1 /* 2 * Copyright 2021 Google LLC. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef skgpu_tessellate_PatchWriter_DEFINED 9 #define skgpu_tessellate_PatchWriter_DEFINED 10 11 #include "include/core/SkScalar.h" 12 #include "include/core/SkTypes.h" 13 #include "include/private/base/SkDebug.h" 14 #include "include/private/base/SkFloatingPoint.h" 15 #include "include/private/base/SkPoint_impl.h" 16 #include "include/private/base/SkTemplates.h" 17 #include "src/base/SkUtils.h" 18 #include "src/base/SkVx.h" 19 #include "src/core/SkColorData.h" 20 #include "src/gpu/BufferWriter.h" 21 #include "src/gpu/tessellate/LinearTolerances.h" 22 #include "src/gpu/tessellate/MiddleOutPolygonTriangulator.h" 23 #include "src/gpu/tessellate/Tessellation.h" 24 #include "src/gpu/tessellate/WangsFormula.h" 25 26 #include <algorithm> 27 #include <cstdint> 28 #include <cstring> 29 #include <math.h> 30 #include <tuple> 31 #include <type_traits> 32 #include <utility> 33 #include <variant> 34 35 namespace skgpu::tess { 36 37 /** 38 * PatchWriter writes out tessellation patches, formatted with their specific attribs, to a GPU 39 * buffer. 40 * 41 * PatchWriter is a template class that takes traits to configure both its compile-time and runtime 42 * behavior for the different tessellation rendering algorithms and GPU backends. The complexity of 43 * this system is worthwhile because the attribute writing operations and math already require 44 * heavy inlining for performance, and the algorithmic variations tend to only differ slightly, but 45 * do so in the inner most loops. Additionally, Graphite and Ganesh use the same fundamental 46 * algorithms, but Graphite's architecture and higher required hardware level mean that its 47 * attribute configurations can be determined entirely at compile time. 48 * 49 * Traits are specified in PatchWriter's single var-args template pack. Traits come in two main 50 * categories: PatchAttribs configuration and feature/processing configuration. A given PatchAttrib 51 * can be always enabled, enabled at runtime, or always disabled. A feature can be either enabled 52 * or disabled and are coupled more closely with the control points of the curve. Across the two 53 * GPU backends and different path rendering strategies, a "patch" has the following structure: 54 * 55 * - 4 control points (8 floats total) defining the curve's geometry 56 * - quadratic curves are converted to equivalent cubics on the CPU during writing 57 * - conic curves store {w, inf} in their last control point 58 * - triangles store {inf, inf} in their last control point 59 * - everything else is presumed to be a cubic defined by all 4 control points 60 * - Enabled PatchAttrib values, constant for the entire instance 61 * - layout is identical to PatchAttrib's definition, skipping disabled attribs 62 * - attribs can be enabled/disabled at runtime by building a mask of attrib values 63 * 64 * Currently PatchWriter supports the following traits: 65 * - Required<PatchAttrib> 66 * - Optional<PatchAttrib> 67 * - TrackJoinControlPoints 68 * - AddTrianglesWhenChopping 69 * - DiscardFlatCurves 70 * 71 * In addition to variable traits, PatchWriter's first template argument defines the type used for 72 * allocating the GPU instance data. The templated "PatchAllocator" can be any type that provides: 73 * // A GPU-backed vertex writer for a single instance worth of data. The provided 74 * // LinearTolerances value represents the tolerances for the curve that will be written to the 75 * // returned vertex space. 76 * skgpu::VertexWriter append(const LinearTolerances&); 77 * 78 * Additionally, it must have a constructor that takes the stride as its first argument. 79 * PatchWriter forwards any additional constructor args from its ctor to the allocator after 80 * computing the necessary stride for its PatchAttribs configuration. 81 */ 82 83 // *** TRAITS *** 84 85 // Marks a PatchAttrib is enabled at compile time, i.e. it must always be set and will always be 86 // written to each patch's instance data. If present, will assert if the runtime attribs do not fit. 87 template <PatchAttribs A> struct Required {}; 88 // Marks a PatchAttrib as supported, i.e. it can be enabled or disabled at runtime. Optional<A> is 89 // overridden by Required<A>. If neither Required<A> nor Optional<A> are in a PatchWriter's trait 90 // list, then the attrib is disabled at compile time and it will assert if the runtime attribs 91 // attempt to enable it. 92 template <PatchAttribs A> struct Optional {}; 93 94 // Enables tracking of the kJoinControlPointAttrib based on control points of the previously 95 // written patch (automatically taking into account curve chopping). When a patch is first written 96 // (and there is no prior patch to define the join control point), the PatchWriter automatically 97 // records the patch to a temporary buffer--sans join--until writeDeferredStrokePatch() is called, 98 // filling in the now-defined join control point. 