1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef SOURCE_CFA_H_
16 #define SOURCE_CFA_H_
17
18 #include <stddef.h>
19
20 #include <algorithm>
21 #include <cassert>
22 #include <cstdint>
23 #include <functional>
24 #include <map>
25 #include <unordered_map>
26 #include <unordered_set>
27 #include <utility>
28 #include <vector>
29
30 namespace spvtools {
31
32 // Control Flow Analysis of control flow graphs of basic block nodes |BB|.
33 template <class BB>
34 class CFA {
35 using bb_ptr = BB*;
36 using cbb_ptr = const BB*;
37 using bb_iter = typename std::vector<BB*>::const_iterator;
38 using get_blocks_func = std::function<const std::vector<BB*>*(const BB*)>;
39
40 struct block_info {
41 cbb_ptr block; ///< pointer to the block
42 bb_iter iter; ///< Iterator to the current child node being processed
43 };
44
45 /// Returns true if a block with @p id is found in the @p work_list vector
46 ///
47 /// @param[in] work_list Set of blocks visited in the depth first
48 /// traversal
49 /// of the CFG
50 /// @param[in] id The ID of the block being checked
51 ///
52 /// @return true if the edge work_list.back().block->id() => id is a back-edge
53 static bool FindInWorkList(const std::vector<block_info>& work_list,
54 uint32_t id);
55
56 public:
57 /// @brief Depth first traversal starting from the \p entry BasicBlock
58 ///
59 /// This function performs a depth first traversal from the \p entry
60 /// BasicBlock and calls the pre/postorder functions when it needs to process
61 /// the node in pre order, post order.
62 ///
63 /// @param[in] entry The root BasicBlock of a CFG
64 /// @param[in] successor_func A function which will return a pointer to the
65 /// successor nodes
66 /// @param[in] preorder A function that will be called for every block in a
67 /// CFG following preorder traversal semantics
68 /// @param[in] postorder A function that will be called for every block in a
69 /// CFG following postorder traversal semantics
70 /// @param[in] terminal A function that will be called to determine if the
71 /// search should stop at the given node.
72 /// NOTE: The @p successor_func and predecessor_func each return a pointer to
73 /// a collection such that iterators to that collection remain valid for the
74 /// lifetime of the algorithm.
75 static void DepthFirstTraversal(const BB* entry,
76 get_blocks_func successor_func,
77 std::function<void(cbb_ptr)> preorder,
78 std::function<void(cbb_ptr)> postorder,
79 std::function<bool(cbb_ptr)> terminal);
80
81 /// @brief Depth first traversal starting from the \p entry BasicBlock
82 ///
83 /// This function performs a depth first traversal from the \p entry
84 /// BasicBlock and calls the pre/postorder functions when it needs to process
85 /// the node in pre order, post order. It also calls the backedge function
86 /// when a back edge is encountered. The backedge function can be empty. The
87 /// runtime of the algorithm is improved if backedge is empty.
88 ///
89 /// @param[in] entry The root BasicBlock of a CFG
90 /// @param[in] successor_func A function which will return a pointer to the
91 /// successor nodes
92 /// @param[in] preorder A function that will be called for every block in a
93 /// CFG following preorder traversal semantics
94 /// @param[in] postorder A function that will be called for every block in a
95 /// CFG following postorder traversal semantics
96 /// @param[in] backedge A function that will be called when a backedge is
97 /// encountered during a traversal.
98 /// @param[in] terminal A function that will be called to determine if the
99 /// search should stop at the given node.
100 /// NOTE: The @p successor_func and predecessor_func each return a pointer to
101 /// a collection such that iterators to that collection remain valid for the
102 /// lifetime of the algorithm.
103 static void DepthFirstTraversal(
104 const BB* entry, get_blocks_func successor_func,
105 std::function<void(cbb_ptr)> preorder,
106 std::function<void(cbb_ptr)> postorder,
107 std::function<void(cbb_ptr, cbb_ptr)> backedge,
108 std::function<bool(cbb_ptr)> terminal);
109
110 /// @brief Calculates dominator edges for a set of blocks
111 ///
112 /// Computes dominators using the algorithm of Cooper, Harvey, and Kennedy
113 /// "A Simple, Fast Dominance Algorithm", 2001.
