1 /*
2 * Copyright 2023 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/graphite/render/PerEdgeAAQuadRenderStep.h"
9
10 #include "include/core/SkM44.h"
11 #include "include/private/base/SkAssert.h"
12 #include "include/private/base/SkDebug.h"
13 #include "include/private/base/SkFloatingPoint.h"
14 #include "src/base/SkEnumBitMask.h"
15 #include "src/base/SkVx.h"
16 #include "src/core/SkSLTypeShared.h"
17 #include "src/gpu/BufferWriter.h"
18 #include "src/gpu/graphite/Attribute.h"
19 #include "src/gpu/graphite/BufferManager.h"
20 #include "src/gpu/graphite/DrawOrder.h"
21 #include "src/gpu/graphite/DrawParams.h"
22 #include "src/gpu/graphite/DrawTypes.h"
23 #include "src/gpu/graphite/DrawWriter.h"
24 #include "src/gpu/graphite/geom/EdgeAAQuad.h"
25 #include "src/gpu/graphite/geom/Geometry.h"
26 #include "src/gpu/graphite/geom/Rect.h"
27 #include "src/gpu/graphite/geom/Transform.h"
28 #include "src/gpu/graphite/render/CommonDepthStencilSettings.h"
29
30 #include <cstdint>
31
32 // This RenderStep is specialized to draw filled rectangles with per-edge AA.
33 //
34 // Each of these "primitives" is represented by a single instance. The instance attributes are
35 // flexible enough to describe per-edge AA quads without relying on uniforms to define its
36 // operation. The attributes encode shape as follows:
37 //
38 // float4 edgeFlags - per-edge AA defined by each component: aa != 0.
39 // float4 quadXs - these values provide the X coordinates of the quadrilateral in top-left CW order.
40 // float4 quadYs - these values provide the Y coordinates of the quadrilateral.
41 //
42 // From the other direction, per-edge AA quads produce instance values like:
43 // - [aa(t,r,b,l) ? 255 : 0] [xs(tl,tr,br,bl)] [ys(tl,tr,br,bl)]
44 //
45 // From this encoding, data can be unpacked for each corner, which are equivalent under
46 // rotational symmetry. Per-edge quads are always mitered and fill the interior, but the
47 // vertices are placed such that the edge coverage ramps can collapse to 0 area on non-AA edges.
48 //
49 // The vertices that describe each corner are placed so that edges and miters calculate
50 // coverage by interpolating a varying and then clamping in the fragment shader. Triangles that
51 // cover the inner and outer curves calculate distance to the curve within the fragment shader.
52 //
53 // See https://docs.google.com/presentation/d/1MCPstNsSlDBhR8CrsJo0r-cZNbu-sEJEvU9W94GOJoY/edit?usp=sharing
54 // for diagrams and explanation of how the geometry is defined.
55 //
56 // PerEdgeAAQuadRenderStep uses the common technique of approximating distance to the level set by
57 // one expansion of the Taylor's series for the level set's equation. Given a level set function
58 // C(x,y), this amounts to calculating C(px,py)/|∇C(px,py)|. For the straight edges the level set
59 // is linear and calculated in the vertex shader and then interpolated exactly over the rectangle.
60 // This provides distances to all four exterior edges within the fragment shader and allows it to
61 // reconstruct a relative position per elliptical corner. Unfortunately this requires the fragment
62 // shader to calculate the length of the gradient for straight edges instead of interpolating
63 // exact device-space distance.
64 //
65 // Unlike AnalyticRRectRenderStep, for per-edge AA quads it's valid to have each pixel calculate a
66 // single corner's coverage that's controlled via the vertex shader. Any bias is a constant 1/2,
67 // so this is also added in the vertex shader.