99 // 100 // This feature must be paired with Required<PatchAttribs::kJoinControlPoint> 101 struct TrackJoinControlPoints {}; 102 103 // Write additional triangular patches to fill the resulting empty area when a curve is chopped. 104 // Normally, the patch geometry covers the curve defined by its control points, up to the implicitly 105 // closing edge between its first and last control points. When a curve is chopped to fit within 106 // the maximum segment count, the resulting space between the original closing edge and new closing 107 // edges is not filled, unless some mechanism of the shader makes it so (e.g. a fan point or 108 // stroking). 109 // 110 // This feature enables automatically writing triangular patches to fill this empty space when a 111 // curve is chopped. 112 struct AddTrianglesWhenChopping {}; 113 114 // If a curve requires at most 1 segment to render accurately, it's effectively a straight line. 115 // This feature turns on automatically ignoring those curves, with the assumption that some other 116 // render pass will produce equivalent geometry (e.g. middle-out or inner triangulations). 117 struct DiscardFlatCurves {}; 118 119 // Upload lines as a cubic with {a, a, b, b} for control points, instead of the truly linear cubic 120 // of {a, 2/3a + 1/3b, 1/3a + 2/3b, b}. Wang's formula will not return an tight lower bound on the 121 // number of segments in this case, but it's convenient to detect in the vertex shader and assume 122 // only a single segment is required. This bypasses numerical stability issues in Wang's formula 123 // when evaluated on the ideal linear cubic for very large control point coordinates. Other curve 124 // types with large coordinates do not need this treatment since they would be pre-chopped and 125 // culled to lines. 126 struct ReplicateLineEndPoints {}; 127 128 // *** PatchWriter internals *** 129 130 // AttribValue exposes a consistent store and write interface for a PatchAttrib's value while 131 // abstracting over compile-time enabled, conditionally-enabled, or compile-time disabled attribs. 132 template <PatchAttribs A, typename T, bool Required, bool Optional> 133 struct AttribValue { 134 using DataType = std::conditional_t<Required, T, 135 std::conditional_t<Optional, std::pair<T, bool>, 136 /* else */ std::monostate>>; 137 138 static constexpr bool kEnabled = Required || Optional; 139 AttribValueAttribValue140 explicit AttribValue(PatchAttribs attribs) : AttribValue(attribs, {}) {} AttribValueAttribValue141 AttribValue(PatchAttribs attribs, const T& t) { 142 (void) attribs; // may be unused on release builds 143 if constexpr (Required) { 144 SkASSERT(attribs & A); 145 } else if constexpr (Optional) { 146 std::get<1>(fV) = attribs & A; 147 } else { 148 SkASSERT(!(attribs & A)); 149 } 150 *this = t; 151 } 152 153 AttribValue& operator=(const T& v) { 154 if constexpr (Required) { 155 fV = v; 156 } else if constexpr (Optional) { 157 // for simplicity, store even if disabled and won't be written out to VertexWriter 158 std::get<0>(fV) = v; 159 } // else ignore for disabled values 160 return *this; 161 } 162 163 DataType fV; 164 }; 165 166 template <PatchAttribs A, typename T, bool Required, bool Optional> 167 VertexWriter& operator<<(VertexWriter& w, const AttribValue<A, T, Required, Optional>& v) { 168 if constexpr (Required) { 169 w << v.fV; // always write 170 } else if constexpr (Optional) { 171 if (std::get<1>(v.fV)) { 172 w << std::get<0>(v.fV); // write if enabled 173 } 174 } // else never write 175 return w; 176 } 177 178 // Stores state and deferred patch data when TrackJoinControlPoints is used for a PatchWriter. 179 template <size_t Stride> 180 struct PatchStorage { 181 float fN_p4 = -1.f; // The parametric segment value to restore on LinearTolerances 182 bool fMustDefer = true; // True means next patch must be deferred 183 184 // Holds an entire patch, except with an undefined join control point. 