• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkShaderBase_DEFINED
9 #define SkShaderBase_DEFINED
10 
11 #include "include/core/SkColor.h"
12 #include "include/core/SkFlattenable.h"
13 #include "include/core/SkMatrix.h"
14 #include "include/core/SkPoint.h"
15 #include "include/core/SkRefCnt.h"
16 #include "include/core/SkScalar.h"
17 #include "include/core/SkShader.h"
18 #include "include/core/SkSurfaceProps.h"
19 #include "include/core/SkTypes.h"
20 #include "include/private/base/SkNoncopyable.h"
21 
22 #include <cstddef>
23 #include <cstdint>
24 #include <optional>
25 #include <tuple>
26 
27 class SkArenaAlloc;
28 class SkColorSpace;
29 class SkImage;
30 class SkRuntimeEffect;
31 class SkWriteBuffer;
32 enum SkColorType : int;
33 enum class SkTileMode;
34 struct SkDeserialProcs;
35 struct SkStageRec;
36 
37 namespace SkShaders {
38 /**
39  * This is used to accumulate matrices, starting with the CTM, when building up
40  * SkRasterPipeline or GrFragmentProcessor by walking the SkShader tree. It avoids
41  * adding a matrix multiply for each individual matrix. It also handles the reverse matrix
42  * concatenation order required by Android Framework, see b/256873449.
43  *
44  * This also tracks the dubious concept of a "total matrix", in the legacy Context/shadeSpan system.
45  * That includes all the matrices encountered during traversal to the current shader, including ones
46  * that have already been applied. The total matrix represents the transformation from the current
47  * shader's coordinate space to device space. It is dubious because it doesn't account for SkShaders
48  * that manipulate the coordinates passed to their children, which may not even be representable by
49  * a matrix.
50  *
51  * The total matrix is used for mipmap level selection and a filter downgrade optimizations in
52  * SkImageShader and sizing of the SkImage created by SkPictureShader. If we can remove usages
53  * of the "total matrix" and if Android Framework could be updated to not use backwards local
54  * matrix concatenation this could just be replaced by a simple SkMatrix or SkM44 passed down
55  * during traversal.
56  */
57 class MatrixRec {
58 public:
59     MatrixRec() = default;
60 
61     explicit MatrixRec(const SkMatrix& ctm);
62 
63     /**
64      * Returns a new MatrixRec that represents the existing total and pending matrix
65      * pre-concat'ed with m.
66      */
67     [[nodiscard]] MatrixRec concat(const SkMatrix& m) const;
68 
69     /**
70      * Appends a mul by the inverse of the pending local matrix to the pipeline. 'postInv' is an
71      * additional matrix to post-apply to the inverted pending matrix. If the pending matrix is
72      * not invertible the std::optional result won't have a value and the pipeline will be
73      * unmodified.
74      */
75     [[nodiscard]] std::optional<MatrixRec> apply(const SkStageRec& rec,
76                                                  const SkMatrix& postInv = {}) const;
77 
78     /**
79      * FP matrices work differently than SkRasterPipeline. The starting coordinates provided to the
80      * root SkShader's FP are already in local space. So we never apply the inverse CTM. This
81      * returns the inverted pending local matrix with the provided postInv matrix applied after it.
82      * If the pending local matrix cannot be inverted, the boolean is false.
83      */
84     std::tuple<SkMatrix, bool> applyForFragmentProcessor(const SkMatrix& postInv) const;
85 
86     /**
87      * A parent FP may need to create a FP for its child by calling
88      * SkShaderBase::asFragmentProcessor() and then pass the result to the apply() above.
89      * This comes up when the parent needs to ensure pending matrices are applied before the
90      * child because the parent is going to manipulate the coordinates *after* any pending
91      * matrix and pass the resulting coords to the child. This function gets a MatrixRec that
92      * reflects the state after this MatrixRec has bee applied but it does not apply it!
93      * Example:
94      * auto childFP = fChild->asFragmentProcessor(args, mrec.applied());
95      * childFP = MakeAWrappingFPThatModifiesChildsCoords(std::move(childFP));
96      * auto [success, parentFP] = mrec.apply(std::move(childFP));
97      */
98     MatrixRec applied() const;
99 
100     /** Call to indicate that the mapping from shader to device space is not known. */
markTotalMatrixInvalid()101     void markTotalMatrixInvalid() { fTotalMatrixIsValid = false; }
102 
103     /** Marks the CTM as already applied; can avoid re-seeding the shader unnecessarily. */
markCTMApplied()104     void markCTMApplied() { fCTMApplied = true; }
105 
106     /**
107      * Indicates whether the total matrix of a MatrixRec passed to a SkShader actually
108      * represents the full transform between that shader's coordinate space and device space.
