1 // Copyright (c) 2019 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // This pass injects code in a graphics shader to implement guarantees
16 // satisfying Vulkan's robustBufferAccess rules. Robust access rules permit
17 // an out-of-bounds access to be redirected to an access of the same type
18 // (load, store, etc.) but within the same root object.
19 //
20 // We assume baseline functionality in Vulkan, i.e. the module uses
21 // logical addressing mode, without VK_KHR_variable_pointers.
22 //
23 // - Logical addressing mode implies:
24 // - Each root pointer (a pointer that exists other than by the
25 // execution of a shader instruction) is the result of an OpVariable.
26 //
27 // - Instructions that result in pointers are:
28 // OpVariable
29 // OpAccessChain
30 // OpInBoundsAccessChain
31 // OpFunctionParameter
32 // OpImageTexelPointer
33 // OpCopyObject
34 //
35 // - Instructions that use a pointer are:
36 // OpLoad
37 // OpStore
38 // OpAccessChain
39 // OpInBoundsAccessChain
40 // OpFunctionCall
41 // OpImageTexelPointer
42 // OpCopyMemory
43 // OpCopyObject
44 // all OpAtomic* instructions
45 //
46 // We classify pointer-users into:
47 // - Accesses:
48 // - OpLoad
49 // - OpStore
50 // - OpAtomic*
51 // - OpCopyMemory
52 //
53 // - Address calculations:
54 // - OpAccessChain
55 // - OpInBoundsAccessChain
56 //
57 // - Pass-through:
58 // - OpFunctionCall
59 // - OpFunctionParameter
60 // - OpCopyObject
61 //
62 // The strategy is:
63 //
64 // - Handle only logical addressing mode. In particular, don't handle a module
65 // if it uses one of the variable-pointers capabilities.
66 //
67 // - Don't handle modules using capability RuntimeDescriptorArrayEXT. So the
68 // only runtime arrays are those that are the last member in a
69 // Block-decorated struct. This allows us to feasibly/easily compute the
70 // length of the runtime array. See below.
71 //
72 // - The memory locations accessed by OpLoad, OpStore, OpCopyMemory, and
73 // OpAtomic* are determined by their pointer parameter or parameters.
74 // Pointers are always (correctly) typed and so the address and number of
75 // consecutive locations are fully determined by the pointer.
76 //
77 // - A pointer value originates as one of few cases:
78 //
79 // - OpVariable for an interface object or an array of them: image,
80 // buffer (UBO or SSBO), sampler, sampled-image, push-constant, input
81 // variable, output variable. The execution environment is responsible for
82 // allocating the correct amount of storage for these, and for ensuring
83 // each resource bound to such a variable is big enough to contain the
84 // SPIR-V pointee type of the variable.
85 //
86 // - OpVariable for a non-interface object. These are variables in
87 // Workgroup, Private, and Function storage classes. The compiler ensures
88 // the underlying allocation is big enough to store the entire SPIR-V
89 // pointee type of the variable.
90 //
91 // - An OpFunctionParameter. This always maps to a pointer parameter to an
92 // OpFunctionCall.
93 //
94 // - In logical addressing mode, these are severely limited:
95 // "Any pointer operand to an OpFunctionCall must be:
96 // - a memory object declaration, or
97 // - a pointer to an element in an array that is a memory object
98 // declaration, where the element type is OpTypeSampler or OpTypeImage"
99 //
100 // - This has an important simplifying consequence:
101 //
102 // - When looking for a pointer to the structure containing a runtime
103 // array, you begin with a pointer to the runtime array and trace
104 // backward in the function. You never have to trace back beyond
105 // your function call boundary. So you can't take a partial access
106 // chain into an SSBO, then pass that pointer into a function. So
107 // we don't resort to using fat pointers to compute array length.
108 // We can trace back to a pointer to the containing structure,
109 // and use that in an OpArrayLength instruction. (The structure type
110 // gives us the member index of the runtime array.)
111 //
112 // - Otherwise, the pointer type fully encodes the range of valid
113 // addresses. In particular, the type of a pointer to an aggregate
114 // value fully encodes the range of indices when indexing into
115 // that aggregate.
116 //
117 // - The pointer is the result of an access chain instruction. We clamp
118 // indices contributing to address calculations. As noted above, the
119 // valid ranges are either bound by the length of a runtime array, or
120 // by the type of the base pointer. The length of a runtime array is
121 // the result of an OpArrayLength instruction acting on the pointer of
122 // the containing structure as noted above.
123 //
124 // - Access chain indices are always treated as signed, so:
125 // - Clamp the upper bound at the signed integer maximum.
126 // - Use SClamp for all clamping.
127 //
128 // - TODO(dneto): OpImageTexelPointer:
129 // - Clamp coordinate to the image size returned by OpImageQuerySize
130 // - If multi-sampled, clamp the sample index to the count returned by
131 // OpImageQuerySamples.
132 // - If not multi-sampled, set the sample index to 0.
133 //
134 // - Rely on the external validator to check that pointers are only
135 // used by the instructions as above.
136 //
137 // - Handles OpTypeRuntimeArray
138 // Track pointer back to original resource (pointer to struct), so we can
139 // query the runtime array size.
140 //
141
142 #include "graphics_robust_access_pass.h"
143
144 #include <functional>
145 #include <initializer_list>
146 #include <utility>
147
148 #include "function.h"
149 #include "ir_context.h"
150 #include "pass.h"
151 #include "source/diagnostic.h"
152 #include "source/util/make_unique.h"
153 #include "spirv-tools/libspirv.h"
154 #include "spirv/unified1/GLSL.std.450.h"
155 #include "type_manager.h"
156 #include "types.h"
157
158 namespace spvtools {
159 namespace opt {
160
161 using opt::Instruction;
162 using opt::Operand;
163 using spvtools::MakeUnique;
164
GraphicsRobustAccessPass()165 GraphicsRobustAccessPass::GraphicsRobustAccessPass() : module_status_() {}
166
Process()167 Pass::Status GraphicsRobustAccessPass::Process() {
168 module_status_ = PerModuleState();
169
170 ProcessCurrentModule();
171
172 auto result = module_status_.failed
173 ? Status::Failure
174 : (module_status_.modified ? Status::SuccessWithChange
175 : Status::SuccessWithoutChange);
176
177 return result;
178 }
179
Fail()180 spvtools::DiagnosticStream GraphicsRobustAccessPass::Fail() {
181 module_status_.failed = true;
182 // We don't really have a position, and we'll ignore the result.