185 char fData[Stride]; 186 hasPendingPatchStorage187 bool hasPending() const { 188 return fN_p4 >= 0.f; 189 } resetPatchStorage190 void reset() { 191 fN_p4 = -1.f; 192 fMustDefer = true; 193 } 194 }; 195 196 // An empty object that has the same constructor signature as MiddleOutPolygonTriangulator, used 197 // as a stand-in when AddTrianglesWhenChopping is not a defined trait. 198 struct NullTriangulator { NullTriangulatorNullTriangulator199 NullTriangulator(int, SkPoint) {} 200 }; 201 202 #define AI SK_ALWAYS_INLINE 203 #define ENABLE_IF(cond) template <typename Void=void> std::enable_if_t<cond, Void> 204 205 // *** PatchWriter *** 206 template <typename PatchAllocator, typename... Traits> 207 class PatchWriter { 208 // Helpers to extract specifics from the template traits pack. 209 template <typename F> struct has_trait : std::disjunction<std::is_same<F, Traits>...> {}; 210 template <PatchAttribs A> using req_attrib = has_trait<Required<A>>; 211 template <PatchAttribs A> using opt_attrib = has_trait<Optional<A>>; 212 213 // Enabled features and attribute configuration 214 static constexpr bool kTrackJoinControlPoints = has_trait<TrackJoinControlPoints>::value; 215 static constexpr bool kAddTrianglesWhenChopping = has_trait<AddTrianglesWhenChopping>::value; 216 static constexpr bool kDiscardFlatCurves = has_trait<DiscardFlatCurves>::value; 217 static constexpr bool kReplicateLineEndPoints = has_trait<ReplicateLineEndPoints>::value; 218 219 // NOTE: MSVC 19.24 cannot compile constexpr fold expressions referenced in templates, so 220 // extract everything into constexpr bool's instead of using `req_attrib` directly, etc. :( 221 template <PatchAttribs A, typename T, bool Req/*=req_attrib<A>*/, bool Opt/*=opt_attrib<A>*/> 222 using attrib_t = AttribValue<A, T, Req, Opt>; 223 224 // TODO: Remove when MSVC compiler is fixed, in favor of `using Name = attrib_t<>` directly. 225 #define DEF_ATTRIB_TYPE(name, A, T) \ 226 static constexpr bool kRequire##name = req_attrib<A>::value; \ 227 static constexpr bool kOptional##name = opt_attrib<A>::value; \ 228 using name = attrib_t<A, T, kRequire##name, kOptional##name> 229 230 DEF_ATTRIB_TYPE(JoinAttrib, PatchAttribs::kJoinControlPoint, SkPoint); 231 DEF_ATTRIB_TYPE(FanPointAttrib, PatchAttribs::kFanPoint, SkPoint); 232 DEF_ATTRIB_TYPE(StrokeAttrib, PatchAttribs::kStrokeParams, StrokeParams); 233 234 // kWideColorIfEnabled does not define an attribute, but changes the type of the kColor attrib. 235 static constexpr bool kRequireWideColor = req_attrib<PatchAttribs::kWideColorIfEnabled>::value; 236 static constexpr bool kOptionalWideColor = opt_attrib<PatchAttribs::kWideColorIfEnabled>::value; 237 using Color = std::conditional_t<kRequireWideColor, SkPMColor4f, 238 std::conditional_t<kOptionalWideColor, VertexColor, 239 /* else */ uint32_t>>; 240 241 DEF_ATTRIB_TYPE(ColorAttrib, PatchAttribs::kColor, Color); 242 DEF_ATTRIB_TYPE(DepthAttrib, PatchAttribs::kPaintDepth, float); 243 DEF_ATTRIB_TYPE(CurveTypeAttrib, PatchAttribs::kExplicitCurveType, float); 244 DEF_ATTRIB_TYPE(SsboIndexAttrib, PatchAttribs::kSsboIndex, skvx::uint2); 245 #undef DEF_ATTRIB_TYPE 246 247 static constexpr size_t kMaxStride = 4 * sizeof(SkPoint) + // control points 248 (JoinAttrib::kEnabled ? sizeof(SkPoint) : 0) + 249 (FanPointAttrib::kEnabled ? sizeof(SkPoint) : 0) + 250 (StrokeAttrib::kEnabled ? sizeof(StrokeParams) : 0) + 251 (ColorAttrib::kEnabled ? std::min(sizeof(Color), sizeof(SkPMColor4f)) : 0) + 252 (DepthAttrib::kEnabled ? sizeof(float) : 0) + 253 (CurveTypeAttrib::kEnabled ? sizeof(float) : 0) + 254 (SsboIndexAttrib::kEnabled ? 2 * sizeof(uint32_t) : 0); 255 256 // Types that vary depending on the activated features, but do not define the patch data. 257 using DeferredPatch = std::conditional_t<kTrackJoinControlPoints, 258 PatchStorage<kMaxStride>, std::monostate>; 259 using InnerTriangulator = std::conditional_t<kAddTrianglesWhenChopping, 260 MiddleOutPolygonTriangulator, NullTriangulator>; 261 262 using float2 = skvx::float2; 263 using float4 = skvx::float4; 264 265 static_assert(!kTrackJoinControlPoints || req_attrib<PatchAttribs::kJoinControlPoint>::value, 266 "Deferred patches and auto-updating joins requires kJoinControlPoint attrib"); 267 public: 268 template <typename... Args> // forwarded to PatchAllocator PatchWriter(PatchAttribs attribs,Args &&...allocArgs)269 PatchWriter(PatchAttribs attribs, 270 Args&&... allocArgs) 271 : fAttribs(attribs) 272 , fPatchAllocator(PatchStride(attribs), std::forward<Args>(allocArgs)...) 