109      */
totalMatrixIsValid()110     bool totalMatrixIsValid() const { return fTotalMatrixIsValid; }
111 
112     /**
113      * Gets the total transform from the current shader's space to device space. This may or
114      * may not be valid. Shaders should avoid making decisions based on this matrix if
115      * totalMatrixIsValid() is false.
116      */
totalMatrix()117     SkMatrix totalMatrix() const { return SkMatrix::Concat(fCTM, fTotalLocalMatrix); }
118 
119     /** Gets the inverse of totalMatrix(), if invertible. */
totalInverse(SkMatrix * out)120     [[nodiscard]] bool totalInverse(SkMatrix* out) const {
121         return this->totalMatrix().invert(out);
122     }
123 
124     /** Is there a transform that has not yet been applied by a parent shader? */
hasPendingMatrix()125     bool hasPendingMatrix() const {
126         return (!fCTMApplied && !fCTM.isIdentity()) || !fPendingLocalMatrix.isIdentity();
127     }
128 
129     /** When generating raster pipeline, have the device coordinates been seeded? */
rasterPipelineCoordsAreSeeded()130     bool rasterPipelineCoordsAreSeeded() const { return fCTMApplied; }
131 
132 private:
MatrixRec(const SkMatrix & ctm,const SkMatrix & totalLocalMatrix,const SkMatrix & pendingLocalMatrix,bool totalIsValid,bool ctmApplied)133     MatrixRec(const SkMatrix& ctm,
134               const SkMatrix& totalLocalMatrix,
135               const SkMatrix& pendingLocalMatrix,
136               bool totalIsValid,
137               bool ctmApplied)
138             : fCTM(ctm)
139             , fTotalLocalMatrix(totalLocalMatrix)
140             , fPendingLocalMatrix(pendingLocalMatrix)
141             , fTotalMatrixIsValid(totalIsValid)
142             , fCTMApplied(ctmApplied) {}
143 
144     const SkMatrix fCTM;
145 
146     // Concatenation of all local matrices, including those already applied.
147     const SkMatrix fTotalLocalMatrix;
148 
149     // The accumulated local matrices from walking down the shader hierarchy that have NOT yet
150     // been incorporated into the SkRasterPipeline.
151     const SkMatrix fPendingLocalMatrix;
152 
153     bool fTotalMatrixIsValid = true;
154 
155     // Tracks whether the CTM has already been applied (and in raster pipeline whether the
156     // device coords have been seeded.)
157     bool fCTMApplied = false;
158 };
159 
160 }  // namespace SkShaders
161 
162 #define SK_ALL_SHADERS(M) \
163     M(Blend)              \
164     M(CTM)                \
165     M(Color)              \
166     M(ColorFilter)        \
167     M(CoordClamp)         \
168     M(Empty)              \
169     M(GradientBase)       \
170     M(Image)              \
171     M(LocalMatrix)        \
172     M(PerlinNoise)        \
173     M(Picture)            \
174     M(Runtime)            \
175     M(Transform)          \
176     M(TriColor)           \
177     M(WorkingColorSpace)
178 
179 #define SK_ALL_GRADIENTS(M) \
180     M(Conical)              \
181     M(Linear)               \
182     M(Radial)               \
183     M(Sweep)
184 
185 class SkShaderBase : public SkShader {
186 public:
187     ~SkShaderBase() override;
188 
189     sk_sp<SkShader> makeInvertAlpha() const;
190     sk_sp<SkShader> makeWithCTM(const SkMatrix&) const;  // owns its own ctm
191 
192     /**
193      *  Returns true if the shader is guaranteed to produce only a single color.
194      *  Subclasses can override this to allow loop-hoisting optimization.
195      */
isConstant()196     virtual bool isConstant() const { return false; }
197 
198     enum class ShaderType {
199 #define M(type) k##type,
200         SK_ALL_SHADERS(M)
201 #undef M
202     };
203 
204     virtual ShaderType type() const = 0;
205 
206     enum class GradientType {
207         kNone,
208 #define M(type) k##type,
209         SK_ALL_GRADIENTS(M)
210 #undef M
211     };
212 
213     /**
214      *  If the shader subclass can be represented as a gradient, asGradient
215      *  returns the matching GradientType enum (or GradientType::kNone if it
216      *  cannot). Also, if info is not null, asGradient populates info with
217      *  the relevant (see below) parameters for the gradient.  fColorCount
218      *  is both an input and output parameter.  On input, it indicates how
219      *  many entries in fColors and fColorOffsets can be used, if they are
220      *  non-NULL.  After asGradient has run, fColorCount indicates how
221      *  many color-offset pairs there are in the gradient.  If there is
222      *  insufficient space to store all of the color-offset pairs, fColors
223      *  and fColorOffsets will not be altered.  fColorOffsets specifies
224      *  where on the range of 0 to 1 to transition to the given color.
