GrResourceCache::insertResource(GrGpuResource* resource) {
75 ASSERT_SINGLE_OWNER
76 SkASSERT(resource);
77 SkASSERT(!this->isInCache(resource));
78 SkASSERT(!resource->wasDestroyed());
79 SkASSERT(!resource->resourcePriv().isPurgeable());
80
81 // We must set the timestamp before adding to the array in case the timestamp wraps and we wind
82 // up iterating over all the resources that already have timestamps.
83 resource->cacheAccess().setTimestamp(this->getNextTimestamp());
84
85 this->addToNonpurgeableArray(resource);
86
87 size_t size = resource->gpuMemorySize();
88 SkDEBUGCODE(++fCount;)
89 fBytes += size;
90 #if GR_CACHE_STATS
91 fHighWaterCount = std::max(this->getResourceCount(), fHighWaterCount);
92 fHighWaterBytes = std::max(fBytes, fHighWaterBytes);
93 #endif
94 if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) {
95 ++fBudgetedCount;
96 fBudgetedBytes += size;
97 TRACE_COUNTER2("skia.gpu.cache", "skia budget", "used",
98 fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
99 #if GR_CACHE_STATS
100 fBudgetedHighWaterCount = std::max(fBudgetedCount, fBudgetedHighWaterCount);
101 fBudgetedHighWaterBytes = std::max(fBudgetedBytes, fBudgetedHighWaterBytes);
102 #endif
103 }
104 SkASSERT(!resource->cacheAccess().isUsableAsScratch());
105 this->purgeAsNeeded();
106 }
107
removeResource(GrGpuResource * resource)108 void GrResourceCache::removeResource(GrGpuResource* resource) {
109 ASSERT_SINGLE_OWNER
110 this->validate();
111 SkASSERT(this->isInCache(resource));
112
113 size_t size = resource->gpuMemorySize();
114 if (resource->resourcePriv().isPurgeable()) {
115 fPurgeableQueue.remove(resource);
116 fPurgeableBytes -= size;
117 } else {
118 this->removeFromNonpurgeableArray(resource);
119 }
120
121 SkDEBUGCODE(--fCount;)
122 fBytes -= size;
123 if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) {
124 --fBudgetedCount;
125 fBudgetedBytes -= size;
126 TRACE_COUNTER2("skia.gpu.cache", "skia budget", "used",
127 fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
128 }
129
130 if (resource->cacheAccess().isUsableAsScratch()) {
131 fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
132 }
133 if (resource->getUniqueKey().isValid()) {
134 fUniqueHash.remove(resource->getUniqueKey());
135 }
136 this->validate();
137 }
138
abandonAll()139 void GrResourceCache::abandonAll() {
140 AutoValidate av(this);
141
142 while (!fNonpurgeableResources.empty()) {
143 GrGpuResource* back = *(fNonpurgeableResources.end() - 1);
144 SkASSERT(!back->wasDestroyed());
145 back->cacheAccess().abandon();
146 }
147
148 while (fPurgeableQueue.count()) {
149 GrGpuResource* top = fPurgeableQueue.peek();
150 SkASSERT(!top->wasDestroyed());
151 top->cacheAccess().abandon();
152 }
153
154 fThreadSafeCache->dropAllRefs();
155
156 SkASSERT(!fScratchMap.count());
157 SkASSERT(!fUniqueHash.count());
158 SkASSERT(!fCount);
159 SkASSERT(!this->getResourceCount());
160 SkASSERT(!fBytes);
161 SkASSERT(!fBudgetedCount);
162 SkASSERT(!fBudgetedBytes);
163 SkASSERT(!fPurgeableBytes);
164 }
165
releaseAll()166 void GrResourceCache::releaseAll() {
167 AutoValidate av(this);
168
169 fThreadSafeCache->dropAllRefs();
170
171 this->processFreedGpuResources();
172
173 SkASSERT(fProxyProvider); // better have called setProxyProvider
174 SkASSERT(fThreadSafeCache); // better have called setThreadSafeCache too
175
176 // We must remove the uniqueKeys from the proxies here. While they possess a uniqueKey
177 // they also have a raw pointer back to this class (which is presumably going away)!