114 ///
115 /// The algorithm assumes there is a unique root node (a node without
116 /// predecessors), and it is therefore at the end of the postorder vector.
117 ///
118 /// This function calculates the dominator edges for a set of blocks in the
119 /// CFG.
120 /// Uses the dominator algorithm by Cooper et al.
121 ///
122 /// @param[in] postorder A vector of blocks in post order traversal
123 /// order
124 /// in a CFG
125 /// @param[in] predecessor_func Function used to get the predecessor nodes of
126 /// a
127 /// block
128 ///
129 /// @return the dominator tree of the graph, as a vector of pairs of nodes.
130 /// The first node in the pair is a node in the graph. The second node in the
131 /// pair is its immediate dominator in the sense of Cooper et.al., where a
132 /// block
133 /// without predecessors (such as the root node) is its own immediate
134 /// dominator.
135 static std::vector<std::pair<BB*, BB*>> CalculateDominators(
136 const std::vector<cbb_ptr>& postorder, get_blocks_func predecessor_func);
137
138 // Computes a minimal set of root nodes required to traverse, in the forward
139 // direction, the CFG represented by the given vector of blocks, and successor
140 // and predecessor functions. When considering adding two nodes, each having
141 // predecessors, favour using the one that appears earlier on the input blocks
142 // list.
143 static std::vector<BB*> TraversalRoots(const std::vector<BB*>& blocks,
144 get_blocks_func succ_func,
145 get_blocks_func pred_func);
146
147 static void ComputeAugmentedCFG(
148 std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
149 BB* pseudo_exit_block,
150 std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
151 std::unordered_map<const BB*, std::vector<BB*>>*
152 augmented_predecessors_map,
153 get_blocks_func succ_func, get_blocks_func pred_func);
154 };
155
156 template <class BB>
FindInWorkList(const std::vector<block_info> & work_list,uint32_t id)157 bool CFA<BB>::FindInWorkList(const std::vector<block_info>& work_list,
158 uint32_t id) {
159 for (const auto& b : work_list) {
160 if (b.block->id() == id) return true;
161 }
162 return false;
163 }
164
165 template <class BB>
DepthFirstTraversal(const BB * entry,get_blocks_func successor_func,std::function<void (cbb_ptr)> preorder,std::function<void (cbb_ptr)> postorder,std::function<bool (cbb_ptr)> terminal)166 void CFA<BB>::DepthFirstTraversal(const BB* entry,
167 get_blocks_func successor_func,
168 std::function<void(cbb_ptr)> preorder,
169 std::function<void(cbb_ptr)> postorder,
170 std::function<bool(cbb_ptr)> terminal) {
171 DepthFirstTraversal(entry, successor_func, preorder, postorder,
172 /* backedge = */ {}, terminal);
173 }
174
175 template <class BB>
DepthFirstTraversal(const BB * entry,get_blocks_func successor_func,std::function<void (cbb_ptr)> preorder,std::function<void (cbb_ptr)> postorder,std::function<void (cbb_ptr,cbb_ptr)> backedge,std::function<bool (cbb_ptr)> terminal)176 void CFA<BB>::DepthFirstTraversal(
177 const BB* entry, get_blocks_func successor_func,
178 std::function<void(cbb_ptr)> preorder,
179 std::function<void(cbb_ptr)> postorder,
180 std::function<void(cbb_ptr, cbb_ptr)> backedge,
181 std::function<bool(cbb_ptr)> terminal) {
182 assert(successor_func && "The successor function cannot be empty.");
183 assert(preorder && "The preorder function cannot be empty.");
184 assert(postorder && "The postorder function cannot be empty.");
185 assert(terminal && "The terminal function cannot be empty.");
186
187 std::unordered_set<uint32_t> processed;
188
189 /// NOTE: work_list is the sequence of nodes from the root node to the node
190 /// being processed in the traversal
191 std::vector<block_info> work_list;
192 work_list.reserve(10);
193
194 work_list.push_back({entry, std::begin(*successor_func(entry))});
195 preorder(entry);
196 processed.insert(entry->id());
197
198 while (!work_list.empty()) {
199 block_info& top = work_list.back();
200 if (terminal(top.block) || top.iter == end(*successor_func(top.block))) {
201 postorder(top.block);