183 return std::move(
184 spvtools::DiagnosticStream({}, consumer(), "", SPV_ERROR_INVALID_BINARY)
185 << name() << ": ");
186 }
187
IsCompatibleModule()188 spv_result_t GraphicsRobustAccessPass::IsCompatibleModule() {
189 auto* feature_mgr = context()->get_feature_mgr();
190 if (!feature_mgr->HasCapability(spv::Capability::Shader))
191 return Fail() << "Can only process Shader modules";
192 if (feature_mgr->HasCapability(spv::Capability::VariablePointers))
193 return Fail() << "Can't process modules with VariablePointers capability";
194 if (feature_mgr->HasCapability(
195 spv::Capability::VariablePointersStorageBuffer))
196 return Fail() << "Can't process modules with VariablePointersStorageBuffer "
197 "capability";
198 if (feature_mgr->HasCapability(spv::Capability::RuntimeDescriptorArrayEXT)) {
199 // These have a RuntimeArray outside of Block-decorated struct. There
200 // is no way to compute the array length from within SPIR-V.
201 return Fail() << "Can't process modules with RuntimeDescriptorArrayEXT "
202 "capability";
203 }
204
205 {
206 auto* inst = context()->module()->GetMemoryModel();
207 const auto addressing_model =
208 spv::AddressingModel(inst->GetSingleWordOperand(0));
209 if (addressing_model != spv::AddressingModel::Logical)
210 return Fail() << "Addressing model must be Logical. Found "
211 << inst->PrettyPrint();
212 }
213 return SPV_SUCCESS;
214 }
215
ProcessCurrentModule()216 spv_result_t GraphicsRobustAccessPass::ProcessCurrentModule() {
217 auto err = IsCompatibleModule();
218 if (err != SPV_SUCCESS) return err;
219
220 ProcessFunction fn = [this](opt::Function* f) { return ProcessAFunction(f); };
221 module_status_.modified |= context()->ProcessReachableCallTree(fn);
222
223 // Need something here. It's the price we pay for easier failure paths.
224 return SPV_SUCCESS;
225 }
226
ProcessAFunction(opt::Function * function)227 bool GraphicsRobustAccessPass::ProcessAFunction(opt::Function* function) {
228 // Ensure that all pointers computed inside a function are within bounds.
229 // Find the access chains in this block before trying to modify them.
230 std::vector<Instruction*> access_chains;
231 std::vector<Instruction*> image_texel_pointers;
232 for (auto& block : *function) {
233 for (auto& inst : block) {
234 switch (inst.opcode()) {
235 case spv::Op::OpAccessChain:
236 case spv::Op::OpInBoundsAccessChain:
237 access_chains.push_back(&inst);
238 break;
239 case spv::Op::OpImageTexelPointer:
240 image_texel_pointers.push_back(&inst);
241 break;
242 default:
243 break;
244 }
245 }
246 }
247 for (auto* inst : access_chains) {
248 ClampIndicesForAccessChain(inst);
249 if (module_status_.failed) return module_status_.modified;
250 }
251
252 for (auto* inst : image_texel_pointers) {
253 if (SPV_SUCCESS != ClampCoordinateForImageTexelPointer(inst)) break;
254 }
255 return module_status_.modified;
256 }
257
ClampIndicesForAccessChain(Instruction * access_chain)258 void GraphicsRobustAccessPass::ClampIndicesForAccessChain(
259 Instruction* access_chain) {
260 Instruction& inst = *access_chain;
261
262 auto* constant_mgr = context()->get_constant_mgr();
263 auto* def_use_mgr = context()->get_def_use_mgr();
264 auto* type_mgr = context()->get_type_mgr();
265 const bool have_int64_cap =
266 context()->get_feature_mgr()->HasCapability(spv::Capability::Int64);
267
268 // Replaces one of the OpAccessChain index operands with a new value.
269 // Updates def-use analysis.
270 auto replace_index = [this, &inst, def_use_mgr](uint32_t operand_index,
271 Instruction* new_value) {
272 inst.SetOperand(operand_index, {new_value->result_id()});
273 def_use_mgr->AnalyzeInstUse(&inst);
274 module_status_.modified = true;
275 return SPV_SUCCESS;
276 };
277
278 // Replaces one of the OpAccesssChain index operands with a clamped value.
279 // Replace the operand at |operand_index| with the value computed from
280 // signed_clamp(%old_value, %min_value, %max_value). It also analyzes
281 // the new instruction and records that them module is modified.
282 // Assumes %min_value is signed-less-or-equal than %max_value. (All callees
283 // use 0 for %min_value).
284 auto clamp_index = [&inst, type_mgr, this, &replace_index](
285 uint32_t operand_index, Instruction* old_value,
286 Instruction* min_value, Instruction* max_value) {
287 auto* clamp_inst =
288 MakeSClampInst(*type_mgr, old_value, min_value, max_value, &inst);
289 return replace_index(operand_index, clamp_inst);
290 };
291
292 // Ensures the specified index of access chain |inst| has a value that is
293 // at most |count| - 1. If the index is already a constant value less than
294 // |count| then no change is made.