68 //
69 // Analytic derivatives are used so that a single pipeline can be used regardless of HW derivative
70 // support or for geometry that would prove difficult for forward differencing. The device-space
71 // gradient for ellipses is calculated per-pixel by transforming a per-pixel local gradient vector
72 // with the Jacobian of the inverse local-to-device transform:
73 //
74 // (px,py) is the projected point of (u,v) transformed by a 3x3 matrix, M:
75 // [x(u,v) / w(u,v)] [x] [m00 m01 m02] [u]
76 // (px,py) = [y(u,v) / w(u,v)] where [y] = [m10 m11 m12]X[v] = M*(u,v,1)
77 // [w] [m20 m21 m22] [1]
78 //
79 // C(px,py) can be defined in terms of a local Cl(u,v) as C(px,py) = Cl(p^-1(px,py)), where p^-1 =
80 //
81 // [x'(px,py) / w'(px,py)] [x'] [m00' m01' * m02'] [px]
82 // (u,v) = [y'(px,py) / w'(px,py)] where [y'] = [m10' m11' * m12']X[py] = M^-1*(px,py,0,1)
83 // [w'] [m20' m21' * m22'] [ 1]
84 //
85 // Note that if the 3x3 M was arrived by dropping the 3rd row and column from a 4x4 since we assume
86 // a local 3rd coordinate of 0, M^-1 is not equal to the 4x4 inverse with dropped rows and columns.
87 //
88 // Using the chain rule, then ∇C(px,py)
89 // = ∇Cl(u,v)X[1/w'(px,py) 0 -x'(px,py)/w'(px,py)^2] [m00' m01']
90 // [ 0 1/w'(px,py) -y'(px,py)/w'(px,py)^2]X[m10' m11']
91 // [m20' m21']
92 //
93 // = 1/w'(px,py)*∇Cl(u,v)X[1 0 -x'(px,py)/w'(px,py)] [m00' m01']
94 // [0 1 -y'(px,py)/w'(px,py)]X[m10' m11']
95 // [m20' m21']
96 //
97 // = w(u,v)*∇Cl(u,v)X[1 0 0 -u] [m00' m01']
98 // [0 1 0 -v]X[m10' m11']
99 // [m20' m21']
100 //
101 // = w(u,v)*∇Cl(u,v)X[m00'-m20'u m01'-m21'u]
102 // [m10'-m20'v m11'-m21'v]
103 //
104 // The vertex shader calculates the rightmost 2x2 matrix and interpolates it across the shape since
105 // each component is linear in (u,v). ∇Cl(u,v) is evaluated per pixel in the fragment shader and
106 // depends on which corner and edge being evaluated. w(u,v) is the device-space W coordinate, so
107 // its reciprocal is provided in sk_FragCoord.w.
108 namespace skgpu::graphite {
109
110 using AAFlags = EdgeAAQuad::Flags;
111
is_clockwise(const EdgeAAQuad & quad)112 static bool is_clockwise(const EdgeAAQuad& quad) {
113 if (quad.isRect()) {
114 return true; // by construction, these are always locally clockwise
115 }
116
117 // This assumes that each corner has a consistent winding, which is the case for convex inputs,
118 // which is an assumption of the per-edge AA API. Check the sign of cross product between the
119 // first two edges.
120 const skvx::float4& xs = quad.xs();
121 const skvx::float4& ys = quad.ys();
122
123 float winding = (xs[0] - xs[3])*(ys[1] - ys[0]) - (ys[0] - ys[3])*(xs[1] - xs[0]);
124 if (winding == 0.f) {
125 // The input possibly forms a triangle with duplicate vertices, so check the opposite corner
126 winding = (xs[2] - xs[1])*(ys[3] - ys[2]) - (ys[2] - ys[1])*(xs[3] - xs[2]);
127 }
128
129 // At this point if winding is < 0, the quad's vertices are CCW. If it's still 0, the vertices
130 // form a line, in which case the vertex shader constructs a correct CW winding. Otherwise,
131 // the quad or triangle vertices produce a positive winding and are CW.
132 return winding >= 0.f;
133 }
134
135 // Represents the per-vertex attributes used in each instance.
136 struct Vertex {
137 SkV2 fNormal;
138 };
139
140 // Allowed values for the center weight instance value (selected at record time based on style
141 // and transform), and are defined such that when (insance-weight > vertex-weight) is true, the
142 // vertex should be snapped to the center instead of its regular calculation.