178 fProxyProvider->removeAllUniqueKeys();
179
180 while (!fNonpurgeableResources.empty()) {
181 GrGpuResource* back = *(fNonpurgeableResources.end() - 1);
182 SkASSERT(!back->wasDestroyed());
183 back->cacheAccess().release();
184 }
185
186 while (fPurgeableQueue.count()) {
187 GrGpuResource* top = fPurgeableQueue.peek();
188 SkASSERT(!top->wasDestroyed());
189 top->cacheAccess().release();
190 }
191
192 SkASSERT(!fScratchMap.count());
193 SkASSERT(!fUniqueHash.count());
194 SkASSERT(!fCount);
195 SkASSERT(!this->getResourceCount());
196 SkASSERT(!fBytes);
197 SkASSERT(!fBudgetedCount);
198 SkASSERT(!fBudgetedBytes);
199 SkASSERT(!fPurgeableBytes);
200 }
201
refResource(GrGpuResource * resource)202 void GrResourceCache::refResource(GrGpuResource* resource) {
203 SkASSERT(resource);
204 SkASSERT(resource->getContext()->priv().getResourceCache() == this);
205 if (resource->cacheAccess().hasRef()) {
206 resource->ref();
207 } else {
208 this->refAndMakeResourceMRU(resource);
209 }
210 this->validate();
211 }
212
findAndRefScratchResource(const skgpu::ScratchKey & scratchKey)213 GrGpuResource* GrResourceCache::findAndRefScratchResource(const skgpu::ScratchKey& scratchKey) {
214 SkASSERT(scratchKey.isValid());
215
216 GrGpuResource* resource = fScratchMap.find(scratchKey);
217 if (resource) {
218 fScratchMap.remove(scratchKey, resource);
219 this->refAndMakeResourceMRU(resource);
220 this->validate();
221 }
222 return resource;
223 }
224
willRemoveScratchKey(const GrGpuResource * resource)225 void GrResourceCache::willRemoveScratchKey(const GrGpuResource* resource) {
226 ASSERT_SINGLE_OWNER
227 SkASSERT(resource->resourcePriv().getScratchKey().isValid());
228 if (resource->cacheAccess().isUsableAsScratch()) {
229 fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
230 }
231 }
232
removeUniqueKey(GrGpuResource * resource)233 void GrResourceCache::removeUniqueKey(GrGpuResource* resource) {
234 ASSERT_SINGLE_OWNER
235 // Someone has a ref to this resource in order to have removed the key. When the ref count
236 // reaches zero we will get a ref cnt notification and figure out what to do with it.
237 if (resource->getUniqueKey().isValid()) {
238 SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey()));
239 fUniqueHash.remove(resource->getUniqueKey());
240 }
241 resource->cacheAccess().removeUniqueKey();
242 if (resource->cacheAccess().isUsableAsScratch()) {
243 fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource);
244 }
245
246 // Removing a unique key from a kUnbudgetedCacheable resource would make the resource
247 // require purging. However, the resource must be ref'ed to get here and therefore can't
248 // be purgeable. We'll purge it when the refs reach zero.
249 SkASSERT(!resource->resourcePriv().isPurgeable());
250 this->validate();
251 }
252
changeUniqueKey(GrGpuResource * resource,const skgpu::UniqueKey & newKey)253 void GrResourceCache::changeUniqueKey(GrGpuResource* resource, const skgpu::UniqueKey& newKey) {
254 ASSERT_SINGLE_OWNER
255 SkASSERT(resource);
256 SkASSERT(this->isInCache(resource));
257
258 // If another resource has the new key, remove its key then install the key on this resource.
259 if (newKey.isValid()) {
260 if (GrGpuResource* old = fUniqueHash.find(newKey)) {
261 // If the old resource using the key is purgeable and is unreachable, then remove it.
262 if (!old->resourcePriv().getScratchKey().isValid() &&
263 old->resourcePriv().isPurgeable()) {
264 old->cacheAccess().release();
265 } else {
266 // removeUniqueKey expects an external owner of the resource.
267 this->removeUniqueKey(sk_ref_sp(old).get());
268 }
269 }
270 SkASSERT(nullptr == fUniqueHash.find(newKey));
271
272 // Remove the entry for this resource if it already has a unique key.
273 if (resource->getUniqueKey().isValid()) {
274 SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey()));
275 fUniqueHash.remove(resource->getUniqueKey());
276 SkASSERT(nullptr == fUniqueHash.find(resource->getUniqueKey()));
277 } else {
278 // 'resource' didn't have a valid unique key before so it is switching sides. Remove it
279 // from the ScratchMap. The isUsableAsScratch call depends on us not adding the new
280 // unique key until after this check.
281 if (resource->cacheAccess().isUsableAsScratch()) {
282 fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
283 }
284 }
285
286 resource->cacheAccess().setUniqueKey(newKey);
287 fUniqueHash.add(resource);
288 } else {
289 this->removeUniqueKey(resource);
290 }
291
292 this->validate();
293 }
294
refAndMakeResourceMRU(GrGpuResource * resource)295 void GrResourceCache::refAndMakeResourceMRU(GrGpuResource* resource) {
296 ASSERT_SINGLE_OWNER
297 SkASSERT(resource);
298 SkASSERT(this->isInCache(resource));
299
300 if (resource->resourcePriv().isPurgeable()) {
301 // It's about to become unpurgeable.