295 auto clamp_to_literal_count =
296 [&inst, this, &constant_mgr, &type_mgr, have_int64_cap, &replace_index,
297 &clamp_index](uint32_t operand_index, uint64_t count) -> spv_result_t {
298 Instruction* index_inst =
299 this->GetDef(inst.GetSingleWordOperand(operand_index));
300 const auto* index_type =
301 type_mgr->GetType(index_inst->type_id())->AsInteger();
302 assert(index_type);
303 const auto index_width = index_type->width();
304
305 if (count <= 1) {
306 // Replace the index with 0.
307 return replace_index(operand_index, GetValueForType(0, index_type));
308 }
309
310 uint64_t maxval = count - 1;
311
312 // Compute the bit width of a viable type to hold |maxval|.
313 // Look for a bit width, up to 64 bits wide, to fit maxval.
314 uint32_t maxval_width = index_width;
315 while ((maxval_width < 64) && (0 != (maxval >> maxval_width))) {
316 maxval_width *= 2;
317 }
318 // Determine the type for |maxval|.
319 uint32_t next_id = context()->module()->IdBound();
320 analysis::Integer signed_type_for_query(maxval_width, true);
321 auto* maxval_type =
322 type_mgr->GetRegisteredType(&signed_type_for_query)->AsInteger();
323 if (next_id != context()->module()->IdBound()) {
324 module_status_.modified = true;
325 }
326 // Access chain indices are treated as signed, so limit the maximum value
327 // of the index so it will always be positive for a signed clamp operation.
328 maxval = std::min(maxval, ((uint64_t(1) << (maxval_width - 1)) - 1));
329
330 if (index_width > 64) {
331 return this->Fail() << "Can't handle indices wider than 64 bits, found "
332 "constant index with "
333 << index_width << " bits as index number "
334 << operand_index << " of access chain "
335 << inst.PrettyPrint();
336 }
337
338 // Split into two cases: the current index is a constant, or not.
339
340 // If the index is a constant then |index_constant| will not be a null
341 // pointer. (If index is an |OpConstantNull| then it |index_constant| will
342 // not be a null pointer.) Since access chain indices must be scalar
343 // integers, this can't be a spec constant.
344 if (auto* index_constant = constant_mgr->GetConstantFromInst(index_inst)) {
345 auto* int_index_constant = index_constant->AsIntConstant();
346 int64_t value = 0;
347 // OpAccessChain indices are treated as signed. So get the signed
348 // constant value here.
349 if (index_width <= 32) {
350 value = int64_t(int_index_constant->GetS32BitValue());
351 } else if (index_width <= 64) {
352 value = int_index_constant->GetS64BitValue();
353 }
354 if (value < 0) {
355 return replace_index(operand_index, GetValueForType(0, index_type));
356 } else if (uint64_t(value) <= maxval) {
357 // Nothing to do.
358 return SPV_SUCCESS;
359 } else {
360 // Replace with maxval.
361 assert(count > 0); // Already took care of this case above.
362 return replace_index(operand_index,
363 GetValueForType(maxval, maxval_type));
364 }
365 } else {
366 // Generate a clamp instruction.
367 assert(maxval >= 1);
368 assert(index_width <= 64); // Otherwise, already returned above.
369 if (index_width >= 64 && !have_int64_cap) {
370 // An inconsistent module.
371 return Fail() << "Access chain index is wider than 64 bits, but Int64 "
372 "is not declared: "
373 << index_inst->PrettyPrint();
374 }
375 // Widen the index value if necessary
376 if (maxval_width > index_width) {
377 // Find the wider type. We only need this case if a constant array
378 // bound is too big.
379
380 // From how we calculated maxval_width, widening won't require adding
381 // the Int64 capability.
382 assert(have_int64_cap || maxval_width <= 32);
383 if (!have_int64_cap && maxval_width >= 64) {
384 // Be defensive, but this shouldn't happen.
385 return this->Fail()
386 << "Clamping index would require adding Int64 capability. "
387 << "Can't clamp 32-bit index " << operand_index
388 << " of access chain " << inst.PrettyPrint();
389 }
390 index_inst = WidenInteger(index_type->IsSigned(), maxval_width,
391 index_inst, &inst);
392 }
393
394 // Finally, clamp the index.
395 return clamp_index(operand_index, index_inst,
396 GetValueForType(0, maxval_type),
397 GetValueForType(maxval, maxval_type));
398 }
399 return SPV_SUCCESS;
400 };
401
402 // Ensures the specified index of access chain |inst| has a value that is at
403 // most the value of |count_inst| minus 1, where |count_inst| is treated as an
404 // unsigned integer. This can log a failure.
405 auto clamp_to_count = [&inst, this, &constant_mgr, &clamp_to_literal_count,
406 &clamp_index,
407 &type_mgr](uint32_t operand_index,
408 Instruction* count_inst) -> spv_result_t {
409 Instruction* index_inst =
410 this->GetDef(inst.GetSingleWordOperand(operand_index));
411 const auto* index_type =
412 type_mgr->GetType(index_inst->type_id())->AsInteger();
413 const auto* count_type =
414 type_mgr->GetType(count_inst->type_id())->AsInteger();
415 assert(index_type);
416 if (const auto* count_constant =
417 constant_mgr->GetConstantFromInst(count_inst)) {
418 uint64_t value = 0;
419 const auto width = count_constant->type()->AsInteger()->width();
420 if (width <= 32) {
421 value = count_constant->AsIntConstant()->GetU32BitValue();
422 } else if (width <= 64) {
423 value = count_constant->AsIntConstant()->GetU64BitValue();
424 } else {
425 return this->Fail() << "Can't handle indices wider than 64 bits, found "
426 "constant index with "
427 << index_type->width() << "bits";
428 }
429 return clamp_to_literal_count(operand_index, value);
430 } else {
431 // Widen them to the same width.
432 const auto index_width = index_type->width();
433 const auto count_width = count_type->width();
434 const auto target_width = std::max(index_width, count_width);
435 // UConvert requires the result type to have 0 signedness. So enforce
436 // that here.
437 auto* wider_type = index_width < count_width ? count_type : index_type;
438 if (index_type->width() < target_width) {
439 // Access chain indices are treated as signed integers.