273 , fJoin(attribs) 274 , fFanPoint(attribs) 275 , fStrokeParams(attribs) 276 , fColor(attribs) 277 , fDepth(attribs) 278 , fSsboIndex(attribs) { 279 // Explicit curve types are provided on the writePatch signature, and not a field of 280 // PatchWriter, so initialize one in the ctor to validate the provided runtime attribs. 281 SkDEBUGCODE((void) CurveTypeAttrib(attribs);) 282 // Validate the kWideColorIfEnabled attribute variant flag as well 283 if constexpr (req_attrib<PatchAttribs::kWideColorIfEnabled>::value) { 284 SkASSERT(attribs & PatchAttribs::kWideColorIfEnabled); // required 285 } else if constexpr (!opt_attrib<PatchAttribs::kWideColorIfEnabled>::value) { 286 SkASSERT(!(attribs & PatchAttribs::kWideColorIfEnabled)); // disabled 287 } 288 } 289 ~PatchWriter()290 ~PatchWriter() { 291 if constexpr (kTrackJoinControlPoints) { 292 // flush any pending patch 293 this->writeDeferredStrokePatch(); 294 } 295 } 296 attribs()297 PatchAttribs attribs() const { return fAttribs; } 298 299 // The max scale factor should be derived from the same matrix that 'xform' was. It's only used 300 // in stroking calculations, so can be ignored for path filling. 301 void setShaderTransform(const wangs_formula::VectorXform& xform, 302 float maxScale = 1.f) { 303 fApproxTransform = xform; 304 fMaxScale = maxScale; 305 } 306 307 // Completes a closed contour of a stroke by rewriting a deferred patch with now-available 308 // join control point information. Automatically resets the join control point attribute. writeDeferredStrokePatch()309 ENABLE_IF(kTrackJoinControlPoints) writeDeferredStrokePatch() { 310 if (fDeferredPatch.hasPending()) { 311 SkASSERT(!fDeferredPatch.fMustDefer); 312 // Overwrite join control point with updated value, which is the first attribute 313 // after the 4 control points. 314 memcpy(SkTAddOffset<void>(fDeferredPatch.fData, 4 * sizeof(SkPoint)), 315 &fJoin, sizeof(SkPoint)); 316 // Assuming that the stroke parameters aren't changing within a contour, we only have 317 // to set the parametric segments in order to recover the LinearTolerances state at the 318 // time the deferred patch was recorded. 319 fTolerances.setParametricSegments(fDeferredPatch.fN_p4); 320 if (VertexWriter vw = fPatchAllocator.append(fTolerances)) { 321 vw << VertexWriter::Array<char>(fDeferredPatch.fData, PatchStride(fAttribs)); 322 } 323 } 324 325 fDeferredPatch.reset(); 326 } 327 328 // Updates the stroke's join control point that will be written out with each patch. This is 329 // automatically adjusted when appending various geometries (e.g. Conic/Cubic), but sometimes 330 // must be set explicitly. updateJoinControlPointAttrib(SkPoint lastControlPoint)331 ENABLE_IF(JoinAttrib::kEnabled) updateJoinControlPointAttrib(SkPoint lastControlPoint) { 332 SkASSERT(fAttribs & PatchAttribs::kJoinControlPoint); // must be runtime enabled as well 333 fJoin = lastControlPoint; 334 if constexpr (kTrackJoinControlPoints) { 335 fDeferredPatch.fMustDefer = false; 336 } 337 } 338 339 // Updates the fan point that will be written out with each patch (i.e., the point that wedges 340 // fan around). updateFanPointAttrib(SkPoint fanPoint)341 ENABLE_IF(FanPointAttrib::kEnabled) updateFanPointAttrib(SkPoint fanPoint) { 342 SkASSERT(fAttribs & PatchAttribs::kFanPoint); 343 fFanPoint = fanPoint; 344 } 345 346 // Updates the stroke params that are written out with each patch. updateStrokeParamsAttrib(StrokeParams strokeParams)347 ENABLE_IF(StrokeAttrib::kEnabled) updateStrokeParamsAttrib(StrokeParams strokeParams) { 348 SkASSERT(fAttribs & PatchAttribs::kStrokeParams); 349 fStrokeParams = strokeParams; 350 fTolerances.setStroke(strokeParams, fMaxScale); 351 } 352 // Updates tolerances to account for stroke params that are stored as uniforms instead of 353 // dynamic instance attributes. updateUniformStrokeParams(StrokeParams strokeParams)354 ENABLE_IF(StrokeAttrib::kEnabled) updateUniformStrokeParams(StrokeParams strokeParams) { 355 SkASSERT(!(fAttribs & PatchAttribs::kStrokeParams)); 356 fTolerances.setStroke(strokeParams, fMaxScale); 357 } 358 359 // Updates the color that will be written out with each patch. updateColorAttrib(const SkPMColor4f & color)360 ENABLE_IF(ColorAttrib::kEnabled) updateColorAttrib(const SkPMColor4f& color) { 361 SkASSERT(fAttribs & PatchAttribs::kColor); 362 // Converts SkPMColor4f to the selected 'Color' attrib type. The always-wide and never-wide 363 // branches match what VertexColor does based on the runtime check. 