202 work_list.pop_back();
203 } else {
204 BB* child = *top.iter;
205 top.iter++;
206 if (backedge && FindInWorkList(work_list, child->id())) {
207 backedge(top.block, child);
208 }
209 if (processed.count(child->id()) == 0) {
210 preorder(child);
211 work_list.emplace_back(
212 block_info{child, std::begin(*successor_func(child))});
213 processed.insert(child->id());
214 }
215 }
216 }
217 }
218
219 template <class BB>
CalculateDominators(const std::vector<cbb_ptr> & postorder,get_blocks_func predecessor_func)220 std::vector<std::pair<BB*, BB*>> CFA<BB>::CalculateDominators(
221 const std::vector<cbb_ptr>& postorder, get_blocks_func predecessor_func) {
222 struct block_detail {
223 size_t dominator; ///< The index of blocks's dominator in post order array
224 size_t postorder_index; ///< The index of the block in the post order array
225 };
226 const size_t undefined_dom = postorder.size();
227
228 std::unordered_map<cbb_ptr, block_detail> idoms;
229 for (size_t i = 0; i < postorder.size(); i++) {
230 idoms[postorder[i]] = {undefined_dom, i};
231 }
232 idoms[postorder.back()].dominator = idoms[postorder.back()].postorder_index;
233
234 bool changed = true;
235 while (changed) {
236 changed = false;
237 for (auto b = postorder.rbegin() + 1; b != postorder.rend(); ++b) {
238 const std::vector<BB*>& predecessors = *predecessor_func(*b);
239 // Find the first processed/reachable predecessor that is reachable
240 // in the forward traversal.
241 auto res = std::find_if(std::begin(predecessors), std::end(predecessors),
242 [&idoms, undefined_dom](BB* pred) {
243 return idoms.count(pred) &&
244 idoms[pred].dominator != undefined_dom;
245 });
246 if (res == end(predecessors)) continue;
247 const BB* idom = *res;
248 size_t idom_idx = idoms[idom].postorder_index;
249
250 // all other predecessors
251 for (const auto* p : predecessors) {
252 if (idom == p) continue;
253 // Only consider nodes reachable in the forward traversal.
254 // Otherwise the intersection doesn't make sense and will never
255 // terminate.
256 if (!idoms.count(p)) continue;
257 if (idoms[p].dominator != undefined_dom) {
258 size_t finger1 = idoms[p].postorder_index;
259 size_t finger2 = idom_idx;
260 while (finger1 != finger2) {
261 while (finger1 < finger2) {
262 finger1 = idoms[postorder[finger1]].dominator;
263 }
264 while (finger2 < finger1) {
265 finger2 = idoms[postorder[finger2]].dominator;
266 }
267 }
268 idom_idx = finger1;
269 }
270 }
271 if (idoms[*b].dominator != idom_idx) {
272 idoms[*b].dominator = idom_idx;
273 changed = true;
274 }
275 }
276 }
277
278 std::vector<std::pair<bb_ptr, bb_ptr>> out;
279 for (auto idom : idoms) {
280 // At this point if there is no dominator for the node, just make it
281 // reflexive.
282 auto dominator = std::get<1>(idom).dominator;
283 if (dominator == undefined_dom) {
284 dominator = std::get<1>(idom).postorder_index;
285 }
286 // NOTE: performing a const cast for convenient usage with
287 // UpdateImmediateDominators
288 out.push_back({const_cast<BB*>(std::get<0>(idom)),
289 const_cast<BB*>(postorder[dominator])});
290 }
291
292 // Sort by postorder index to generate a deterministic ordering of edges.
293 std::sort(
294 out.begin(), out.end(),
295 [&idoms](const std::pair<bb_ptr, bb_ptr>& lhs,
296 const std::pair<bb_ptr, bb_ptr>& rhs) {
297 assert(lhs.first);
298 assert(lhs.second);
299 assert(rhs.first);
300 assert(rhs.second);
301 auto lhs_indices = std::make_pair(idoms[lhs.first].postorder_index,
302 idoms[lhs.second].postorder_index);
303 auto rhs_indices = std::make_pair(idoms[rhs.first].postorder_index,
304 idoms[rhs.second].postorder_index);
305 return lhs_indices < rhs_indices;
306 });
307 return out;
308 }
309
310 template <class BB>
TraversalRoots(const std::vector<BB * > & blocks,get_blocks_func succ_func,get_blocks_func pred_func)311 std::vector<BB*> CFA<BB>::TraversalRoots(const std::vector<BB*>& blocks,
312 get_blocks_func succ_func,
313 get_blocks_func pred_func) {
314 // The set of nodes which have been visited from any of the roots so far.