440 index_inst = WidenInteger(true, target_width, index_inst, &inst);
441 } else if (count_type->width() < target_width) {
442 // Assume type sizes are treated as unsigned.
443 count_inst = WidenInteger(false, target_width, count_inst, &inst);
444 }
445 // Compute count - 1.
446 // It doesn't matter if 1 is signed or unsigned.
447 auto* one = GetValueForType(1, wider_type);
448 auto* count_minus_1 = InsertInst(
449 &inst, spv::Op::OpISub, type_mgr->GetId(wider_type), TakeNextId(),
450 {{SPV_OPERAND_TYPE_ID, {count_inst->result_id()}},
451 {SPV_OPERAND_TYPE_ID, {one->result_id()}}});
452 auto* zero = GetValueForType(0, wider_type);
453 // Make sure we clamp to an upper bound that is at most the signed max
454 // for the target type.
455 const uint64_t max_signed_value =
456 ((uint64_t(1) << (target_width - 1)) - 1);
457 // Use unsigned-min to ensure that the result is always non-negative.
458 // That ensures we satisfy the invariant for SClamp, where the "min"
459 // argument we give it (zero), is no larger than the third argument.
460 auto* upper_bound =
461 MakeUMinInst(*type_mgr, count_minus_1,
462 GetValueForType(max_signed_value, wider_type), &inst);
463 // Now clamp the index to this upper bound.
464 return clamp_index(operand_index, index_inst, zero, upper_bound);
465 }
466 return SPV_SUCCESS;
467 };
468
469 const Instruction* base_inst = GetDef(inst.GetSingleWordInOperand(0));
470 const Instruction* base_type = GetDef(base_inst->type_id());
471 Instruction* pointee_type = GetDef(base_type->GetSingleWordInOperand(1));
472
473 // Walk the indices from earliest to latest, replacing indices with a
474 // clamped value, and updating the pointee_type. The order matters for
475 // the case when we have to compute the length of a runtime array. In
476 // that the algorithm relies on the fact that that the earlier indices
477 // have already been clamped.
478 const uint32_t num_operands = inst.NumOperands();
479 for (uint32_t idx = 3; !module_status_.failed && idx < num_operands; ++idx) {
480 const uint32_t index_id = inst.GetSingleWordOperand(idx);
481 Instruction* index_inst = GetDef(index_id);
482
483 switch (pointee_type->opcode()) {
484 case spv::Op::OpTypeMatrix: // Use column count
485 case spv::Op::OpTypeVector: // Use component count
486 {
487 const uint32_t count = pointee_type->GetSingleWordOperand(2);
488 clamp_to_literal_count(idx, count);
489 pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
490 } break;
491
492 case spv::Op::OpTypeArray: {
493 // The array length can be a spec constant, so go through the general
494 // case.
495 Instruction* array_len = GetDef(pointee_type->GetSingleWordOperand(2));
496 clamp_to_count(idx, array_len);
497 pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
498 } break;
499
500 case spv::Op::OpTypeStruct: {
501 // SPIR-V requires the index to be an OpConstant.
502 // We need to know the index literal value so we can compute the next
503 // pointee type.
504 if (index_inst->opcode() != spv::Op::OpConstant ||
505 !constant_mgr->GetConstantFromInst(index_inst)
506 ->type()
507 ->AsInteger()) {
508 Fail() << "Member index into struct is not a constant integer: "
509 << index_inst->PrettyPrint(
510 SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
511 << "\nin access chain: "
512 << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
513 return;
514 }
515 const auto num_members = pointee_type->NumInOperands();
516 const auto* index_constant =
517 constant_mgr->GetConstantFromInst(index_inst);
518 // Get the sign-extended value, since access index is always treated as
519 // signed.
520 const auto index_value = index_constant->GetSignExtendedValue();
521 if (index_value < 0 || index_value >= num_members) {
522 Fail() << "Member index " << index_value
523 << " is out of bounds for struct type: "
524 << pointee_type->PrettyPrint(
525 SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
526 << "\nin access chain: "
527 << inst.PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
528 return;
529 }
530 pointee_type = GetDef(pointee_type->GetSingleWordInOperand(
531 static_cast<uint32_t>(index_value)));
532 // No need to clamp this index. We just checked that it's valid.
533 } break;
534
535 case spv::Op::OpTypeRuntimeArray: {
536 auto* array_len = MakeRuntimeArrayLengthInst(&inst, idx);
537 if (!array_len) { // We've already signaled an error.
538 return;
539 }
540 clamp_to_count(idx, array_len);
541 if (module_status_.failed) return;
542 pointee_type = GetDef(pointee_type->GetSingleWordOperand(1));
543 } break;
544
545 default:
546 Fail() << " Unhandled pointee type for access chain "
547 << pointee_type->PrettyPrint(
548 SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
549 }
550 }
551 }
552
GetGlslInsts()553 uint32_t GraphicsRobustAccessPass::GetGlslInsts() {
554 if (module_status_.glsl_insts_id == 0) {
555 // This string serves double-duty as raw data for a string and for a vector
556 // of 32-bit words
557 const char glsl[] = "GLSL.std.450";
558 // Use an existing import if we can.
559 for (auto& inst : context()->module()->ext_inst_imports()) {
560 if (inst.GetInOperand(0).AsString() == glsl) {
561 module_status_.glsl_insts_id = inst.result_id();
562 }
563 }
564 if (module_status_.glsl_insts_id == 0) {
565 // Make a new import instruction.
566 module_status_.glsl_insts_id = TakeNextId();
567 std::vector<uint32_t> words = spvtools::utils::MakeVector(glsl);
568 auto import_inst = MakeUnique<Instruction>(
569 context(), spv::Op::OpExtInstImport, 0, module_status_.glsl_insts_id,
570 std::initializer_list<Operand>{
571 Operand{SPV_OPERAND_TYPE_LITERAL_STRING, std::move(words)}});
572 Instruction* inst = import_inst.get();
573 context()->module()->AddExtInstImport(std::move(import_inst));
574 module_status_.modified = true;
575 context()->AnalyzeDefUse(inst);
576 // Invalidates the feature manager, since we added an extended instruction
577 // set import.
