• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "include/utils/SkShadowUtils.h"
9 
10 #include "include/core/SkBlendMode.h"
11 #include "include/core/SkBlender.h"
12 #include "include/core/SkBlurTypes.h"
13 #include "include/core/SkCanvas.h"
14 #include "include/core/SkColorFilter.h"
15 #include "include/core/SkM44.h"
16 #include "include/core/SkMaskFilter.h"
17 #include "include/core/SkMatrix.h"
18 #include "include/core/SkPaint.h"
19 #include "include/core/SkPath.h"
20 #include "include/core/SkPoint.h"
21 #include "include/core/SkPoint3.h"
22 #include "include/core/SkRect.h"
23 #include "include/core/SkRefCnt.h"
24 #include "include/core/SkVertices.h"
25 #include "include/private/SkIDChangeListener.h"
26 #include "include/private/base/SkFloatingPoint.h"
27 #include "include/private/base/SkTPin.h"
28 #include "include/private/base/SkTemplates.h"
29 #include "include/private/base/SkTo.h"
30 #include "src/base/SkRandom.h"
31 #include "src/core/SkBlurMask.h"
32 #include "src/core/SkColorFilterPriv.h"
33 #include "src/core/SkDevice.h"
34 #include "src/core/SkDrawShadowInfo.h"
35 #include "src/core/SkPathPriv.h"
36 #include "src/core/SkResourceCache.h"
37 #include "src/core/SkVerticesPriv.h"
38 
39 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
40 #include "src/utils/SkShadowTessellator.h"
41 #endif
42 
43 #if defined(SK_GANESH)
44 #include "src/gpu/ganesh/GrStyle.h"
45 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
46 #endif
47 
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 #include <memory>
52 #include <new>
53 #include <utility>
54 
55 using namespace skia_private;
56 
57 class SkRRect;
58 
59 ///////////////////////////////////////////////////////////////////////////////////////////////////
60 
61 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
62 namespace {
63 
resource_cache_shared_id()64 uint64_t resource_cache_shared_id() {
65     return 0x2020776f64616873llu;  // 'shadow  '
66 }
67 
68 /** Factory for an ambient shadow mesh with particular shadow properties. */
69 struct AmbientVerticesFactory {
70     SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
71     bool fTransparent;
72     SkVector fOffset;
73 
isCompatible__anondd4375fb0111::AmbientVerticesFactory74     bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
75         if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
76             return false;
77         }
78         *translate = that.fOffset;
79         return true;
80     }
81 
makeVertices__anondd4375fb0111::AmbientVerticesFactory82     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
83                                    SkVector* translate) const {
84         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
85         // pick a canonical place to generate shadow
86         SkMatrix noTrans(ctm);
87         if (!ctm.hasPerspective()) {
88             noTrans[SkMatrix::kMTransX] = 0;
89             noTrans[SkMatrix::kMTransY] = 0;
90         }
91         *translate = fOffset;
92         return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
93     }
94 };
95 
96 /** Factory for an spot shadow mesh with particular shadow properties. */
97 struct SpotVerticesFactory {
98     enum class OccluderType {
99         // The umbra cannot be dropped out because either the occluder is not opaque,
100         // or the center of the umbra is visible. Uses point light.
101         kPointTransparent,
102         // The umbra can be dropped where it is occluded. Uses point light.
103         kPointOpaquePartialUmbra,
104         // It is known that the entire umbra is occluded. Uses point light.
105         kPointOpaqueNoUmbra,
106         // Uses directional light.
107         kDirectional,
108         // The umbra can't be dropped out. Uses directional light.
109         kDirectionalTransparent,
110     };
111 
112     SkVector fOffset;
113     SkPoint  fLocalCenter;
114     SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
115     SkPoint3 fDevLightPos;
116     SkScalar fLightRadius;
117     OccluderType fOccluderType;
118 
isCompatible__anondd4375fb0111::SpotVerticesFactory119     bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
120         if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
121             fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
122             return false;
123         }
124         switch (fOccluderType) {
125             case OccluderType::kPointTransparent:
126             case OccluderType::kPointOpaqueNoUmbra:
127                 // 'this' and 'that' will either both have no umbra removed or both have all the
128                 // umbra removed.
129                 *translate = that.fOffset;
130                 return true;
131             case OccluderType::kPointOpaquePartialUmbra:
132                 // In this case we partially remove the umbra differently for 'this' and 'that'
133                 // if the offsets don't match.