143 static constexpr int kCornerVertexCount = 4; // sk_VertexID is divided by this in SkSL
144 static constexpr int kVertexCount = 4 * kCornerVertexCount;
145 static constexpr int kIndexCount = 29;
146
write_index_buffer(VertexWriter writer)147 static void write_index_buffer(VertexWriter writer) {
148 static constexpr uint16_t kTL = 0 * kCornerVertexCount;
149 static constexpr uint16_t kTR = 1 * kCornerVertexCount;
150 static constexpr uint16_t kBR = 2 * kCornerVertexCount;
151 static constexpr uint16_t kBL = 3 * kCornerVertexCount;
152
153 static const uint16_t kIndices[kIndexCount] = {
154 // Exterior AA ramp outset
155 kTL+1,kTL+2,kTL+3,kTR+0,kTR+3,kTR+1,
156 kTR+1,kTR+2,kTR+3,kBR+0,kBR+3,kBR+1,
157 kBR+1,kBR+2,kBR+3,kBL+0,kBL+3,kBL+1,
158 kBL+1,kBL+2,kBL+3,kTL+0,kTL+3,kTL+1,
159 kTL+3,
160 // Fill triangles
161 kTL+3,kTR+3,kBL+3,kBR+3
162 };
163
164 if (writer) {
165 writer << kIndices;
166 } // otherwise static buffer creation failed, so do nothing; Context initialization will fail.
167 }
168
write_vertex_buffer(VertexWriter writer)169 static void write_vertex_buffer(VertexWriter writer) {
170 static constexpr float kHR2 = 0.5f * SK_FloatSqrt2; // "half root 2"
171
172 // This template is repeated 4 times in the vertex buffer, for each of the four corners.
173 // The vertex ID is used to lookup per-corner instance properties such as positions,
174 // but otherwise this vertex data produces a consistent clockwise mesh from
175 // TL -> TR -> BR -> BL.
176 static constexpr Vertex kCornerTemplate[kCornerVertexCount] = {
177 // Normals for device-space AA outsets from outer curve
178 { {1.0f, 0.0f} },
179 { {kHR2, kHR2} },
180 { {0.0f, 1.0f} },
181
182 // Normal for outer anchor (zero length to signal no local or device-space normal outset)
183 { {0.0f, 0.0f} },
184 };
185
186 if (writer) {
187 writer << kCornerTemplate // TL
188 << kCornerTemplate // TR
189 << kCornerTemplate // BR
190 << kCornerTemplate; // BL
191 } // otherwise static buffer creation failed, so do nothing; Context initialization will fail.
192 }
193
PerEdgeAAQuadRenderStep(StaticBufferManager * bufferManager)194 PerEdgeAAQuadRenderStep::PerEdgeAAQuadRenderStep(StaticBufferManager* bufferManager)
195 : RenderStep(RenderStepID::kPerEdgeAAQuad,
196 Flags::kPerformsShading | Flags::kEmitsCoverage | Flags::kOutsetBoundsForAA |
197 Flags::kUseNonAAInnerFill,
198 /*uniforms=*/{},
199 PrimitiveType::kTriangleStrip,
200 kDirectDepthGreaterPass,
201 /*vertexAttrs=*/{
202 {"normal", VertexAttribType::kFloat2, SkSLType::kFloat2},
203 },
204 /*instanceAttrs=*/
205 {{"edgeFlags", VertexAttribType::kUByte4_norm, SkSLType::kFloat4},
206 {"quadXs", VertexAttribType::kFloat4, SkSLType::kFloat4},
207 {"quadYs", VertexAttribType::kFloat4, SkSLType::kFloat4},
208
209 // TODO: pack depth and ssbo index into one 32-bit attribute, if we can
210 // go without needing both render step and paint ssbo index attributes.
211 {"depth", VertexAttribType::kFloat, SkSLType::kFloat},
212 {"ssboIndices", VertexAttribType::kUInt2, SkSLType::kUInt2},
213
214 {"mat0", VertexAttribType::kFloat3, SkSLType::kFloat3},
215 {"mat1", VertexAttribType::kFloat3, SkSLType::kFloat3},
216 {"mat2", VertexAttribType::kFloat3, SkSLType::kFloat3}},
217 /*varyings=*/{
218 // Device-space distance to LTRB edges of quad.
219 {"edgeDistances", SkSLType::kFloat4}, // distance to LTRB edges
220 }) {
221 // Initialize the static buffers we'll use when recording draw calls.
222 // NOTE: Each instance of this RenderStep gets its own copy of the data. Since there should only
223 // ever be one PerEdgeAAQuadRenderStep at a time, this shouldn't be an issue.