302 fPurgeableBytes -= resource->gpuMemorySize();
303 fPurgeableQueue.remove(resource);
304 this->addToNonpurgeableArray(resource);
305 }
306 resource->cacheAccess().ref();
307
308 resource->cacheAccess().setTimestamp(this->getNextTimestamp());
309 this->validate();
310 }
311
notifyARefCntReachedZero(GrGpuResource * resource,GrGpuResource::LastRemovedRef removedRef)312 void GrResourceCache::notifyARefCntReachedZero(GrGpuResource* resource,
313 GrGpuResource::LastRemovedRef removedRef) {
314 ASSERT_SINGLE_OWNER
315 SkASSERT(resource);
316 SkASSERT(!resource->wasDestroyed());
317 SkASSERT(this->isInCache(resource));
318 // This resource should always be in the nonpurgeable array when this function is called. It
319 // will be moved to the queue if it is newly purgeable.
320 SkASSERT(fNonpurgeableResources[*resource->cacheAccess().accessCacheIndex()] == resource);
321
322 if (removedRef == GrGpuResource::LastRemovedRef::kMainRef) {
323 if (resource->cacheAccess().isUsableAsScratch()) {
324 fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource);
325 }
326 }
327
328 if (resource->cacheAccess().hasRefOrCommandBufferUsage()) {
329 this->validate();
330 return;
331 }
332
333 #ifdef SK_DEBUG
334 // When the timestamp overflows validate() is called. validate() checks that resources in
335 // the nonpurgeable array are indeed not purgeable. However, the movement from the array to
336 // the purgeable queue happens just below in this function. So we mark it as an exception.
337 if (resource->resourcePriv().isPurgeable()) {
338 fNewlyPurgeableResourceForValidation = resource;
339 }
340 #endif
341 resource->cacheAccess().setTimestamp(this->getNextTimestamp());
342 SkDEBUGCODE(fNewlyPurgeableResourceForValidation = nullptr);
343
344 if (!resource->resourcePriv().isPurgeable()) {
345 this->validate();
346 return;
347 }
348
349 this->removeFromNonpurgeableArray(resource);
350 fPurgeableQueue.insert(resource);
351 resource->cacheAccess().setTimeWhenResourceBecomePurgeable();
352 fPurgeableBytes += resource->gpuMemorySize();
353
354 bool hasUniqueKey = resource->getUniqueKey().isValid();
355
356 GrBudgetedType budgetedType = resource->resourcePriv().budgetedType();
357
358 if (budgetedType == GrBudgetedType::kBudgeted) {
359 // Purge the resource immediately if we're over budget
360 // Also purge if the resource has neither a valid scratch key nor a unique key.
361 bool hasKey = resource->resourcePriv().getScratchKey().isValid() || hasUniqueKey;
362 if (!this->overBudget() && hasKey) {
363 return;
364 }
365 } else {
366 // We keep unbudgeted resources with a unique key in the purgeable queue of the cache so
367 // they can be reused again by the image connected to the unique key.
368 if (hasUniqueKey && budgetedType == GrBudgetedType::kUnbudgetedCacheable) {
369 return;
370 }
371 // Check whether this resource could still be used as a scratch resource.
372 if (!resource->resourcePriv().refsWrappedObjects() &&
373 resource->resourcePriv().getScratchKey().isValid()) {
374 // We won't purge an existing resource to make room for this one.
375 if (this->wouldFit(resource->gpuMemorySize())) {
376 resource->resourcePriv().makeBudgeted();
377 return;
378 }
379 }
380 }
381
382 SkDEBUGCODE(int beforeCount = this->getResourceCount();)
383 resource->cacheAccess().release();
384 // We should at least free this resource, perhaps dependent resources as well.
385 SkASSERT(this->getResourceCount() < beforeCount);
386 this->validate();
387 }
388
didChangeBudgetStatus(GrGpuResource * resource)389 void GrResourceCache::didChangeBudgetStatus(GrGpuResource* resource) {
390 ASSERT_SINGLE_OWNER
391 SkASSERT(resource);
392 SkASSERT(this->isInCache(resource));
393
394 size_t size = resource->gpuMemorySize();
395 // Changing from BudgetedType::kUnbudgetedCacheable to another budgeted type could make
396 // resource become purgeable. However, we should never allow that transition. Wrapped
397 // resources are the only resources that can be in that state and they aren't allowed to
398 // transition from one budgeted state to another.