134                 if (fOffset == that.fOffset) {
135                     translate->set(0, 0);
136                     return true;
137                 }
138                 return false;
139             case OccluderType::kDirectional:
140             case OccluderType::kDirectionalTransparent:
141                 *translate = that.fOffset - fOffset;
142                 return true;
143         }
144         SK_ABORT("Uninitialized occluder type?");
145     }
146 
makeVertices__anondd4375fb0111::SpotVerticesFactory147     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
148                                    SkVector* translate) const {
149         bool transparent = fOccluderType == OccluderType::kPointTransparent ||
150                            fOccluderType == OccluderType::kDirectionalTransparent;
151         bool directional = fOccluderType == OccluderType::kDirectional ||
152                            fOccluderType == OccluderType::kDirectionalTransparent;
153         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
154         if (directional) {
155             translate->set(0, 0);
156             return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
157                                                  transparent, true);
158         } else if (ctm.hasPerspective() || OccluderType::kPointOpaquePartialUmbra == fOccluderType) {
159             translate->set(0, 0);
160             return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
161                                                  transparent, false);
162         } else {
163             // pick a canonical place to generate shadow, with light centered over path
164             SkMatrix noTrans(ctm);
165             noTrans[SkMatrix::kMTransX] = 0;
166             noTrans[SkMatrix::kMTransY] = 0;
167             SkPoint devCenter(fLocalCenter);
168             noTrans.mapPoints(&devCenter, 1);
169             SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
170             *translate = fOffset;
171             return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
172                                                  centerLightPos, fLightRadius, transparent, false);
173         }
174     }
175 };
176 
177 /**
178  * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
179  * records are immutable this is not itself a Rec. When we need to update it we return this on
180  * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
181  * a new Rec with an adjusted size for any deletions/additions.
182  */
183 class CachedTessellations : public SkRefCnt {
184 public:
size() const185     size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
186 
find(const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate) const187     sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
188                            SkVector* translate) const {
189         return fAmbientSet.find(ambient, matrix, translate);
190     }
191 
add(const SkPath & devPath,const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate)192     sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
193                           const SkMatrix& matrix, SkVector* translate) {
194         return fAmbientSet.add(devPath, ambient, matrix, translate);
195     }
196 
find(const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate) const197     sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
198                            SkVector* translate) const {
199         return fSpotSet.find(spot, matrix, translate);
200     }
201 
add(const SkPath & devPath,const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate)202     sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
203                           const SkMatrix& matrix, SkVector* translate) {
204         return fSpotSet.add(devPath, spot, matrix, translate);
205     }
206 
207 private:
208     template <typename FACTORY, int MAX_ENTRIES>
209     class Set {
210     public:
size() const211         size_t size() const { return fSize; }
212 
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const213         sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
214                                SkVector* translate) const {
215             for (int i = 0; i < MAX_ENTRIES; ++i) {
216                 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
217                     const SkMatrix& m = fEntries[i].fMatrix;
218                     if (matrix.hasPerspective() || m.hasPerspective()) {
219                         if (matrix != fEntries[i].fMatrix) {
220                             continue;
221                         }
222                     } else if (matrix.getScaleX() != m.getScaleX() ||
223                                matrix.getSkewX() != m.getSkewX() ||
224                                matrix.getScaleY() != m.getScaleY() ||
225                                matrix.getSkewY() != m.getSkewY()) {
226                         continue;
227                     }
228                     return fEntries[i].fVertices;
229                 }
230             }
231             return nullptr;
232         }
233 
add(const SkPath & path,const FACTORY & factory,const SkMatrix & matrix,SkVector * translate)234         sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
235                               SkVector* translate) {
236             sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
237             if (!vertices) {
238                 return nullptr;
239             }
240             int i;
241             if (fCount < MAX_ENTRIES) {
242                 i = fCount++;
243             } else {
244                 i = fRandom.nextULessThan(MAX_ENTRIES);
245                 fSize -= fEntries[i].fVertices->approximateSize();
246             }
247             fEntries[i].fFactory = factory;
248             fEntries[i].fVertices = vertices;
249             fEntries[i].fMatrix = matrix;
250             fSize += vertices->approximateSize();
251             return vertices;
252         }
253 
254     private:
255         struct Entry {
256             FACTORY fFactory;
257             sk_sp<SkVertices> fVertices;
258             SkMatrix fMatrix;
259         };
260         Entry fEntries[MAX_ENTRIES];
261         int fCount = 0;
262         size_t fSize = 0;
263         SkRandom fRandom;
264     };
265 
266     Set<AmbientVerticesFactory, 4> fAmbientSet;
267     Set<SpotVerticesFactory, 4> fSpotSet;
268 };
269 
270 /**
271  * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
272  * path. The key represents the path's geometry and not any shadow params.