578 context()->ResetFeatureManager();
579 }
580 }
581 return module_status_.glsl_insts_id;
582 }
583
GetValueForType(uint64_t value,const analysis::Integer * type)584 opt::Instruction* opt::GraphicsRobustAccessPass::GetValueForType(
585 uint64_t value, const analysis::Integer* type) {
586 auto* mgr = context()->get_constant_mgr();
587 assert(type->width() <= 64);
588 std::vector<uint32_t> words;
589 words.push_back(uint32_t(value));
590 if (type->width() > 32) {
591 words.push_back(uint32_t(value >> 32u));
592 }
593 const auto* constant = mgr->GetConstant(type, words);
594 return mgr->GetDefiningInstruction(
595 constant, context()->get_type_mgr()->GetTypeInstruction(type));
596 }
597
WidenInteger(bool sign_extend,uint32_t bit_width,Instruction * value,Instruction * before_inst)598 opt::Instruction* opt::GraphicsRobustAccessPass::WidenInteger(
599 bool sign_extend, uint32_t bit_width, Instruction* value,
600 Instruction* before_inst) {
601 analysis::Integer unsigned_type_for_query(bit_width, false);
602 auto* type_mgr = context()->get_type_mgr();
603 auto* unsigned_type = type_mgr->GetRegisteredType(&unsigned_type_for_query);
604 auto type_id = context()->get_type_mgr()->GetId(unsigned_type);
605 auto conversion_id = TakeNextId();
606 auto* conversion = InsertInst(
607 before_inst, (sign_extend ? spv::Op::OpSConvert : spv::Op::OpUConvert),
608 type_id, conversion_id, {{SPV_OPERAND_TYPE_ID, {value->result_id()}}});
609 return conversion;
610 }
611
MakeUMinInst(const analysis::TypeManager & tm,Instruction * x,Instruction * y,Instruction * where)612 Instruction* GraphicsRobustAccessPass::MakeUMinInst(
613 const analysis::TypeManager& tm, Instruction* x, Instruction* y,
614 Instruction* where) {
615 // Get IDs of instructions we'll be referencing. Evaluate them before calling
616 // the function so we force a deterministic ordering in case both of them need
617 // to take a new ID.
618 const uint32_t glsl_insts_id = GetGlslInsts();
619 uint32_t smin_id = TakeNextId();
620 const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
621 const auto ywidth = tm.GetType(y->type_id())->AsInteger()->width();
622 assert(xwidth == ywidth);
623 (void)xwidth;
624 (void)ywidth;
625 auto* smin_inst = InsertInst(
626 where, spv::Op::OpExtInst, x->type_id(), smin_id,
627 {
628 {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
629 {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450UMin}},
630 {SPV_OPERAND_TYPE_ID, {x->result_id()}},
631 {SPV_OPERAND_TYPE_ID, {y->result_id()}},
632 });
633 return smin_inst;
634 }
635
MakeSClampInst(const analysis::TypeManager & tm,Instruction * x,Instruction * min,Instruction * max,Instruction * where)636 Instruction* GraphicsRobustAccessPass::MakeSClampInst(
637 const analysis::TypeManager& tm, Instruction* x, Instruction* min,
638 Instruction* max, Instruction* where) {
639 // Get IDs of instructions we'll be referencing. Evaluate them before calling
640 // the function so we force a deterministic ordering in case both of them need
641 // to take a new ID.
642 const uint32_t glsl_insts_id = GetGlslInsts();
643 uint32_t clamp_id = TakeNextId();
644 const auto xwidth = tm.GetType(x->type_id())->AsInteger()->width();
645 const auto minwidth = tm.GetType(min->type_id())->AsInteger()->width();
646 const auto maxwidth = tm.GetType(max->type_id())->AsInteger()->width();
647 assert(xwidth == minwidth);
648 assert(xwidth == maxwidth);
649 (void)xwidth;
650 (void)minwidth;
651 (void)maxwidth;
652 auto* clamp_inst = InsertInst(
653 where, spv::Op::OpExtInst, x->type_id(), clamp_id,
654 {
655 {SPV_OPERAND_TYPE_ID, {glsl_insts_id}},
656 {SPV_OPERAND_TYPE_EXTENSION_INSTRUCTION_NUMBER, {GLSLstd450SClamp}},
657 {SPV_OPERAND_TYPE_ID, {x->result_id()}},
658 {SPV_OPERAND_TYPE_ID, {min->result_id()}},
659 {SPV_OPERAND_TYPE_ID, {max->result_id()}},
660 });
661 return clamp_inst;
662 }
663
MakeRuntimeArrayLengthInst(Instruction * access_chain,uint32_t operand_index)664 Instruction* GraphicsRobustAccessPass::MakeRuntimeArrayLengthInst(
665 Instruction* access_chain, uint32_t operand_index) {
666 // The Index parameter to the access chain at |operand_index| is indexing
667 // *into* the runtime-array. To get the number of elements in the runtime
668 // array we need a pointer to the Block-decorated struct that contains the
669 // runtime array. So conceptually we have to go 2 steps backward in the
670 // access chain. The two steps backward might forces us to traverse backward
671 // across multiple dominating instructions.
672 auto* type_mgr = context()->get_type_mgr();
673
674 // How many access chain indices do we have to unwind to find the pointer
675 // to the struct containing the runtime array?
676 uint32_t steps_remaining = 2;
677 // Find or create an instruction computing the pointer to the structure
678 // containing the runtime array.
679 // Walk backward through pointer address calculations until we either get
680 // to exactly the right base pointer, or to an access chain instruction
681 // that we can replicate but truncate to compute the address of the right
682 // struct.