315 std::unordered_set<const BB*> visited;
316
317 auto mark_visited = [&visited](const BB* b) { visited.insert(b); };
318 auto ignore_block = [](const BB*) {};
319 auto no_terminal_blocks = [](const BB*) { return false; };
320
321 auto traverse_from_root = [&mark_visited, &succ_func, &ignore_block,
322 &no_terminal_blocks](const BB* entry) {
323 DepthFirstTraversal(entry, succ_func, mark_visited, ignore_block,
324 no_terminal_blocks);
325 };
326
327 std::vector<BB*> result;
328
329 // First collect nodes without predecessors.
330 for (auto block : blocks) {
331 if (pred_func(block)->empty()) {
332 assert(visited.count(block) == 0 && "Malformed graph!");
333 result.push_back(block);
334 traverse_from_root(block);
335 }
336 }
337
338 // Now collect other stranded nodes. These must be in unreachable cycles.
339 for (auto block : blocks) {
340 if (visited.count(block) == 0) {
341 result.push_back(block);
342 traverse_from_root(block);
343 }
344 }
345
346 return result;
347 }
348
349 template <class BB>
ComputeAugmentedCFG(std::vector<BB * > & ordered_blocks,BB * pseudo_entry_block,BB * pseudo_exit_block,std::unordered_map<const BB *,std::vector<BB * >> * augmented_successors_map,std::unordered_map<const BB *,std::vector<BB * >> * augmented_predecessors_map,get_blocks_func succ_func,get_blocks_func pred_func)350 void CFA<BB>::ComputeAugmentedCFG(
351 std::vector<BB*>& ordered_blocks, BB* pseudo_entry_block,
352 BB* pseudo_exit_block,
353 std::unordered_map<const BB*, std::vector<BB*>>* augmented_successors_map,
354 std::unordered_map<const BB*, std::vector<BB*>>* augmented_predecessors_map,
355 get_blocks_func succ_func, get_blocks_func pred_func) {
356 // Compute the successors of the pseudo-entry block, and
357 // the predecessors of the pseudo exit block.
358 auto sources = TraversalRoots(ordered_blocks, succ_func, pred_func);
359
360 // For the predecessor traversals, reverse the order of blocks. This
361 // will affect the post-dominance calculation as follows:
362 // - Suppose you have blocks A and B, with A appearing before B in
363 // the list of blocks.
364 // - Also, A branches only to B, and B branches only to A.
365 // - We want to compute A as dominating B, and B as post-dominating B.
366 // By using reversed blocks for predecessor traversal roots discovery,
367 // we'll add an edge from B to the pseudo-exit node, rather than from A.
368 // All this is needed to correctly process the dominance/post-dominance
369 // constraint when A is a loop header that points to itself as its
370 // own continue target, and B is the latch block for the loop.
371 std::vector<BB*> reversed_blocks(ordered_blocks.rbegin(),
372 ordered_blocks.rend());
373 auto sinks = TraversalRoots(reversed_blocks, pred_func, succ_func);
374
375 // Wire up the pseudo entry block.
376 (*augmented_successors_map)[pseudo_entry_block] = sources;
377 for (auto block : sources) {
378 auto& augmented_preds = (*augmented_predecessors_map)[block];
379 const auto preds = pred_func(block);
380 augmented_preds.reserve(1 + preds->size());
381 augmented_preds.push_back(pseudo_entry_block);
382 augmented_preds.insert(augmented_preds.end(), preds->begin(), preds->end());
383 }
384
385 // Wire up the pseudo exit block.
386 (*augmented_predecessors_map)[pseudo_exit_block] = sinks;
387 for (auto block : sinks) {
388 auto& augmented_succ = (*augmented_successors_map)[block];
389 const auto succ = succ_func(block);
390 augmented_succ.reserve(1 + succ->size());
391 augmented_succ.push_back(pseudo_exit_block);
392 augmented_succ.insert(augmented_succ.end(), succ->begin(), succ->end());
393 }
394 }
395
396 } // namespace spvtools
397
398 #endif // SOURCE_CFA_H_
399