273  */
274 class CachedTessellationsRec : public SkResourceCache::Rec {
275 public:
CachedTessellationsRec(const SkResourceCache::Key & key,sk_sp<CachedTessellations> tessellations)276     CachedTessellationsRec(const SkResourceCache::Key& key,
277                            sk_sp<CachedTessellations> tessellations)
278             : fTessellations(std::move(tessellations)) {
279         fKey.reset(new uint8_t[key.size()]);
280         memcpy(fKey.get(), &key, key.size());
281     }
282 
getKey() const283     const Key& getKey() const override {
284         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
285     }
286 
bytesUsed() const287     size_t bytesUsed() const override { return fTessellations->size(); }
288 
getCategory() const289     const char* getCategory() const override { return "tessellated shadow masks"; }
290 
refTessellations() const291     sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
292 
293     template <typename FACTORY>
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const294     sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
295                            SkVector* translate) const {
296         return fTessellations->find(factory, matrix, translate);
297     }
298 
299 private:
300     std::unique_ptr<uint8_t[]> fKey;
301     sk_sp<CachedTessellations> fTessellations;
302 };
303 
304 /**
305  * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
306  * vertices and a translation vector. If the CachedTessellations does not contain a suitable
307  * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
308  * to the caller. The caller will update it and reinsert it back into the cache.
309  */
310 template <typename FACTORY>
311 struct FindContext {
FindContext__anondd4375fb0111::FindContext312     FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
313             : fViewMatrix(viewMatrix), fFactory(factory) {}
314     const SkMatrix* const fViewMatrix;
315     // If this is valid after Find is called then we found the vertices and they should be drawn
316     // with fTranslate applied.
317     sk_sp<SkVertices> fVertices;
318     SkVector fTranslate = {0, 0};
319 
320     // If this is valid after Find then the caller should add the vertices to the tessellation set
321     // and create a new CachedTessellationsRec and insert it into SkResourceCache.
322     sk_sp<CachedTessellations> fTessellationsOnFailure;
323 
324     const FACTORY* fFactory;
325 };
326 
327 /**
328  * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
329  * the FindContext are used to determine if the vertices are reusable. If so the vertices and
330  * necessary translation vector are set on the FindContext.
331  */
332 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec & baseRec,void * ctx)333 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
334     FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
335     const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
336     findContext->fVertices =
337             rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
338     if (findContext->fVertices) {
339         return true;
340     }
341     // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
342     // manipulated we will add a new Rec.
343     findContext->fTessellationsOnFailure = rec.refTessellations();
344     return false;
345 }
346 
347 class ShadowedPath {
348 public:
ShadowedPath(const SkPath * path,const SkMatrix * viewMatrix)349     ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
350             : fPath(path)
351             , fViewMatrix(viewMatrix)
352 #if defined(SK_GANESH)
353             , fShapeForKey(*path, GrStyle::SimpleFill())
354 #endif
355     {}
356 
path() const357     const SkPath& path() const { return *fPath; }
viewMatrix() const358     const SkMatrix& viewMatrix() const { return *fViewMatrix; }
359 #if defined(SK_GANESH)
360     /** Negative means the vertices should not be cached for this path. */
keyBytes() const361     int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void * key) const362     void writeKey(void* key) const {
363         fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
364     }
isRRect(SkRRect * rrect)365     bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr); }
366 #else
keyBytes() const367     int keyBytes() const { return -1; }
writeKey(void * key) const368     void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect * rrect)369     bool isRRect(SkRRect* rrect) { return false; }
370 #endif
371 
372 private:
373     const SkPath* fPath;
374     const SkMatrix* fViewMatrix;
375 #if defined(SK_GANESH)
376     GrStyledShape fShapeForKey;
377 #endif
378 };
379 
380 // This creates a domain of keys in SkResourceCache used by this file.