683 Instruction* current_access_chain = access_chain;
684 Instruction* pointer_to_containing_struct = nullptr;
685 while (steps_remaining > 0) {
686 switch (current_access_chain->opcode()) {
687 case spv::Op::OpCopyObject:
688 // Whoops. Walk right through this one.
689 current_access_chain =
690 GetDef(current_access_chain->GetSingleWordInOperand(0));
691 break;
692 case spv::Op::OpAccessChain:
693 case spv::Op::OpInBoundsAccessChain: {
694 const int first_index_operand = 3;
695 // How many indices in this access chain contribute to getting us
696 // to an element in the runtime array?
697 const auto num_contributing_indices =
698 current_access_chain == access_chain
699 ? operand_index - (first_index_operand - 1)
700 : current_access_chain->NumInOperands() - 1 /* skip the base */;
701 Instruction* base =
702 GetDef(current_access_chain->GetSingleWordInOperand(0));
703 if (num_contributing_indices == steps_remaining) {
704 // The base pointer points to the structure.
705 pointer_to_containing_struct = base;
706 steps_remaining = 0;
707 break;
708 } else if (num_contributing_indices < steps_remaining) {
709 // Peel off the index and keep going backward.
710 steps_remaining -= num_contributing_indices;
711 current_access_chain = base;
712 } else {
713 // This access chain has more indices than needed. Generate a new
714 // access chain instruction, but truncating the list of indices.
715 const int base_operand = 2;
716 // We'll use the base pointer and the indices up to but not including
717 // the one indexing into the runtime array.
718 Instruction::OperandList ops;
719 // Use the base pointer
720 ops.push_back(current_access_chain->GetOperand(base_operand));
721 const uint32_t num_indices_to_keep =
722 num_contributing_indices - steps_remaining - 1;
723 for (uint32_t i = 0; i <= num_indices_to_keep; i++) {
724 ops.push_back(
725 current_access_chain->GetOperand(first_index_operand + i));
726 }
727 // Compute the type of the result of the new access chain. Start at
728 // the base and walk the indices in a forward direction.
729 auto* constant_mgr = context()->get_constant_mgr();
730 std::vector<uint32_t> indices_for_type;
731 for (uint32_t i = 0; i < ops.size() - 1; i++) {
732 uint32_t index_for_type_calculation = 0;
733 Instruction* index =
734 GetDef(current_access_chain->GetSingleWordOperand(
735 first_index_operand + i));
736 if (auto* index_constant =
737 constant_mgr->GetConstantFromInst(index)) {
738 // We only need 32 bits. For the type calculation, it's sufficient
739 // to take the zero-extended value. It only matters for the struct
740 // case, and struct member indices are unsigned.
741 index_for_type_calculation =
742 uint32_t(index_constant->GetZeroExtendedValue());
743 } else {
744 // Indexing into a variably-sized thing like an array. Use 0.
745 index_for_type_calculation = 0;
746 }
747 indices_for_type.push_back(index_for_type_calculation);
748 }
749 auto* base_ptr_type = type_mgr->GetType(base->type_id())->AsPointer();
750 auto* base_pointee_type = base_ptr_type->pointee_type();
751 auto* new_access_chain_result_pointee_type =
752 type_mgr->GetMemberType(base_pointee_type, indices_for_type);
753 const uint32_t new_access_chain_type_id = type_mgr->FindPointerToType(
754 type_mgr->GetId(new_access_chain_result_pointee_type),
755 base_ptr_type->storage_class());
756
757 // Create the instruction and insert it.
758 const auto new_access_chain_id = TakeNextId();
759 auto* new_access_chain =
760 InsertInst(current_access_chain, current_access_chain->opcode(),
761 new_access_chain_type_id, new_access_chain_id, ops);
762 pointer_to_containing_struct = new_access_chain;
763 steps_remaining = 0;
764 break;
765 }
766 } break;
767 default:
768 Fail() << "Unhandled access chain in logical addressing mode passes "
769 "through "
770 << current_access_chain->PrettyPrint(
771 SPV_BINARY_TO_TEXT_OPTION_SHOW_BYTE_OFFSET |
772 SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
773 return nullptr;
774 }
775 }
776 assert(pointer_to_containing_struct);
777 auto* pointee_type =
778 type_mgr->GetType(pointer_to_containing_struct->type_id())
779 ->AsPointer()
780 ->pointee_type();
781
782 auto* struct_type = pointee_type->AsStruct();
783 const uint32_t member_index_of_runtime_array =
784 uint32_t(struct_type->element_types().size() - 1);
785 // Create the length-of-array instruction before the original access chain,
786 // but after the generation of the pointer to the struct.
787 const auto array_len_id = TakeNextId();
788 analysis::Integer uint_type_for_query(32, false);
789 auto* uint_type = type_mgr->GetRegisteredType(&uint_type_for_query);
790 auto* array_len = InsertInst(
791 access_chain, spv::Op::OpArrayLength, type_mgr->GetId(uint_type),
792 array_len_id,
793 {{SPV_OPERAND_TYPE_ID, {pointer_to_containing_struct->result_id()}},
794 {SPV_OPERAND_TYPE_LITERAL_INTEGER, {member_index_of_runtime_array}}});
795 return array_len;
796 }
797
ClampCoordinateForImageTexelPointer(opt::Instruction * image_texel_pointer)798 spv_result_t GraphicsRobustAccessPass::ClampCoordinateForImageTexelPointer(
799 opt::Instruction* image_texel_pointer) {
800 // TODO(dneto): Write tests for this code.
801 // TODO(dneto): Use signed-clamp
802 (void)(image_texel_pointer);
803 return SPV_SUCCESS;
804
805 // Do not compile this code until it is ready to be used.