399 SkDEBUGCODE(bool wasPurgeable = resource->resourcePriv().isPurgeable());
400 if (resource->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted) {
401 ++fBudgetedCount;
402 fBudgetedBytes += size;
403 #if GR_CACHE_STATS
404 fBudgetedHighWaterBytes = std::max(fBudgetedBytes, fBudgetedHighWaterBytes);
405 fBudgetedHighWaterCount = std::max(fBudgetedCount, fBudgetedHighWaterCount);
406 #endif
407 if (resource->cacheAccess().isUsableAsScratch()) {
408 fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource);
409 }
410 this->purgeAsNeeded();
411 } else {
412 SkASSERT(resource->resourcePriv().budgetedType() != GrBudgetedType::kUnbudgetedCacheable);
413 --fBudgetedCount;
414 fBudgetedBytes -= size;
415 if (!resource->cacheAccess().hasRef() && !resource->getUniqueKey().isValid() &&
416 resource->resourcePriv().getScratchKey().isValid()) {
417 fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
418 }
419 }
420 SkASSERT(wasPurgeable == resource->resourcePriv().isPurgeable());
421 TRACE_COUNTER2("skia.gpu.cache", "skia budget", "used",
422 fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
423
424 this->validate();
425 }
426
purgeAsNeeded()427 void GrResourceCache::purgeAsNeeded() {
428 TArray<skgpu::UniqueKeyInvalidatedMessage> invalidKeyMsgs;
429 fInvalidUniqueKeyInbox.poll(&invalidKeyMsgs);
430 if (!invalidKeyMsgs.empty()) {
431 SkASSERT(fProxyProvider);
432
433 for (int i = 0; i < invalidKeyMsgs.size(); ++i) {
434 if (invalidKeyMsgs[i].inThreadSafeCache()) {
435 fThreadSafeCache->remove(invalidKeyMsgs[i].key());
436 SkASSERT(!fThreadSafeCache->has(invalidKeyMsgs[i].key()));
437 } else {
438 fProxyProvider->processInvalidUniqueKey(
439 invalidKeyMsgs[i].key(), nullptr,
440 GrProxyProvider::InvalidateGPUResource::kYes);
441 SkASSERT(!this->findAndRefUniqueResource(invalidKeyMsgs[i].key()));
442 }
443 }
444 }
445
446 this->processFreedGpuResources();
447
448 bool stillOverbudget = this->overBudget();
449 while (stillOverbudget && fPurgeableQueue.count()) {
450 GrGpuResource* resource = fPurgeableQueue.peek();
451 SkASSERT(resource->resourcePriv().isPurgeable());
452 resource->cacheAccess().release();
453 stillOverbudget = this->overBudget();
454 }
455
456 if (stillOverbudget) {
457 fThreadSafeCache->dropUniqueRefs(this);
458
459 stillOverbudget = this->overBudget();
460 while (stillOverbudget && fPurgeableQueue.count()) {
461 GrGpuResource* resource = fPurgeableQueue.peek();
462 SkASSERT(resource->resourcePriv().isPurgeable());
463 resource->cacheAccess().release();
464 stillOverbudget = this->overBudget();
465 }
466 }
467
468 this->validate();
469 }
470
purgeUnlockedResources(const skgpu::StdSteadyClock::time_point * purgeTime,GrPurgeResourceOptions opts)471 void GrResourceCache::purgeUnlockedResources(const skgpu::StdSteadyClock::time_point* purgeTime,
472 GrPurgeResourceOptions opts) {
473 if (opts == GrPurgeResourceOptions::kAllResources) {
474 if (purgeTime) {
475 fThreadSafeCache->dropUniqueRefsOlderThan(*purgeTime);
476 } else {
477 fThreadSafeCache->dropUniqueRefs(nullptr);
478 }
479
480 // We could disable maintaining the heap property here, but it would add a lot of
481 // complexity. Moreover, this is rarely called.
482 while (fPurgeableQueue.count()) {
483 GrGpuResource* resource = fPurgeableQueue.peek();
484
485 const skgpu::StdSteadyClock::time_point resourceTime =
486 resource->cacheAccess().timeWhenResourceBecamePurgeable();
487 if (purgeTime && resourceTime >= *purgeTime) {
488 // Resources were given both LRU timestamps and tagged with a frame number when
489 // they first became purgeable. The LRU timestamp won't change again until the
490 // resource is made non-purgeable again. So, at this point all the remaining
491 // resources in the timestamp-sorted queue will have a frame number >= to this
492 // one.
493 break;
494 }
495
496 SkASSERT(resource->resourcePriv().isPurgeable());
497 resource->cacheAccess().release();
498 }
499 } else {
500 SkASSERT(opts == GrPurgeResourceOptions::kScratchResourcesOnly);
501 // Early out if the very first item is too new to purge to avoid sorting the queue when
502 // nothing will be deleted.