381 static void* kNamespace;
382 
383 // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
384 class ShadowInvalidator : public SkIDChangeListener {
385 public:
ShadowInvalidator(const SkResourceCache::Key & key)386     ShadowInvalidator(const SkResourceCache::Key& key) {
387         fKey.reset(new uint8_t[key.size()]);
388         memcpy(fKey.get(), &key, key.size());
389     }
390 
391 private:
getKey() const392     const SkResourceCache::Key& getKey() const {
393         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
394     }
395 
396     // always purge
FindVisitor(const SkResourceCache::Rec &,void *)397     static bool FindVisitor(const SkResourceCache::Rec&, void*) {
398         return false;
399     }
400 
changed()401     void changed() override {
402         SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr);
403     }
404 
405     std::unique_ptr<uint8_t[]> fKey;
406 };
407 
408 /**
409  * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
410  * they are first found in SkResourceCache.
411  */
412 template <typename FACTORY>
draw_shadow(const FACTORY & factory,std::function<void (const SkVertices *,SkBlendMode,const SkPaint &,SkScalar tx,SkScalar ty,bool)> drawProc,ShadowedPath & path,SkColor color)413 bool draw_shadow(const FACTORY& factory,
414                  std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
415                  SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color) {
416     FindContext<FACTORY> context(&path.viewMatrix(), &factory);
417 
418     SkResourceCache::Key* key = nullptr;
419     constexpr int kMinBytes = 128;
420     // We need to make this array be of the cache's Key so the memory we create the Key in
421     // is properly aligned.
422     AutoSTArray<kMinBytes / sizeof(SkResourceCache::Key), SkResourceCache::Key> keyStorage;
423     int keyDataBytes = path.keyBytes();
424     if (keyDataBytes >= 0) {
425         // Store the key...
426         keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
427         key = new (keyStorage.begin()) SkResourceCache::Key();
428         // ... followed by the bytes from path.
429         path.writeKey((uint32_t*)(((uint8_t*)keyStorage.begin()) + sizeof(SkResourceCache::Key)));
430         key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
431         SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
432     }
433 
434     sk_sp<SkVertices> vertices;
435     bool foundInCache = SkToBool(context.fVertices);
436     if (foundInCache) {
437         vertices = std::move(context.fVertices);
438     } else {
439         // TODO: handle transforming the path as part of the tessellator
440         if (key) {
441             // Update or initialize a tessellation set and add it to the cache.
442             sk_sp<CachedTessellations> tessellations;
443             if (context.fTessellationsOnFailure) {
444                 tessellations = std::move(context.fTessellationsOnFailure);
445             } else {
446                 tessellations.reset(new CachedTessellations());
447             }
448             vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
449                                           &context.fTranslate);
450             if (!vertices) {
451                 return false;
452             }
453             auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
454             SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key));
455             SkResourceCache::Add(rec);
456         } else {
457             vertices = factory.makeVertices(path.path(), path.viewMatrix(),
458                                             &context.fTranslate);
459             if (!vertices) {
460                 return false;
461             }
462         }
463     }
464 
465     SkPaint paint;
466     // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
467     // that against our 'color' param.
468     paint.setColorFilter(
469          SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed(
470                                                                 SkColorFilterPriv::MakeGaussian()));
471 
472     drawProc(vertices.get(), SkBlendMode::kModulate, paint,
473              context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective());
474 
475     return true;
476 }
477 }  // namespace
478 
tilted(const SkPoint3 & zPlaneParams)479 static bool tilted(const SkPoint3& zPlaneParams) {
480     return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
481 }
482 #endif // SK_ENABLE_OPTIMIZE_SIZE
483 
ComputeTonalColors(SkColor inAmbientColor,SkColor inSpotColor,SkColor * outAmbientColor,SkColor * outSpotColor)484 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
485                                        SkColor* outAmbientColor, SkColor* outSpotColor) {
486     // For tonal color we only compute color values for the spot shadow.
487     // The ambient shadow is greyscale only.