806 #if 0
807 // Example:
808 // %texel_ptr = OpImageTexelPointer %texel_ptr_type %image_ptr %coord
809 // %sample
810 //
811 // We want to clamp %coord components between vector-0 and the result
812 // of OpImageQuerySize acting on the underlying image. So insert:
813 // %image = OpLoad %image_type %image_ptr
814 // %query_size = OpImageQuerySize %query_size_type %image
815 //
816 // For a multi-sampled image, %sample is the sample index, and we need
817 // to clamp it between zero and the number of samples in the image.
818 // %sample_count = OpImageQuerySamples %uint %image
819 // %max_sample_index = OpISub %uint %sample_count %uint_1
820 // For non-multi-sampled images, the sample index must be constant zero.
821
822 auto* def_use_mgr = context()->get_def_use_mgr();
823 auto* type_mgr = context()->get_type_mgr();
824 auto* constant_mgr = context()->get_constant_mgr();
825
826 auto* image_ptr = GetDef(image_texel_pointer->GetSingleWordInOperand(0));
827 auto* image_ptr_type = GetDef(image_ptr->type_id());
828 auto image_type_id = image_ptr_type->GetSingleWordInOperand(1);
829 auto* image_type = GetDef(image_type_id);
830 auto* coord = GetDef(image_texel_pointer->GetSingleWordInOperand(1));
831 auto* samples = GetDef(image_texel_pointer->GetSingleWordInOperand(2));
832
833 // We will modify the module, at least by adding image query instructions.
834 module_status_.modified = true;
835
836 // Declare the ImageQuery capability if the module doesn't already have it.
837 auto* feature_mgr = context()->get_feature_mgr();
838 if (!feature_mgr->HasCapability(spv::Capability::ImageQuery)) {
839 auto cap = MakeUnique<Instruction>(
840 context(), spv::Op::OpCapability, 0, 0,
841 std::initializer_list<Operand>{
842 {SPV_OPERAND_TYPE_CAPABILITY, {spv::Capability::ImageQuery}}});
843 def_use_mgr->AnalyzeInstDefUse(cap.get());
844 context()->AddCapability(std::move(cap));
845 feature_mgr->Analyze(context()->module());
846 }
847
848 // OpImageTexelPointer is used to translate a coordinate and sample index
849 // into an address for use with an atomic operation. That is, it may only
850 // used with what Vulkan calls a "storage image"
851 // (OpTypeImage parameter Sampled=2).
852 // Note: A storage image never has a level-of-detail associated with it.
853
854 // Constraints on the sample id:
855 // - Only 2D images can be multi-sampled: OpTypeImage parameter MS=1
856 // only if Dim=2D.
857 // - Non-multi-sampled images (OpTypeImage parameter MS=0) must use
858 // sample ID to a constant 0.
859
860 // The coordinate is treated as unsigned, and should be clamped against the
861 // image "size", returned by OpImageQuerySize. (Note: OpImageQuerySizeLod
862 // is only usable with a sampled image, i.e. its image type has Sampled=1).
863
864 // Determine the result type for the OpImageQuerySize.
865 // For non-arrayed images:
866 // non-Cube:
867 // - Always the same as the coordinate type
868 // Cube:
869 // - Use all but the last component of the coordinate (which is the face
870 // index from 0 to 5).
871 // For arrayed images (in Vulkan the Dim is 1D, 2D, or Cube):
872 // non-Cube:
873 // - A vector with the components in the coordinate, and one more for
874 // the layer index.
875 // Cube:
876 // - The same as the coordinate type: 3-element integer vector.
877 // - The third component from the size query is the layer count.
878 // - The third component in the texel pointer calculation is
879 // 6 * layer + face, where 0 <= face < 6.
880 // Cube: Use all but the last component of the coordinate (which is the face
881 // index from 0 to 5).
882 const auto dim = SpvDim(image_type->GetSingleWordInOperand(1));
883 const bool arrayed = image_type->GetSingleWordInOperand(3) == 1;
884 const bool multisampled = image_type->GetSingleWordInOperand(4) != 0;
885 const auto query_num_components = [dim, arrayed, this]() -> int {
886 const int arrayness_bonus = arrayed ? 1 : 0;
887 int num_coords = 0;
888 switch (dim) {
889 case spv::Dim::Buffer:
890 case SpvDim1D:
891 num_coords = 1;
892 break;
893 case spv::Dim::Cube:
894 // For cube, we need bounds for x, y, but not face.
895 case spv::Dim::Rect:
896 case SpvDim2D:
897 num_coords = 2;
898 break;
899 case SpvDim3D:
900 num_coords = 3;
901 break;
902 case spv::Dim::SubpassData:
903 case spv::Dim::Max:
904 return Fail() << "Invalid image dimension for OpImageTexelPointer: "
905 << int(dim);
906 break;
907 }
908 return num_coords + arrayness_bonus;
909 }();
910 const auto* coord_component_type = [type_mgr, coord]() {
911 const analysis::Type* coord_type = type_mgr->GetType(coord->type_id());
912 if (auto* vector_type = coord_type->AsVector()) {
913 return vector_type->element_type()->AsInteger();
914 }
915 return coord_type->AsInteger();
916 }();
917 // For now, only handle 32-bit case for coordinates.