503 if (purgeTime && fPurgeableQueue.count() &&
504 fPurgeableQueue.peek()->cacheAccess().timeWhenResourceBecamePurgeable() >= *purgeTime) {
505 return;
506 }
507
508 // Sort the queue
509 fPurgeableQueue.sort();
510
511 // Make a list of the scratch resources to delete
512 SkTDArray<GrGpuResource*> scratchResources;
513 for (int i = 0; i < fPurgeableQueue.count(); i++) {
514 GrGpuResource* resource = fPurgeableQueue.at(i);
515
516 const skgpu::StdSteadyClock::time_point resourceTime =
517 resource->cacheAccess().timeWhenResourceBecamePurgeable();
518 if (purgeTime && resourceTime >= *purgeTime) {
519 // scratch or not, all later iterations will be too recently used to purge.
520 break;
521 }
522 SkASSERT(resource->resourcePriv().isPurgeable());
523 if (!resource->getUniqueKey().isValid()) {
524 *scratchResources.append() = resource;
525 }
526 }
527
528 // Delete the scratch resources. This must be done as a separate pass
529 // to avoid messing up the sorted order of the queue
530 for (int i = 0; i < scratchResources.size(); i++) {
531 scratchResources[i]->cacheAccess().release();
532 }
533 }
534
535 this->validate();
536 }
537
purgeToMakeHeadroom(size_t desiredHeadroomBytes)538 bool GrResourceCache::purgeToMakeHeadroom(size_t desiredHeadroomBytes) {
539 AutoValidate av(this);
540 if (desiredHeadroomBytes > fMaxBytes) {
541 return false;
542 }
543 if (this->wouldFit(desiredHeadroomBytes)) {
544 return true;
545 }
546 fPurgeableQueue.sort();
547
548 size_t projectedBudget = fBudgetedBytes;
549 int purgeCnt = 0;
550 for (int i = 0; i < fPurgeableQueue.count(); i++) {
551 GrGpuResource* resource = fPurgeableQueue.at(i);
552 if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) {
553 projectedBudget -= resource->gpuMemorySize();
554 }
555 if (projectedBudget + desiredHeadroomBytes <= fMaxBytes) {
556 purgeCnt = i + 1;
557 break;
558 }
559 }
560 if (purgeCnt == 0) {
561 return false;
562 }
563
564 // Success! Release the resources.
565 // Copy to array first so we don't mess with the queue.
566 std::vector<GrGpuResource*> resources;
567 resources.reserve(purgeCnt);
568 for (int i = 0; i < purgeCnt; i++) {
569 resources.push_back(fPurgeableQueue.at(i));
570 }
571 for (GrGpuResource* resource : resources) {
572 resource->cacheAccess().release();
573 }
574 return true;
575 }
576
purgeUnlockedResources(size_t bytesToPurge,bool preferScratchResources)577 void GrResourceCache::purgeUnlockedResources(size_t bytesToPurge, bool preferScratchResources) {
578
579 const size_t tmpByteBudget = std::max((size_t)0, fBytes - bytesToPurge);
580 bool stillOverbudget = tmpByteBudget < fBytes;
581
582 if (preferScratchResources && bytesToPurge < fPurgeableBytes) {
583 // Sort the queue
584 fPurgeableQueue.sort();
585
586 // Make a list of the scratch resources to delete
587 SkTDArray<GrGpuResource*> scratchResources;
588 size_t scratchByteCount = 0;
589 for (int i = 0; i < fPurgeableQueue.count() && stillOverbudget; i++) {
590 GrGpuResource* resource = fPurgeableQueue.at(i);
591 SkASSERT(resource->resourcePriv().isPurgeable());
592 if (!resource->getUniqueKey().isValid()) {
593 *scratchResources.append() = resource;
594 scratchByteCount += resource->gpuMemorySize();
595 stillOverbudget = tmpByteBudget < fBytes - scratchByteCount;
596 }
597 }
598
599 // Delete the scratch resources. This must be done as a separate pass
600 // to avoid messing up the sorted order of the queue
601 for (int i = 0; i < scratchResources.size(); i++) {
602 scratchResources[i]->cacheAccess().release();
603 }
604 stillOverbudget = tmpByteBudget < fBytes;
605
606 this->validate();
607 }
608
609 // Purge any remaining resources in LRU order
610 if (stillOverbudget) {
611 const size_t cachedByteCount = fMaxBytes;
612 fMaxBytes = tmpByteBudget;
613 this->purgeAsNeeded();
614 fMaxBytes = cachedByteCount;
615 }
616 }
617
processFreedGpuResources()618 void GrResourceCache::processFreedGpuResources() {
619 TArray<UnrefResourceMessage> msgs;
620 fUnrefResourceInbox.poll(&msgs);
621 // We don't need to do anything other than let the messages delete themselves and call unref.