488 
489     // Ambient
490     *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
491 
492     // Spot
493     int spotR = SkColorGetR(inSpotColor);
494     int spotG = SkColorGetG(inSpotColor);
495     int spotB = SkColorGetB(inSpotColor);
496     int max = std::max(std::max(spotR, spotG), spotB);
497     int min = std::min(std::min(spotR, spotG), spotB);
498     SkScalar luminance = 0.5f*(max + min)/255.f;
499     SkScalar origA = SkColorGetA(inSpotColor)/255.f;
500 
501     // We compute a color alpha value based on the luminance of the color, scaled by an
502     // adjusted alpha value. We want the following properties to match the UX examples
503     // (assuming a = 0.25) and to ensure that we have reasonable results when the color
504     // is black and/or the alpha is 0:
505     //     f(0, a) = 0
506     //     f(luminance, 0) = 0
507     //     f(1, 0.25) = .5
508     //     f(0.5, 0.25) = .4
509     //     f(1, 1) = 1
510     // The following functions match this as closely as possible.
511     SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
512     SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
513     colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
514 
515     // Similarly, we set the greyscale alpha based on luminance and alpha so that
516     //     f(0, a) = a
517     //     f(luminance, 0) = 0
518     //     f(1, 0.25) = 0.15
519     SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
520 
521     // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
522     // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
523     // which is an adjusted value of 'a'.  Assuming SrcOver, a background color of B_rgb, and
524     // ignoring edge falloff, this becomes
525     //
526     //      (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
527     //
528     // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
529     // set the alpha to (S_a + C_a - S_a*C_a).
530     SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
531     SkScalar tonalAlpha = colorScale + greyscaleAlpha;
532     SkScalar unPremulScale = colorScale / tonalAlpha;
533     *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
534                                    unPremulScale*spotR,
535                                    unPremulScale*spotG,
536                                    unPremulScale*spotB);
537 }
538 
fill_shadow_rec(const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags,const SkMatrix & ctm,SkDrawShadowRec * rec)539 static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams,
540                             const SkPoint3& lightPos, SkScalar lightRadius,
541                             SkColor ambientColor, SkColor spotColor,
542                             uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) {
543     SkPoint pt = { lightPos.fX, lightPos.fY };
544     if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) {
545         // If light position is in device space, need to transform to local space
546         // before applying to SkCanvas.
547         SkMatrix inverse;
548         if (!ctm.invert(&inverse)) {
549             return false;
550         }
551         inverse.mapPoints(&pt, 1);
552     }
553 
554     rec->fZPlaneParams   = zPlaneParams;
555     rec->fLightPos       = { pt.fX, pt.fY, lightPos.fZ };
556     rec->fLightRadius    = lightRadius;
557     rec->fAmbientColor   = ambientColor;
558     rec->fSpotColor      = spotColor;
559     rec->fFlags          = flags;
560 
561     return true;
562 }
563 
564 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags)565 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
566                                const SkPoint3& lightPos, SkScalar lightRadius,
567                                SkColor ambientColor, SkColor spotColor,
568                                uint32_t flags) {
569     SkDrawShadowRec rec;
570     if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor,
571                          flags, canvas->getTotalMatrix(), &rec)) {
572         return;
573     }
574 
575     canvas->private_draw_shadow_rec(path, rec);
576 }
577 
GetLocalBounds(const SkMatrix & ctm,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,uint32_t flags,SkRect * bounds)578 bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path,
579                                    const SkPoint3& zPlaneParams, const SkPoint3& lightPos,
580                                    SkScalar lightRadius, uint32_t flags, SkRect* bounds) {
581     SkDrawShadowRec rec;
582     if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK,
583                          flags, ctm, &rec)) {
584         return false;
585     }
586 
587     SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds);
588 
589     return true;
590 }
591 
592 //////////////////////////////////////////////////////////////////////////////////////////////
593 
validate_rec(const SkDrawShadowRec & rec)594 static bool validate_rec(const SkDrawShadowRec& rec) {
595     return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
596            SkIsFinite(rec.fLightRadius);
597 }
598 
drawShadow(const SkPath & path,const SkDrawShadowRec & rec)599 void SkDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
600     if (!validate_rec(rec)) {
601         return;
602     }
603 
604     SkMatrix viewMatrix = this->localToDevice();
605     SkAutoDeviceTransformRestore adr(this, SkM44());
606 
607 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
608     auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
609                                 SkScalar tx, SkScalar ty, bool hasPerspective) {
610         if (vertices->priv().vertexCount()) {
611             // For perspective shadows we've already computed the shadow in world space,
612             // and we can't translate it without changing it. Otherwise we concat the
613             // change in translation from the cached version.