364 if constexpr (req_attrib<PatchAttribs::kWideColorIfEnabled>::value) { 365 fColor = color; 366 } else if constexpr (opt_attrib<PatchAttribs::kWideColorIfEnabled>::value) { 367 fColor = VertexColor(color, fAttribs & PatchAttribs::kWideColorIfEnabled); 368 } else { 369 fColor = color.toBytes_RGBA(); 370 } 371 } 372 373 // Updates the paint depth written out with each patch. updatePaintDepthAttrib(float depth)374 ENABLE_IF(DepthAttrib::kEnabled) updatePaintDepthAttrib(float depth) { 375 SkASSERT(fAttribs & PatchAttribs::kPaintDepth); 376 fDepth = depth; 377 } 378 379 // Updates the storage buffer index used to access uniforms. 380 ENABLE_IF(SsboIndexAttrib::kEnabled) updateSsboIndexAttrib(skvx::uint2 ssboIndex)381 updateSsboIndexAttrib(skvx::uint2 ssboIndex) { 382 SkASSERT(fAttribs & PatchAttribs::kSsboIndex); 383 fSsboIndex = ssboIndex; 384 } 385 386 /** 387 * writeX functions for supported patch geometry types. Every geometric type is converted to an 388 * equivalent cubic or conic, so this will always write at minimum 8 floats for the four control 389 * points (cubic) or three control points and {w, inf} (conics). The PatchWriter additionally 390 * writes the current values of all attributes enabled in its PatchAttribs flags. 391 */ 392 393 // Write a cubic curve with its four control points. writeCubic(float2 p0,float2 p1,float2 p2,float2 p3)394 AI void writeCubic(float2 p0, float2 p1, float2 p2, float2 p3) { 395 float n4 = wangs_formula::cubic_p4(kPrecision, p0, p1, p2, p3, fApproxTransform); 396 if constexpr (kDiscardFlatCurves) { 397 if (n4 <= 1.f) { 398 // This cubic only needs one segment (e.g. a line) but we're not filling space with 399 // fans or stroking, so nothing actually needs to be drawn. 400 return; 401 } 402 } 403 if (int numPatches = this->accountForCurve(n4)) { 404 this->chopAndWriteCubics(p0, p1, p2, p3, numPatches); 405 } else { 406 this->writeCubicPatch(p0, p1, p2, p3); 407 } 408 } writeCubic(const SkPoint pts[4])409 AI void writeCubic(const SkPoint pts[4]) { 410 float4 p0p1 = float4::Load(pts); 411 float4 p2p3 = float4::Load(pts + 2); 412 this->writeCubic(p0p1.lo, p0p1.hi, p2p3.lo, p2p3.hi); 413 } 414 415 // Write a conic curve with three control points and 'w', with the last coord of the last 416 // control point signaling a conic by being set to infinity. writeConic(float2 p0,float2 p1,float2 p2,float w)417 AI void writeConic(float2 p0, float2 p1, float2 p2, float w) { 418 float n2 = wangs_formula::conic_p2(kPrecision, p0, p1, p2, w, fApproxTransform); 419 if constexpr (kDiscardFlatCurves) { 420 if (n2 <= 1.f) { 421 // This conic only needs one segment (e.g. a line) but we're not filling space with 422 // fans or stroking, so nothing actually needs to be drawn. 423 return; 424 } 425 } 426 if (int numPatches = this->accountForCurve(n2 * n2)) { 427 this->chopAndWriteConics(p0, p1, p2, w, numPatches); 428 } else { 429 this->writeConicPatch(p0, p1, p2, w); 430 } 431 } writeConic(const SkPoint pts[3],float w)432 AI void writeConic(const SkPoint pts[3], float w) { 433 this->writeConic(sk_bit_cast<float2>(pts[0]), 434 sk_bit_cast<float2>(pts[1]), 435 sk_bit_cast<float2>(pts[2]), 436 w); 437 } 438 439 // Write a quadratic curve that automatically converts its three control points into an 440 // equivalent cubic. writeQuadratic(float2 p0,float2 p1,float2 p2)441 AI void writeQuadratic(float2 p0, float2 p1, float2 p2) { 442 float n4 = wangs_formula::quadratic_p4(kPrecision, p0, p1, p2, fApproxTransform); 443 if constexpr (kDiscardFlatCurves) { 444 if (n4 <= 1.f) { 445 // This quad only needs one segment (e.g. a line) but we're not filling space with 446 // fans or stroking, so nothing actually needs to be drawn. 447 return; 448 } 449 } 450 if (int numPatches = this->accountForCurve(n4)) { 451 this->chopAndWriteQuads(p0, p1, p2, numPatches); 452 } else { 453 this->writeQuadPatch(p0, p1, p2); 454 } 455 } writeQuadratic(const SkPoint pts[3])456 AI void writeQuadratic(const SkPoint pts[3]) { 457 this->writeQuadratic(sk_bit_cast<float2>(pts[0]), 458 sk_bit_cast<float2>(pts[1]), 459 sk_bit_cast<float2>(pts[2])); 460 } 461 462 // Write a line that is automatically converted into an equivalent cubic. writeLine(float4 p0p1)463 AI void writeLine(float4 p0p1) { 464 // No chopping needed, a line only ever requires one segment (the minimum required already). 