622 }
623
addToNonpurgeableArray(GrGpuResource * resource)624 void GrResourceCache::addToNonpurgeableArray(GrGpuResource* resource) {
625 int index = fNonpurgeableResources.size();
626 *fNonpurgeableResources.append() = resource;
627 *resource->cacheAccess().accessCacheIndex() = index;
628 }
629
removeFromNonpurgeableArray(GrGpuResource * resource)630 void GrResourceCache::removeFromNonpurgeableArray(GrGpuResource* resource) {
631 int* index = resource->cacheAccess().accessCacheIndex();
632 // Fill the hole we will create in the array with the tail object, adjust its index, and
633 // then pop the array
634 GrGpuResource* tail = *(fNonpurgeableResources.end() - 1);
635 SkASSERT(fNonpurgeableResources[*index] == resource);
636 fNonpurgeableResources[*index] = tail;
637 *tail->cacheAccess().accessCacheIndex() = *index;
638 fNonpurgeableResources.pop_back();
639 SkDEBUGCODE(*index = -1);
640 }
641
getNextTimestamp()642 uint32_t GrResourceCache::getNextTimestamp() {
643 // If we wrap then all the existing resources will appear older than any resources that get
644 // a timestamp after the wrap.
645 if (0 == fTimestamp) {
646 int count = this->getResourceCount();
647 if (count) {
648 // Reset all the timestamps. We sort the resources by timestamp and then assign
649 // sequential timestamps beginning with 0. This is O(n*lg(n)) but it should be extremely
650 // rare.
651 SkTDArray<GrGpuResource*> sortedPurgeableResources;
652 sortedPurgeableResources.reserve(fPurgeableQueue.count());
653
654 while (fPurgeableQueue.count()) {
655 *sortedPurgeableResources.append() = fPurgeableQueue.peek();
656 fPurgeableQueue.pop();
657 }
658
659 SkTQSort(fNonpurgeableResources.begin(), fNonpurgeableResources.end(),
660 CompareTimestamp);
661
662 // Pick resources out of the purgeable and non-purgeable arrays based on lowest
663 // timestamp and assign new timestamps.
664 int currP = 0;
665 int currNP = 0;
666 while (currP < sortedPurgeableResources.size() &&
667 currNP < fNonpurgeableResources.size()) {
668 uint32_t tsP = sortedPurgeableResources[currP]->cacheAccess().timestamp();
669 uint32_t tsNP = fNonpurgeableResources[currNP]->cacheAccess().timestamp();
670 SkASSERT(tsP != tsNP);
671 if (tsP < tsNP) {
672 sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++);
673 } else {
674 // Correct the index in the nonpurgeable array stored on the resource post-sort.
675 *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP;
676 fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++);
677 }
678 }
679
680 // The above loop ended when we hit the end of one array. Finish the other one.
681 while (currP < sortedPurgeableResources.size()) {
682 sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++);
683 }
684 while (currNP < fNonpurgeableResources.size()) {
685 *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP;
686 fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++);
687 }
688
689 // Rebuild the queue.
690 for (int i = 0; i < sortedPurgeableResources.size(); ++i) {
691 fPurgeableQueue.insert(sortedPurgeableResources[i]);
692 }
693
694 this->validate();
695 SkASSERT(count == this->getResourceCount());
696
697 // count should be the next timestamp we return.