614             SkAutoDeviceTransformRestore adr(
615                     this,
616                     hasPerspective ? SkM44()
617                                    : this->localToDevice44() * SkM44::Translate(tx, ty));
618             // The vertex colors for a tesselated shadow polygon are always either opaque black
619             // or transparent and their real contribution to the final blended color is via
620             // their alpha. We can skip expensive per-vertex color conversion for this.
621             this->drawVertices(vertices, SkBlender::Mode(mode), paint, /*skipColorXform=*/true);
622         }
623     };
624 
625     ShadowedPath shadowedPath(&path, &viewMatrix);
626 
627     bool tiltZPlane = tilted(rec.fZPlaneParams);
628     bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
629     bool useBlur = SkToBool(rec.fFlags & SkShadowFlags::kConcaveBlurOnly_ShadowFlag) &&
630                    !path.isConvex();
631     bool uncached = tiltZPlane || path.isVolatile();
632 #endif
633     bool directional = SkToBool(rec.fFlags & SkShadowFlags::kDirectionalLight_ShadowFlag);
634 
635     SkPoint3 zPlaneParams = rec.fZPlaneParams;
636     SkPoint3 devLightPos = rec.fLightPos;
637     if (!directional) {
638         viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1);
639     }
640     float lightRadius = rec.fLightRadius;
641 
642     if (SkColorGetA(rec.fAmbientColor) > 0) {
643         bool success = false;
644 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
645         if (uncached && !useBlur) {
646             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
647                                                                           zPlaneParams,
648                                                                           transparent);
649             if (vertices) {
650                 SkPaint paint;
651                 // Run the vertex color through a GaussianColorFilter and then modulate the
652                 // grayscale result of that against our 'color' param.
653                 paint.setColorFilter(
654                     SkColorFilters::Blend(rec.fAmbientColor,
655                                                   SkBlendMode::kModulate)->makeComposed(
656                                                                SkColorFilterPriv::MakeGaussian()));
657                 // The vertex colors for a tesselated shadow polygon are always either opaque black
658                 // or transparent and their real contribution to the final blended color is via
659                 // their alpha. We can skip expensive per-vertex color conversion for this.
660                 this->drawVertices(vertices.get(),
661                                    SkBlender::Mode(SkBlendMode::kModulate),
662                                    paint,
663                                    /*skipColorXform=*/true);
664                 success = true;
665             }
666         }
667 
668         if (!success && !useBlur) {
669             AmbientVerticesFactory factory;
670             factory.fOccluderHeight = zPlaneParams.fZ;
671             factory.fTransparent = transparent;
672             if (viewMatrix.hasPerspective()) {
673                 factory.fOffset.set(0, 0);
674             } else {
675                 factory.fOffset.fX = viewMatrix.getTranslateX();
676                 factory.fOffset.fY = viewMatrix.getTranslateY();
677             }
678 
679             success = draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor);
680         }
681 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
682 
683         // All else has failed, draw with blur
684         if (!success) {
685             // Pretransform the path to avoid transforming the stroke, below.
686             SkPath devSpacePath;
687             path.transform(viewMatrix, &devSpacePath);
688             devSpacePath.setIsVolatile(true);
689 
690             // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
691             // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a').
692             //
693             // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
694             // can be calculated by interpolating:
695             //
696             //            original edge        outer edge
697             //         |       |<---------- r ------>|
698             //         |<------|--- f -------------->|
699             //         |       |                     |
700             //    alpha = 1  alpha = a          alpha = 0
701             //
702             // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
703             //
704             // We now need to outset the path to place the new edge in the center of the
705             // blur region:
706             //
707             //             original   new
708             //         |       |<------|--- r ------>|
709             //         |<------|--- f -|------------>|
710             //         |       |<- o ->|<--- f/2 --->|
711             //
712             //     r = o + f/2, so o = r - f/2
713             //
714             // We outset by using the stroker, so the strokeWidth is o/2.
715             //
716             SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
717             SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
718             SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
719             SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
720 
721             // Now draw with blur
722             SkPaint paint;
723             paint.setColor(rec.fAmbientColor);
724             paint.setStrokeWidth(strokeWidth);
725             paint.setStyle(SkPaint::kStrokeAndFill_Style);
726             SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius);
727             bool respectCTM = false;
728             paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
729             this->drawPath(devSpacePath, paint, true);
730         }
731     }
732 
733     if (SkColorGetA(rec.fSpotColor) > 0) {
734         bool success = false;
735 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
736         if (uncached && !useBlur) {
737             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
738                                                                        zPlaneParams,
739                                                                        devLightPos, lightRadius,
740                                                                        transparent,
741                                                                        directional);
742             if (vertices) {
743                 SkPaint paint;
744                 // Run the vertex color through a GaussianColorFilter and then modulate the
745                 // grayscale result of that against our 'color' param.