465 fTolerances.setParametricSegments(1.f); 466 if constexpr (kReplicateLineEndPoints) { 467 // Visually this cubic is still a line, but 't' does not move linearly over the line, 468 // so Wang's formula is more pessimistic. Shaders should avoid evaluating Wang's 469 // formula when a patch has control points in this arrangement. 470 this->writeCubicPatch(p0p1.lo, p0p1.lo, p0p1.hi, p0p1.hi); 471 } else { 472 // In exact math, this cubic structure should have Wang's formula return 0. Due to 473 // floating point math, this isn't always the case, so shaders need some way to restrict 474 // the number of parametric segments if Wang's formula numerically blows up. 475 this->writeCubicPatch(p0p1.lo, (p0p1.zwxy() - p0p1) * (1/3.f) + p0p1, p0p1.hi); 476 } 477 } writeLine(float2 p0,float2 p1)478 AI void writeLine(float2 p0, float2 p1) { this->writeLine({p0, p1}); } writeLine(SkPoint p0,SkPoint p1)479 AI void writeLine(SkPoint p0, SkPoint p1) { 480 this->writeLine(sk_bit_cast<float2>(p0), sk_bit_cast<float2>(p1)); 481 } 482 483 // Write a triangle by setting it to a conic with w=Inf, and using a distinct 484 // explicit curve type for when inf isn't supported in shaders. writeTriangle(float2 p0,float2 p1,float2 p2)485 AI void writeTriangle(float2 p0, float2 p1, float2 p2) { 486 // No chopping needed, the max supported segment count should always support 2 lines 487 // (which form a triangle when implicitly closed). 488 static constexpr float kTriangleSegments_p4 = 2.f * 2.f * 2.f * 2.f; 489 fTolerances.setParametricSegments(kTriangleSegments_p4); 490 this->writePatch(p0, p1, p2, {SK_FloatInfinity, SK_FloatInfinity}, 491 kTriangularConicCurveType); 492 } writeTriangle(SkPoint p0,SkPoint p1,SkPoint p2)493 AI void writeTriangle(SkPoint p0, SkPoint p1, SkPoint p2) { 494 this->writeTriangle(sk_bit_cast<float2>(p0), 495 sk_bit_cast<float2>(p1), 496 sk_bit_cast<float2>(p2)); 497 } 498 499 // Writes a circle used for round caps and joins in stroking, encoded as a cubic with 500 // identical control points and an empty join. writeCircle(SkPoint p)501 AI void writeCircle(SkPoint p) { 502 // This does not use writePatch() because it uses its own location as the join attribute 503 // value instead of fJoin and never defers. 504 fTolerances.setParametricSegments(0.f); 505 if (VertexWriter vw = fPatchAllocator.append(fTolerances)) { 506 vw << VertexWriter::Repeat<4>(p); // p0,p1,p2,p3 = p -> 4 copies 507 this->emitPatchAttribs(std::move(vw), {fAttribs, p}, kCubicCurveType); 508 } 509 } 510 511 private: emitPatchAttribs(VertexWriter vertexWriter,const JoinAttrib & join,float explicitCurveType)512 AI void emitPatchAttribs(VertexWriter vertexWriter, 513 const JoinAttrib& join, 514 float explicitCurveType) { 515 // NOTE: operator<< overrides automatically handle optional and disabled attribs. 516 vertexWriter << join << fFanPoint << fStrokeParams << fColor << fDepth 517 << CurveTypeAttrib{fAttribs, explicitCurveType} << fSsboIndex; 518 } 519 appendPatch()520 AI VertexWriter appendPatch() { 521 if constexpr (kTrackJoinControlPoints) { 522 if (fDeferredPatch.fMustDefer) { 523 SkASSERT(!fDeferredPatch.hasPending()); 524 SkASSERT(PatchStride(fAttribs) <= kMaxStride); 525 // Save the computed parametric segment tolerance value so that we can pass that to 526 // the PatchAllocator when flushing the deferred patch. 527 fDeferredPatch.fN_p4 = fTolerances.numParametricSegments_p4(); 528 return {fDeferredPatch.fData, PatchStride(fAttribs)}; 529 } 530 } 531 return fPatchAllocator.append(fTolerances); 532 } 533 writePatch(float2 p0,float2 p1,float2 p2,float2 p3,float explicitCurveType)534 AI void writePatch(float2 p0, float2 p1, float2 p2, float2 p3, float explicitCurveType) { 535 if (VertexWriter vw = this->appendPatch()) { 536 // NOTE: fJoin will be undefined if we're writing to a deferred patch. If that's the 537 // case, correct data will overwrite it when the contour is closed (this is fine since a 538 // deferred patch writes to CPU memory instead of directly to the GPU buffer). 539 vw << p0 << p1 << p2 << p3; 540 this->emitPatchAttribs(std::move(vw), fJoin, explicitCurveType); 541 542 // Automatically update join control point for next patch. 543 if constexpr (kTrackJoinControlPoints) { 544 if (explicitCurveType == kCubicCurveType && any(p3 != p2)) { 545 // p2 is control point defining the tangent vector into the next patch. 546 p2.store(&fJoin); 547 } else if (any(p2 != p1)) { 548 // p1 is the control point defining the tangent vector. 549 p1.store(&fJoin); 550 } else { 551 // p0 is the control point defining the tangent vector. 