225      *  The meaning of fPoint and fRadius is dependent on the type of gradient.
226      *
227      *  None:
228      *      info is ignored.
229      *  Color:
230      *      fColorOffsets[0] is meaningless.
231      *  Linear:
232      *      fPoint[0] and fPoint[1] are the end-points of the gradient
233      *  Radial:
234      *      fPoint[0] and fRadius[0] are the center and radius
235      *  Conical:
236      *      fPoint[0] and fRadius[0] are the center and radius of the 1st circle
237      *      fPoint[1] and fRadius[1] are the center and radius of the 2nd circle
238      *  Sweep:
239      *      fPoint[0] is the center of the sweep.
240      *      fPoint[1] x is the scale, y is the bias
241      */
242     struct GradientInfo {
243         int         fColorCount    = 0;        //!< In-out parameter, specifies passed size
244                                                //   of fColors/fColorOffsets on input, and
245                                                //   actual number of colors/offsets on
246                                                //   output.
247         SkColor*    fColors        = nullptr;  //!< The colors in the gradient.
248         SkScalar*   fColorOffsets  = nullptr;  //!< The unit offset for color transitions.
249         SkPoint     fPoint[2];                 //!< Type specific, see above.
250         SkScalar    fRadius[2];                //!< Type specific, see above.
251         SkTileMode  fTileMode;
252         uint32_t    fGradientFlags = 0;        //!< see SkGradientShader::Flags
253     };
254 
255     virtual GradientType asGradient(GradientInfo* info    = nullptr,
256                                     SkMatrix* localMatrix = nullptr) const {
257         return GradientType::kNone;
258     }
259 
260     enum Flags {
261         //!< set if all of the colors will be opaque
262         kOpaqueAlpha_Flag = 1 << 0,
263     };
264 
265     /**
266      *  ContextRec acts as a parameter bundle for creating Contexts.
267      */
268     struct ContextRec {
ContextRecContextRec269         ContextRec(SkAlpha paintAlpha,
270                    const SkShaders::MatrixRec& matrixRec,
271                    SkColorType dstColorType,
272                    SkColorSpace* dstColorSpace,
273                    const SkSurfaceProps& props)
274                 : fMatrixRec(matrixRec)
275                 , fDstColorType(dstColorType)
276                 , fDstColorSpace(dstColorSpace)
277                 , fProps(props)
278                 , fPaintAlpha(paintAlpha) {}
279 
ConcatContextRec280         static ContextRec Concat(const ContextRec& parentRec, const SkMatrix& localM) {
281             return {parentRec.fPaintAlpha,
282                     parentRec.fMatrixRec.concat(localM),
283                     parentRec.fDstColorType,
284                     parentRec.fDstColorSpace,
285                     parentRec.fProps};
286         }
287 
288         const SkShaders::MatrixRec fMatrixRec;
289         SkColorType                fDstColorType;   // the color type of the dest surface
290         SkColorSpace*              fDstColorSpace;  // the color space of the dest surface (if any)
291         SkSurfaceProps             fProps;          // props of the dest surface
292         SkAlpha                    fPaintAlpha;
293 
294         bool isLegacyCompatible(SkColorSpace* shadersColorSpace) const;
295     };
296 
297     class Context : public ::SkNoncopyable {
298     public:
299         Context(const SkShaderBase& shader, const ContextRec&);
300 
301         virtual ~Context();
302 
303         /**
304          *  Called sometimes before drawing with this shader. Return the type of
305          *  alpha your shader will return. The default implementation returns 0.
306          *  Your subclass should override if it can (even sometimes) report a
307          *  non-zero value, since that will enable various blitters to perform
308          *  faster.
309          */
getFlags()310         virtual uint32_t getFlags() const { return 0; }
311 
312         /**
313          *  Called for each span of the object being drawn. Your subclass should
314          *  set the appropriate colors (with premultiplied alpha) that correspond
315          *  to the specified device coordinates.
316          */
317         virtual void shadeSpan(int x, int y, SkPMColor[], int count) = 0;
318 
319     protected:
320         // Reference to shader, so we don't have to dupe information.
321         const SkShaderBase& fShader;
322 
getPaintAlpha()323         uint8_t         getPaintAlpha() const { return fPaintAlpha; }
getTotalInverse()324         const SkMatrix& getTotalInverse() const { return fTotalInverse; }
325 
326     private:
327         SkMatrix    fTotalInverse;
328         uint8_t     fPaintAlpha;
329     };
330 
331     /**
332      * Make a context using the memory provided by the arena.