746                 paint.setColorFilter(
747                     SkColorFilters::Blend(rec.fSpotColor,
748                                                   SkBlendMode::kModulate)->makeComposed(
749                                                       SkColorFilterPriv::MakeGaussian()));
750                 // The vertex colors for a tesselated shadow polygon are always either opaque black
751                 // or transparent and their real contribution to the final blended color is via
752                 // their alpha. We can skip expensive per-vertex color conversion for this.
753                 this->drawVertices(vertices.get(),
754                                    SkBlender::Mode(SkBlendMode::kModulate),
755                                    paint,
756                                    /*skipColorXform=*/true);
757                 success = true;
758             }
759         }
760 
761         if (!success && !useBlur) {
762             SpotVerticesFactory factory;
763             factory.fOccluderHeight = zPlaneParams.fZ;
764             factory.fDevLightPos = devLightPos;
765             factory.fLightRadius = lightRadius;
766 
767             SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
768             factory.fLocalCenter = center;
769             viewMatrix.mapPoints(&center, 1);
770             SkScalar radius, scale;
771             if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) {
772                 SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX,
773                                                           devLightPos.fY, devLightPos.fZ,
774                                                           lightRadius, &radius, &scale,
775                                                           &factory.fOffset);
776             } else {
777                 SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
778                                                    devLightPos.fY - center.fY, devLightPos.fZ,
779                                                    lightRadius, &radius, &scale, &factory.fOffset);
780             }
781 
782             SkRect devBounds;
783             viewMatrix.mapRect(&devBounds, path.getBounds());
784             if (transparent ||
785                 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
786                 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
787                 // if the translation of the shadow is big enough we're going to end up
788                 // filling the entire umbra, we can treat these as all the same
789                 if (directional) {
790                     factory.fOccluderType =
791                             SpotVerticesFactory::OccluderType::kDirectionalTransparent;
792                 } else {
793                     factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
794                 }
795             } else if (directional) {
796                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional;
797             } else if (factory.fOffset.length()*scale + scale < radius) {
798                 // if we don't translate more than the blur distance, can assume umbra is covered
799                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra;
800             } else if (path.isConvex()) {
801                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra;
802             } else {
803                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
804             }
805             // need to add this after we classify the shadow
806             factory.fOffset.fX += viewMatrix.getTranslateX();
807             factory.fOffset.fY += viewMatrix.getTranslateY();
808 
809             SkColor color = rec.fSpotColor;
810 #ifdef DEBUG_SHADOW_CHECKS
811             switch (factory.fOccluderType) {
812                 case SpotVerticesFactory::OccluderType::kPointTransparent:
813                     color = 0xFFD2B48C;  // tan for transparent
814                     break;
815                 case SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra:
816                     color = 0xFFFFA500;   // orange for opaque
817                     break;
818                 case SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra:
819                     color = 0xFFE5E500;  // corn yellow for covered
820                     break;
821                 case SpotVerticesFactory::OccluderType::kDirectional:
822                 case SpotVerticesFactory::OccluderType::kDirectionalTransparent:
823                     color = 0xFF550000;  // dark red for directional
824                     break;
825             }
826 #endif
827             success = draw_shadow(factory, drawVertsProc, shadowedPath, color);
828         }
829 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
830 
831         // All else has failed, draw with blur
832         if (!success) {
833             SkMatrix shadowMatrix;
834             SkScalar radius;
835             if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius,
836                                                              viewMatrix, zPlaneParams,
837                                                              path.getBounds(), directional,
838                                                              &shadowMatrix, &radius)) {
839                 return;
840             }
841             SkAutoDeviceTransformRestore adr2(this, SkM44(shadowMatrix));
842 
843             SkPaint paint;
844             paint.setColor(rec.fSpotColor);
845             SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius);
846             bool respectCTM = false;
847             paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
848             this->drawPath(path, paint, false);
849         }
850     }
851 }
852