552 p0.store(&fJoin); 553 } 554 fDeferredPatch.fMustDefer = false; 555 } 556 } 557 } 558 559 // Helpers that normalize curves to a generic patch, but do no other work. writeCubicPatch(float2 p0,float2 p1,float2 p2,float2 p3)560 AI void writeCubicPatch(float2 p0, float2 p1, float2 p2, float2 p3) { 561 this->writePatch(p0, p1, p2, p3, kCubicCurveType); 562 } writeCubicPatch(float2 p0,float4 p1p2,float2 p3)563 AI void writeCubicPatch(float2 p0, float4 p1p2, float2 p3) { 564 this->writeCubicPatch(p0, p1p2.lo, p1p2.hi, p3); 565 } writeQuadPatch(float2 p0,float2 p1,float2 p2)566 AI void writeQuadPatch(float2 p0, float2 p1, float2 p2) { 567 this->writeCubicPatch(p0, mix(float4(p0, p2), p1.xyxy(), 2/3.f), p2); 568 } writeConicPatch(float2 p0,float2 p1,float2 p2,float w)569 AI void writeConicPatch(float2 p0, float2 p1, float2 p2, float w) { 570 this->writePatch(p0, p1, p2, {w, SK_FloatInfinity}, kConicCurveType); 571 } 572 accountForCurve(float n4)573 int accountForCurve(float n4) { 574 if (n4 <= kMaxParametricSegments_p4) { 575 // Record n^4 and return 0 to signal no chopping 576 fTolerances.setParametricSegments(n4); 577 return 0; 578 } else { 579 // Clamp to max allowed segmentation for a patch and return required number of chops 580 // to achieve visual correctness. 581 fTolerances.setParametricSegments(kMaxParametricSegments_p4); 582 return SkScalarCeilToInt(wangs_formula::root4(std::min(n4, kMaxSegmentsPerCurve_p4) / 583 kMaxParametricSegments_p4)); 584 } 585 } 586 587 // This does not return b when t==1, but it otherwise seems to get better precision than 588 // "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points. 589 // The responsibility falls on the caller to check that t != 1 before calling. mix(float4 a,float4 b,float4 T)590 static AI float4 mix(float4 a, float4 b, float4 T) { 591 SkASSERT(all((0 <= T) & (T < 1))); 592 return (b - a)*T + a; 593 } 594 595 // Helpers that chop the curve type into 'numPatches' parametrically uniform curves. It is 596 // assumed that 'numPatches' is calculated such that the resulting curves require the maximum 597 // number of segments to draw appropriately (since the original presumably needed even more). chopAndWriteQuads(float2 p0,float2 p1,float2 p2,int numPatches)598 void chopAndWriteQuads(float2 p0, float2 p1, float2 p2, int numPatches) { 599 InnerTriangulator triangulator(numPatches, sk_bit_cast<SkPoint>(p0)); 600 for (; numPatches >= 3; numPatches -= 2) { 601 // Chop into 3 quads. 602 float4 T = float4(1,1,2,2) / numPatches; 603 float4 ab = mix(p0.xyxy(), p1.xyxy(), T); 604 float4 bc = mix(p1.xyxy(), p2.xyxy(), T); 605 float4 abc = mix(ab, bc, T); 606 // p1 & p2 of the cubic representation of the middle quad. 607 float4 middle = mix(ab, bc, mix(T, T.zwxy(), 2/3.f)); 608 609 this->writeQuadPatch(p0, ab.lo, abc.lo); // Write the 1st quad. 610 if constexpr (kAddTrianglesWhenChopping) { 611 this->writeTriangle(p0, abc.lo, abc.hi); 612 } 613 this->writeCubicPatch(abc.lo, middle, abc.hi); // Write the 2nd quad (already a cubic) 614 if constexpr (kAddTrianglesWhenChopping) { 615 this->writeTriangleStack(triangulator.pushVertex(sk_bit_cast<SkPoint>(abc.hi))); 616 } 617 std::tie(p0, p1) = {abc.hi, bc.hi}; // Save the 3rd quad. 618 } 619 if (numPatches == 2) { 620 // Chop into 2 quads. 621 float2 ab = (p0 + p1) * .5f; 622 float2 bc = (p1 + p2) * .5f; 623 float2 abc = (ab + bc) * .5f; 624 625 this->writeQuadPatch(p0, ab, abc); // Write the 1st quad. 626 if constexpr (kAddTrianglesWhenChopping) { 627 this->writeTriangle(p0, abc, p2); 628 } 629 this->writeQuadPatch(abc, bc, p2); // Write the 2nd quad. 630 } else { 631 SkASSERT(numPatches == 1); 632 this->writeQuadPatch(p0, p1, p2); // Write the single remaining quad. 633 } 634 if constexpr (kAddTrianglesWhenChopping) { 635 this->writeTriangleStack(triangulator.pushVertex(sk_bit_cast<SkPoint>(p2))); 636 this->writeTriangleStack(triangulator.close()); 637 } 638 } 639 chopAndWriteConics(float2 p0,float2 p1,float2 p2,float w,int numPatches)640 void chopAndWriteConics(float2 p0, float2 p1, float2 p2, float w, int numPatches) { 641 InnerTriangulator triangulator(numPatches, sk_bit_cast<SkPoint>(p0)); 642 // Load the conic in 3d homogeneous (unprojected) space. 643 float4 h0 = float4(p0,1,1); 644 float4 h1 = float4(p1,1,1) * w; 645 float4 h2 = float4(p2,1,1); 646 for (; numPatches >= 2; --numPatches) { 647 // Chop in homogeneous space. 648 float T = 1.f/numPatches; 649 float4 ab = mix(h0, h1, T); 650 float4 bc = mix(h1, h2, T); 651 float4 abc = mix(ab, bc, T); 652 653 // Project and write the 1st conic. 