224 write_vertex_buffer(bufferManager->getVertexWriter(sizeof(Vertex) * kVertexCount,
225 &fVertexBuffer));
226 write_index_buffer(bufferManager->getIndexWriter(sizeof(uint16_t) * kIndexCount,
227 &fIndexBuffer));
228 }
229
~PerEdgeAAQuadRenderStep()230 PerEdgeAAQuadRenderStep::~PerEdgeAAQuadRenderStep() {}
231
vertexSkSL() const232 std::string PerEdgeAAQuadRenderStep::vertexSkSL() const {
233 // Returns the body of a vertex function, which must define a float4 devPosition variable and
234 // must write to an already-defined float2 stepLocalCoords variable.
235 return "float4 devPosition = per_edge_aa_quad_vertex_fn("
236 // Vertex Attributes
237 "normal, "
238 // Instance Attributes
239 "edgeFlags, quadXs, quadYs, depth, "
240 "float3x3(mat0, mat1, mat2), "
241 // Varyings
242 "edgeDistances, "
243 // Render Step
244 "stepLocalCoords);\n";
245 }
246
fragmentCoverageSkSL() const247 const char* PerEdgeAAQuadRenderStep::fragmentCoverageSkSL() const {
248 // The returned SkSL must write its coverage into a 'half4 outputCoverage' variable (defined in
249 // the calling code) with the actual coverage splatted out into all four channels.
250 return "outputCoverage = per_edge_aa_quad_coverage_fn(sk_FragCoord, edgeDistances);";
251 }
252
writeVertices(DrawWriter * writer,const DrawParams & params,skvx::uint2 ssboIndices) const253 void PerEdgeAAQuadRenderStep::writeVertices(DrawWriter* writer,
254 const DrawParams& params,
255 skvx::uint2 ssboIndices) const {
256 SkASSERT(params.geometry().isEdgeAAQuad());
257 const EdgeAAQuad& quad = params.geometry().edgeAAQuad();
258
259 DrawWriter::Instances instance{*writer, fVertexBuffer, fIndexBuffer, kIndexCount};
260 auto vw = instance.append(1);
261
262 // Empty fills should not have been recorded at all.
263 SkDEBUGCODE(Rect bounds = params.geometry().bounds());
264 SkASSERT(!bounds.isEmptyNegativeOrNaN());
265
266 constexpr uint8_t kAAOn = 255;
267 constexpr uint8_t kAAOff = 0;
268 auto edgeSigns = skvx::byte4{quad.edgeFlags() & AAFlags::kLeft ? kAAOn : kAAOff,
269 quad.edgeFlags() & AAFlags::kTop ? kAAOn : kAAOff,
270 quad.edgeFlags() & AAFlags::kRight ? kAAOn : kAAOff,
271 quad.edgeFlags() & AAFlags::kBottom ? kAAOn : kAAOff};
272
273 // The vertex shader expects points to be in clockwise order. EdgeAAQuad is the only
274 // shape that *might* have counter-clockwise input.
275 if (is_clockwise(quad)) {
276 vw << edgeSigns << quad.xs() << quad.ys();
277 } else {
278 vw << skvx::shuffle<2,1,0,3>(edgeSigns) // swap left and right AA bits
279 << skvx::shuffle<1,0,3,2>(quad.xs()) // swap TL with TR, and BL with BR
280 << skvx::shuffle<1,0,3,2>(quad.ys()); // ""
281 }
282
283 // All instance types share the remaining instance attribute definitions
284 const SkM44& m = params.transform().matrix();
285
286 vw << params.order().depthAsFloat()
287 << ssboIndices
288 << m.rc(0,0) << m.rc(1,0) << m.rc(3,0) // mat0
289 << m.rc(0,1) << m.rc(1,1) << m.rc(3,1) // mat1
290 << m.rc(0,3) << m.rc(1,3) << m.rc(3,3); // mat2
291 }
292
writeUniformsAndTextures(const DrawParams &,PipelineDataGatherer *) const293 void PerEdgeAAQuadRenderStep::writeUniformsAndTextures(const DrawParams&,
294 PipelineDataGatherer*) const {
295 // All data is uploaded as instance attributes, so no uniforms are needed.
296 }
297
298 } // namespace skgpu::graphite
299