918 if (!coord_component_type) {
919 return Fail() << " Coordinates for OpImageTexelPointer are not integral: "
920 << image_texel_pointer->PrettyPrint(
921 SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
922 }
923 if (coord_component_type->width() != 32) {
924 return Fail() << " Expected OpImageTexelPointer coordinate components to "
925 "be 32-bits wide. They are "
926 << coord_component_type->width() << " bits. "
927 << image_texel_pointer->PrettyPrint(
928 SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES);
929 }
930 const auto* query_size_type =
931 [type_mgr, coord_component_type,
932 query_num_components]() -> const analysis::Type* {
933 if (query_num_components == 1) return coord_component_type;
934 analysis::Vector proposed(coord_component_type, query_num_components);
935 return type_mgr->GetRegisteredType(&proposed);
936 }();
937
938 const uint32_t image_id = TakeNextId();
939 auto* image =
940 InsertInst(image_texel_pointer, spv::Op::OpLoad, image_type_id, image_id,
941 {{SPV_OPERAND_TYPE_ID, {image_ptr->result_id()}}});
942
943 const uint32_t query_size_id = TakeNextId();
944 auto* query_size =
945 InsertInst(image_texel_pointer, spv::Op::OpImageQuerySize,
946 type_mgr->GetTypeInstruction(query_size_type), query_size_id,
947 {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
948
949 auto* component_1 = constant_mgr->GetConstant(coord_component_type, {1});
950 const uint32_t component_1_id =
951 constant_mgr->GetDefiningInstruction(component_1)->result_id();
952 auto* component_0 = constant_mgr->GetConstant(coord_component_type, {0});
953 const uint32_t component_0_id =
954 constant_mgr->GetDefiningInstruction(component_0)->result_id();
955
956 // If the image is a cube array, then the last component of the queried
957 // size is the layer count. In the query, we have to accommodate folding
958 // in the face index ranging from 0 through 5. The inclusive upper bound
959 // on the third coordinate therefore is multiplied by 6.
960 auto* query_size_including_faces = query_size;
961 if (arrayed && (dim == spv::Dim::Cube)) {
962 // Multiply the last coordinate by 6.
963 auto* component_6 = constant_mgr->GetConstant(coord_component_type, {6});
964 const uint32_t component_6_id =
965 constant_mgr->GetDefiningInstruction(component_6)->result_id();
966 assert(query_num_components == 3);
967 auto* multiplicand = constant_mgr->GetConstant(
968 query_size_type, {component_1_id, component_1_id, component_6_id});
969 auto* multiplicand_inst =
970 constant_mgr->GetDefiningInstruction(multiplicand);
971 const auto query_size_including_faces_id = TakeNextId();
972 query_size_including_faces = InsertInst(
973 image_texel_pointer, spv::Op::OpIMul,
974 type_mgr->GetTypeInstruction(query_size_type),
975 query_size_including_faces_id,
976 {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
977 {SPV_OPERAND_TYPE_ID, {multiplicand_inst->result_id()}}});
978 }
979
980 // Make a coordinate-type with all 1 components.
981 auto* coordinate_1 =
982 query_num_components == 1
983 ? component_1
984 : constant_mgr->GetConstant(
985 query_size_type,
986 std::vector<uint32_t>(query_num_components, component_1_id));
987 // Make a coordinate-type with all 1 components.
988 auto* coordinate_0 =
989 query_num_components == 0
990 ? component_0
991 : constant_mgr->GetConstant(
992 query_size_type,
993 std::vector<uint32_t>(query_num_components, component_0_id));
994
995 const uint32_t query_max_including_faces_id = TakeNextId();
996 auto* query_max_including_faces = InsertInst(
997 image_texel_pointer, spv::Op::OpISub,
998 type_mgr->GetTypeInstruction(query_size_type),
999 query_max_including_faces_id,
1000 {{SPV_OPERAND_TYPE_ID, {query_size_including_faces->result_id()}},
1001 {SPV_OPERAND_TYPE_ID,
1002 {constant_mgr->GetDefiningInstruction(coordinate_1)->result_id()}}});
1003
1004 // Clamp the coordinate
1005 auto* clamp_coord = MakeSClampInst(
1006 *type_mgr, coord, constant_mgr->GetDefiningInstruction(coordinate_0),
1007 query_max_including_faces, image_texel_pointer);
1008 image_texel_pointer->SetInOperand(1, {clamp_coord->result_id()});
1009
1010 // Clamp the sample index
1011 if (multisampled) {
1012 // Get the sample count via OpImageQuerySamples
1013 const auto query_samples_id = TakeNextId();
1014 auto* query_samples = InsertInst(
1015 image_texel_pointer, spv::Op::OpImageQuerySamples,
1016 constant_mgr->GetDefiningInstruction(component_0)->type_id(),
1017 query_samples_id, {{SPV_OPERAND_TYPE_ID, {image->result_id()}}});
1018
1019 const auto max_samples_id = TakeNextId();
1020 auto* max_samples = InsertInst(image_texel_pointer, spv::Op::OpImageQuerySamples,
1021 query_samples->type_id(), max_samples_id,
1022 {{SPV_OPERAND_TYPE_ID, {query_samples_id}},
1023 {SPV_OPERAND_TYPE_ID, {component_1_id}}});
1024
1025 auto* clamp_samples = MakeSClampInst(
1026 *type_mgr, samples, constant_mgr->GetDefiningInstruction(coordinate_0),
1027 max_samples, image_texel_pointer);
1028 image_texel_pointer->SetInOperand(2, {clamp_samples->result_id()});
1029
1030 } else {
1031 // Just replace it with 0. Don't even check what was there before.
1032 image_texel_pointer->SetInOperand(2, {component_0_id});
1033 }
1034
1035 def_use_mgr->AnalyzeInstUse(image_texel_pointer);
1036
1037 return SPV_SUCCESS;
1038 #endif
1039 }
1040
InsertInst(opt::Instruction * where_inst,spv::Op opcode,uint32_t type_id,uint32_t result_id,const Instruction::OperandList & operands)1041 opt::Instruction* GraphicsRobustAccessPass::InsertInst(
1042 opt::Instruction* where_inst, spv::Op opcode, uint32_t type_id,
1043 uint32_t result_id, const Instruction::OperandList& operands) {
1044 module_status_.modified = true;
1045 auto* result = where_inst->InsertBefore(
1046 MakeUnique<Instruction>(context(), opcode, type_id, result_id, operands));
1047 context()->get_def_use_mgr()->AnalyzeInstDefUse(result);
1048 auto* basic_block = context()->get_instr_block(where_inst);
1049 context()->set_instr_block(result, basic_block);
1050 return result;
1051 }
1052
1053 } // namespace opt
1054 } // namespace spvtools
1055