698 SkASSERT(fTimestamp == SkToU32(count));
699 }
700 }
701 return fTimestamp++;
702 }
703
dumpMemoryStatistics(SkTraceMemoryDump * traceMemoryDump) const704 void GrResourceCache::dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const {
705 for (int i = 0; i < fNonpurgeableResources.size(); ++i) {
706 fNonpurgeableResources[i]->dumpMemoryStatistics(traceMemoryDump);
707 }
708 for (int i = 0; i < fPurgeableQueue.count(); ++i) {
709 fPurgeableQueue.at(i)->dumpMemoryStatistics(traceMemoryDump);
710 }
711 }
712
713 #if GR_CACHE_STATS
getStats(Stats * stats) const714 void GrResourceCache::getStats(Stats* stats) const {
715 stats->reset();
716
717 stats->fTotal = this->getResourceCount();
718 stats->fNumNonPurgeable = fNonpurgeableResources.size();
719 stats->fNumPurgeable = fPurgeableQueue.count();
720
721 for (int i = 0; i < fNonpurgeableResources.size(); ++i) {
722 stats->update(fNonpurgeableResources[i]);
723 }
724 for (int i = 0; i < fPurgeableQueue.count(); ++i) {
725 stats->update(fPurgeableQueue.at(i));
726 }
727 }
728
729 #if defined(GPU_TEST_UTILS)
dumpStats(SkString * out) const730 void GrResourceCache::dumpStats(SkString* out) const {
731 this->validate();
732
733 Stats stats;
734
735 this->getStats(&stats);
736
737 float byteUtilization = (100.f * fBudgetedBytes) / fMaxBytes;
738
739 out->appendf("Budget: %d bytes\n", (int)fMaxBytes);
740 out->appendf("\t\tEntry Count: current %d"
741 " (%d budgeted, %d wrapped, %d locked, %d scratch), high %d\n",
742 stats.fTotal, fBudgetedCount, stats.fWrapped, stats.fNumNonPurgeable,
743 stats.fScratch, fHighWaterCount);
744 out->appendf("\t\tEntry Bytes: current %d (budgeted %d, %.2g%% full, %d unbudgeted) high %d\n",
745 SkToInt(fBytes), SkToInt(fBudgetedBytes), byteUtilization,
746 SkToInt(stats.fUnbudgetedSize), SkToInt(fHighWaterBytes));
747 }
748
dumpStatsKeyValuePairs(TArray<SkString> * keys,TArray<double> * values) const749 void GrResourceCache::dumpStatsKeyValuePairs(TArray<SkString>* keys,
750 TArray<double>* values) const {
751 this->validate();
752
753 Stats stats;
754 this->getStats(&stats);
755
756 keys->push_back(SkString("gpu_cache_purgable_entries")); values->push_back(stats.fNumPurgeable);
757 }
758 #endif // defined(GPU_TEST_UTILS)
759 #endif // GR_CACHE_STATS
760
761 #ifdef SK_DEBUG
validate() const762 void GrResourceCache::validate() const {
763 // Reduce the frequency of validations for large resource counts.
764 static SkRandom gRandom;
765 int mask = (SkNextPow2(fCount + 1) >> 5) - 1;
766 if (~mask && (gRandom.nextU() & mask)) {
767 return;
768 }
769
770 struct Stats {
771 size_t fBytes;
772 int fBudgetedCount;
773 size_t fBudgetedBytes;
774 int fLocked;
775 int fScratch;
776 int fCouldBeScratch;
777 int fContent;
778 const ScratchMap* fScratchMap;
779 const UniqueHash* fUniqueHash;
780
781 Stats(const GrResourceCache* cache) {
782 memset(this, 0, sizeof(*this));
783 fScratchMap = &cache->fScratchMap;
784 fUniqueHash = &cache->fUniqueHash;
785 }
786
787 void update(GrGpuResource* resource) {
788 fBytes += resource->gpuMemorySize();
789
790 if (!resource->resourcePriv().isPurgeable()) {
791 ++fLocked;
792 }
793
794 const skgpu::ScratchKey& scratchKey = resource->resourcePriv().getScratchKey();
795 const skgpu::UniqueKey& uniqueKey = resource->getUniqueKey();
796
797 if (resource->cacheAccess().isUsableAsScratch()) {
798 SkASSERT(!uniqueKey.isValid());
799 SkASSERT(GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType());
800 SkASSERT(!resource->cacheAccess().hasRef());
801 ++fScratch;
802 SkASSERT(fScratchMap->countForKey(scratchKey));
803 SkASSERT(!resource->resourcePriv().refsWrappedObjects());
804 } else if (scratchKey.isValid()) {
805 SkASSERT(GrBudgetedType::kBudgeted != resource->resourcePriv().budgetedType() ||
806 uniqueKey.isValid() || resource->cacheAccess().hasRef());
807 SkASSERT(!resource->resourcePriv().refsWrappedObjects());
808 SkASSERT(!fScratchMap->has(resource, scratchKey));
809 }
810 if (uniqueKey.isValid()) {
811 ++fContent;
812 SkASSERT(fUniqueHash->find(uniqueKey) == resource);
813 SkASSERT(GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType() ||