333      *
334      * @return pointer to context or nullptr if can't be created
335      */
336     Context* makeContext(const ContextRec&, SkArenaAlloc*) const;
337 
338     /**
339      *  If the shader can represent its "average" luminance in a single color, return true and
340      *  if color is not NULL, return that color. If it cannot, return false and ignore the color
341      *  parameter.
342      *
343      *  Note: if this returns true, the returned color will always be opaque, as only the RGB
344      *  components are used to compute luminance.
345      */
346     bool asLuminanceColor(SkColor4f*) const;
347 
348     /**
349      * If this returns false, then we draw nothing (do not fall back to shader context). This should
350      * only be called on a root-level effect. It assumes that the initial device coordinates have
351      * not yet been seeded.
352      */
353     [[nodiscard]] bool appendRootStages(const SkStageRec& rec, const SkMatrix& ctm) const;
354 
355     /**
356      * Adds stages to implement this shader. To ensure that the correct input coords are present
357      * in r,g MatrixRec::apply() must be called (unless the shader doesn't require it's input
358      * coords). The default impl creates shadercontext and calls that (not very efficient).
359      */
360     virtual bool appendStages(const SkStageRec&, const SkShaders::MatrixRec&) const = 0;
361 
onIsAImage(SkMatrix *,SkTileMode[2])362     virtual SkImage* onIsAImage(SkMatrix*, SkTileMode[2]) const {
363         return nullptr;
364     }
365 
asRuntimeEffect()366     virtual SkRuntimeEffect* asRuntimeEffect() const { return nullptr; }
367 
GetFlattenableType()368     static Type GetFlattenableType() { return kSkShader_Type; }
getFlattenableType()369     Type getFlattenableType() const override { return GetFlattenableType(); }
370 
371     static sk_sp<SkShaderBase> Deserialize(const void* data, size_t size,
372                                              const SkDeserialProcs* procs = nullptr) {
373         return sk_sp<SkShaderBase>(static_cast<SkShaderBase*>(
374                 SkFlattenable::Deserialize(GetFlattenableType(), data, size, procs).release()));
375     }
376     static void RegisterFlattenables();
377 
378     /** DEPRECATED. skbug.com/8941
379      *  If this shader can be represented by another shader + a localMatrix, return that shader and
380      *  the localMatrix. If not, return nullptr and ignore the localMatrix parameter.
381      */
382     virtual sk_sp<SkShader> makeAsALocalMatrixShader(SkMatrix* localMatrix) const;
383 
ConcatLocalMatrices(const SkMatrix & parentLM,const SkMatrix & childLM)384     static SkMatrix ConcatLocalMatrices(const SkMatrix& parentLM, const SkMatrix& childLM) {
385 #if defined(SK_BUILD_FOR_ANDROID_FRAMEWORK)  // b/256873449
386         return SkMatrix::Concat(childLM, parentLM);
387 #endif
388         return SkMatrix::Concat(parentLM, childLM);
389     }
390 
391 protected:
392     SkShaderBase();
393 
394     void flatten(SkWriteBuffer&) const override;
395 
396 #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
397     /**
398      * Specialize creating a SkShader context using the supplied allocator.
399      * @return pointer to context owned by the arena allocator.
400      */
onMakeContext(const ContextRec &,SkArenaAlloc *)401     virtual Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const {
402         return nullptr;
403     }
404 #endif
405 
onAsLuminanceColor(SkColor4f *)406     virtual bool onAsLuminanceColor(SkColor4f*) const {
407         return false;
408     }
409 
410     friend class SkShaders::MatrixRec;
411 };
as_SB(SkShader * shader)412 inline SkShaderBase* as_SB(SkShader* shader) {
413     return static_cast<SkShaderBase*>(shader);
414 }
415 
as_SB(const SkShader * shader)416 inline const SkShaderBase* as_SB(const SkShader* shader) {
417     return static_cast<const SkShaderBase*>(shader);
418 }
419 
as_SB(const sk_sp<SkShader> & shader)420 inline const SkShaderBase* as_SB(const sk_sp<SkShader>& shader) {
421     return static_cast<SkShaderBase*>(shader.get());
422 }
423 
424 void SkRegisterBlendShaderFlattenable();
425 void SkRegisterColorShaderFlattenable();
426 void SkRegisterCoordClampShaderFlattenable();
427 void SkRegisterEmptyShaderFlattenable();
428 void SkRegisterPerlinNoiseShaderFlattenable();
429 void SkRegisterWorkingColorSpaceShaderFlattenable();
430 
431 #endif // SkShaderBase_DEFINED
432