654 float2 midpoint = abc.xy() / abc.w(); 655 this->writeConicPatch(h0.xy() / h0.w(), 656 ab.xy() / ab.w(), 657 midpoint, 658 ab.w() / sqrtf(h0.w() * abc.w())); 659 if constexpr (kAddTrianglesWhenChopping) { 660 this->writeTriangleStack(triangulator.pushVertex(sk_bit_cast<SkPoint>(midpoint))); 661 } 662 std::tie(h0, h1) = {abc, bc}; // Save the 2nd conic (in homogeneous space). 663 } 664 // Project and write the remaining conic. 665 SkASSERT(numPatches == 1); 666 this->writeConicPatch(h0.xy() / h0.w(), 667 h1.xy() / h1.w(), 668 h2.xy(), // h2.w == 1 669 h1.w() / sqrtf(h0.w())); 670 if constexpr (kAddTrianglesWhenChopping) { 671 this->writeTriangleStack(triangulator.pushVertex(sk_bit_cast<SkPoint>(h2.xy()))); 672 this->writeTriangleStack(triangulator.close()); 673 } 674 } 675 chopAndWriteCubics(float2 p0,float2 p1,float2 p2,float2 p3,int numPatches)676 void chopAndWriteCubics(float2 p0, float2 p1, float2 p2, float2 p3, int numPatches) { 677 InnerTriangulator triangulator(numPatches, sk_bit_cast<SkPoint>(p0)); 678 for (; numPatches >= 3; numPatches -= 2) { 679 // Chop into 3 cubics. 680 float4 T = float4(1,1,2,2) / numPatches; 681 float4 ab = mix(p0.xyxy(), p1.xyxy(), T); 682 float4 bc = mix(p1.xyxy(), p2.xyxy(), T); 683 float4 cd = mix(p2.xyxy(), p3.xyxy(), T); 684 float4 abc = mix(ab, bc, T); 685 float4 bcd = mix(bc, cd, T); 686 float4 abcd = mix(abc, bcd, T); 687 float4 middle = mix(abc, bcd, T.zwxy()); // p1 & p2 of the middle cubic. 688 689 this->writeCubicPatch(p0, ab.lo, abc.lo, abcd.lo); // Write the 1st cubic. 690 if constexpr (kAddTrianglesWhenChopping) { 691 this->writeTriangle(p0, abcd.lo, abcd.hi); 692 } 693 this->writeCubicPatch(abcd.lo, middle, abcd.hi); // Write the 2nd cubic. 694 if constexpr (kAddTrianglesWhenChopping) { 695 this->writeTriangleStack(triangulator.pushVertex(sk_bit_cast<SkPoint>(abcd.hi))); 696 } 697 std::tie(p0, p1, p2) = {abcd.hi, bcd.hi, cd.hi}; // Save the 3rd cubic. 698 } 699 if (numPatches == 2) { 700 // Chop into 2 cubics. 701 float2 ab = (p0 + p1) * .5f; 702 float2 bc = (p1 + p2) * .5f; 703 float2 cd = (p2 + p3) * .5f; 704 float2 abc = (ab + bc) * .5f; 705 float2 bcd = (bc + cd) * .5f; 706 float2 abcd = (abc + bcd) * .5f; 707 708 this->writeCubicPatch(p0, ab, abc, abcd); // Write the 1st cubic. 709 if constexpr (kAddTrianglesWhenChopping) { 710 this->writeTriangle(p0, abcd, p3); 711 } 712 this->writeCubicPatch(abcd, bcd, cd, p3); // Write the 2nd cubic. 713 } else { 714 SkASSERT(numPatches == 1); 715 this->writeCubicPatch(p0, p1, p2, p3); // Write the single remaining cubic. 716 } 717 if constexpr (kAddTrianglesWhenChopping) { 718 this->writeTriangleStack(triangulator.pushVertex(sk_bit_cast<SkPoint>(p3))); 719 this->writeTriangleStack(triangulator.close()); 720 } 721 } 722 723 ENABLE_IF(kAddTrianglesWhenChopping) writeTriangleStack(MiddleOutPolygonTriangulator::PoppedTriangleStack && stack)724 writeTriangleStack(MiddleOutPolygonTriangulator::PoppedTriangleStack&& stack) { 725 for (auto [p0, p1, p2] : stack) { 726 this->writeTriangle(p0, p1, p2); 727 } 728 } 729 730 // Runtime configuration, will always contain required attribs but may not have all optional 731 // attribs enabled (e.g. depending on caps or batching). 732 const PatchAttribs fAttribs; 733 734 // The 2x2 approximation of the local-to-device transform that will affect subsequently 735 // recorded curves (when fully transformed in the vertex shader). 736 wangs_formula::VectorXform fApproxTransform = {}; 737 // A maximum scale factor extracted from the current approximate transform. 738 float fMaxScale = 1.0f; 739 // Tracks the linear tolerances for the most recently written patches. 740 LinearTolerances fTolerances; 741 742 PatchAllocator fPatchAllocator; 743 DeferredPatch fDeferredPatch; // only usable if kTrackJoinControlPoints is true 744 745 // Instance attribute state written after the 4 control points of a patch 746 JoinAttrib fJoin; 747 FanPointAttrib fFanPoint; 748 StrokeAttrib fStrokeParams; 749 ColorAttrib fColor; 750 DepthAttrib fDepth; 751 752 // Index into a shared storage buffer containing this PatchWriter's patches' corresponding 753 // uniforms. Written out as an attribute with every patch, to read the appropriate uniform 754 // values from the storage buffer on draw. 755 SsboIndexAttrib fSsboIndex; 756 }; 757 758 } // namespace skgpu::tess 759 760 #undef ENABLE_IF 761 #undef AI 762 763 #endif // skgpu_tessellate_PatchWriter_DEFINED 764