814 resource->resourcePriv().refsWrappedObjects());
815 }
816
817 if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) {
818 ++fBudgetedCount;
819 fBudgetedBytes += resource->gpuMemorySize();
820 }
821 }
822 };
823
824 {
825 int count = 0;
826 fScratchMap.foreach([&](const GrGpuResource& resource) {
827 SkASSERT(resource.cacheAccess().isUsableAsScratch());
828 count++;
829 });
830 SkASSERT(count == fScratchMap.count());
831 }
832
833 Stats stats(this);
834 size_t purgeableBytes = 0;
835
836 for (int i = 0; i < fNonpurgeableResources.size(); ++i) {
837 SkASSERT(!fNonpurgeableResources[i]->resourcePriv().isPurgeable() ||
838 fNewlyPurgeableResourceForValidation == fNonpurgeableResources[i]);
839 SkASSERT(*fNonpurgeableResources[i]->cacheAccess().accessCacheIndex() == i);
840 SkASSERT(!fNonpurgeableResources[i]->wasDestroyed());
841 stats.update(fNonpurgeableResources[i]);
842 }
843 for (int i = 0; i < fPurgeableQueue.count(); ++i) {
844 SkASSERT(fPurgeableQueue.at(i)->resourcePriv().isPurgeable());
845 SkASSERT(*fPurgeableQueue.at(i)->cacheAccess().accessCacheIndex() == i);
846 SkASSERT(!fPurgeableQueue.at(i)->wasDestroyed());
847 stats.update(fPurgeableQueue.at(i));
848 purgeableBytes += fPurgeableQueue.at(i)->gpuMemorySize();
849 }
850
851 SkASSERT(fCount == this->getResourceCount());
852 SkASSERT(fBudgetedCount <= fCount);
853 SkASSERT(fBudgetedBytes <= fBytes);
854 SkASSERT(stats.fBytes == fBytes);
855 SkASSERT(stats.fBudgetedBytes == fBudgetedBytes);
856 SkASSERT(stats.fBudgetedCount == fBudgetedCount);
857 SkASSERT(purgeableBytes == fPurgeableBytes);
858 #if GR_CACHE_STATS
859 SkASSERT(fBudgetedHighWaterCount <= fHighWaterCount);
860 SkASSERT(fBudgetedHighWaterBytes <= fHighWaterBytes);
861 SkASSERT(fBytes <= fHighWaterBytes);
862 SkASSERT(fCount <= fHighWaterCount);
863 SkASSERT(fBudgetedBytes <= fBudgetedHighWaterBytes);
864 SkASSERT(fBudgetedCount <= fBudgetedHighWaterCount);
865 #endif
866 SkASSERT(stats.fContent == fUniqueHash.count());
867 SkASSERT(stats.fScratch == fScratchMap.count());
868
869 // This assertion is not currently valid because we can be in recursive notifyCntReachedZero()
870 // calls. This will be fixed when subresource registration is explicit.
871 // bool overBudget = budgetedBytes > fMaxBytes || budgetedCount > fMaxCount;
872 // SkASSERT(!overBudget || locked == count || fPurging);
873 }
874
isInCache(const GrGpuResource * resource) const875 bool GrResourceCache::isInCache(const GrGpuResource* resource) const {
876 int index = *resource->cacheAccess().accessCacheIndex();
877 if (index < 0) {
878 return false;
879 }
880 if (index < fPurgeableQueue.count() && fPurgeableQueue.at(index) == resource) {
881 return true;
882 }
883 if (index < fNonpurgeableResources.size() && fNonpurgeableResources[index] == resource) {
884 return true;
885 }
886 SkDEBUGFAIL("Resource index should be -1 or the resource should be in the cache.");
887 return false;
888 }
889
890 #endif // SK_DEBUG
891
892 #if defined(GPU_TEST_UTILS)
893
countUniqueKeysWithTag(const char * tag) const894 int GrResourceCache::countUniqueKeysWithTag(const char* tag) const {
895 int count = 0;
896 fUniqueHash.foreach([&](const GrGpuResource& resource){
897 if (0 == strcmp(tag, resource.getUniqueKey().tag())) {
898 ++count;
899 }
900 });
901 return count;
902 }
903
changeTimestamp(uint32_t newTimestamp)904 void GrResourceCache::changeTimestamp(uint32_t newTimestamp) {
905 fTimestamp = newTimestamp;
906 }
907
visitSurfaces(const std::function<void (const GrSurface *,bool purgeable)> & func) const908 void GrResourceCache::visitSurfaces(
909 const std::function<void(const GrSurface*, bool purgeable)>& func) const {
910
911 for (int i = 0; i < fNonpurgeableResources.size(); ++i) {
912 if (const GrSurface* surf = fNonpurgeableResources[i]->asSurface()) {
913 func(surf, /* purgeable= */ false);
914 }
915 }
916 for (int i = 0; i < fPurgeableQueue.count(); ++i) {
917 if (const GrSurface* surf = fPurgeableQueue.at(i)->asSurface()) {
918 func(surf, /* purgeable= */ true);
919 }
920 }
921 }
922
923 #endif // defined(GPU_TEST_UTILS)
924