1 // Copyright (c) 2017 The Khronos Group Inc.
2 // Copyright (c) 2017 Valve Corporation
3 // Copyright (c) 2017 LunarG Inc.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16
17 #include "source/opt/mem_pass.h"
18
19 #include <memory>
20 #include <set>
21 #include <vector>
22
23 #include "source/cfa.h"
24 #include "source/opt/basic_block.h"
25 #include "source/opt/ir_context.h"
26
27 namespace spvtools {
28 namespace opt {
29 namespace {
30 constexpr uint32_t kCopyObjectOperandInIdx = 0;
31 constexpr uint32_t kTypePointerStorageClassInIdx = 0;
32 constexpr uint32_t kTypePointerTypeIdInIdx = 1;
33 } // namespace
34
IsBaseTargetType(const Instruction * typeInst) const35 bool MemPass::IsBaseTargetType(const Instruction* typeInst) const {
36 switch (typeInst->opcode()) {
37 case spv::Op::OpTypeInt:
38 case spv::Op::OpTypeFloat:
39 case spv::Op::OpTypeBool:
40 case spv::Op::OpTypeVector:
41 case spv::Op::OpTypeMatrix:
42 case spv::Op::OpTypeImage:
43 case spv::Op::OpTypeSampler:
44 case spv::Op::OpTypeSampledImage:
45 case spv::Op::OpTypePointer:
46 return true;
47 default:
48 break;
49 }
50 return false;
51 }
52
IsTargetType(const Instruction * typeInst) const53 bool MemPass::IsTargetType(const Instruction* typeInst) const {
54 if (IsBaseTargetType(typeInst)) return true;
55 if (typeInst->opcode() == spv::Op::OpTypeArray) {
56 if (!IsTargetType(
57 get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
58 return false;
59 }
60 return true;
61 }
62 if (typeInst->opcode() != spv::Op::OpTypeStruct) return false;
63 // All struct members must be math type
64 return typeInst->WhileEachInId([this](const uint32_t* tid) {
65 Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
66 if (!IsTargetType(compTypeInst)) return false;
67 return true;
68 });
69 }
70
IsNonPtrAccessChain(const spv::Op opcode) const71 bool MemPass::IsNonPtrAccessChain(const spv::Op opcode) const {
72 return opcode == spv::Op::OpAccessChain ||
73 opcode == spv::Op::OpInBoundsAccessChain;
74 }
75
IsPtr(uint32_t ptrId)76 bool MemPass::IsPtr(uint32_t ptrId) {
77 uint32_t varId = ptrId;
78 Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
79 if (ptrInst->opcode() == spv::Op::OpFunction) {
80 // A function is not a pointer, but it's return type could be, which will
81 // erroneously lead to this function returning true later on
82 return false;
83 }
84 while (ptrInst->opcode() == spv::Op::OpCopyObject) {
85 varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
86 ptrInst = get_def_use_mgr()->GetDef(varId);
87 }
88 const spv::Op op = ptrInst->opcode();
89 if (op == spv::Op::OpVariable || IsNonPtrAccessChain(op)) return true;
90 const uint32_t varTypeId = ptrInst->type_id();
91 if (varTypeId == 0) return false;
92 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
93 return varTypeInst->opcode() == spv::Op::OpTypePointer;
94 }
95
GetPtr(uint32_t ptrId,uint32_t * varId)96 Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
97 *varId = ptrId;
98 Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
99 Instruction* varInst;
100
101 if (ptrInst->opcode() == spv::Op::OpConstantNull) {
102 *varId = 0;
103 return ptrInst;
104 }
105
106 if (ptrInst->opcode() != spv::Op::OpVariable &&
107 ptrInst->opcode() != spv::Op::OpFunctionParameter) {
108 varInst = ptrInst->GetBaseAddress();
109 } else {
110 varInst = ptrInst;
111 }
112 if (varInst->opcode() == spv::Op::OpVariable) {
113 *varId = varInst->result_id();
114 } else {
115 *varId = 0;
116 }
117
118 while (ptrInst->opcode() == spv::Op::OpCopyObject) {
119 uint32_t temp = ptrInst->GetSingleWordInOperand(0);
120 ptrInst = get_def_use_mgr()->GetDef(temp);
121 }
122
123 return ptrInst;
124 }
125
GetPtr(Instruction * ip,uint32_t * varId)126 Instruction* MemPass::GetPtr(Instruction* ip, uint32_t* varId) {
127 assert(ip->opcode() == spv::Op::OpStore || ip->opcode() == spv::Op::OpLoad ||
128 ip->opcode() == spv::Op::OpImageTexelPointer ||
129 ip->IsAtomicWithLoad());
130
131 // All of these opcode place the pointer in position 0.
132 const uint32_t ptrId = ip->GetSingleWordInOperand(0);
133 return GetPtr(ptrId, varId);
134 }
135
HasOnlyNamesAndDecorates(uint32_t id) const136 bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
137 return get_def_use_mgr()->WhileEachUser(id, [this](Instruction* user) {
138 spv::Op op = user->opcode();
139 if (op != spv::Op::OpName && !IsNonTypeDecorate(op)) {
140 return false;
141 }
142 return true;
143 });
144 }
145
KillAllInsts(BasicBlock * bp,bool killLabel)146 void MemPass::KillAllInsts(BasicBlock* bp, bool killLabel) {
147 bp->KillAllInsts(killLabel);
148 }
149
HasLoads(uint32_t varId) const150 bool MemPass::HasLoads(uint32_t varId) const {
151 return !get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
152 spv::Op op = user->opcode();
153 // TODO(): The following is slightly conservative. Could be
154 // better handling of non-store/name.
155 if (IsNonPtrAccessChain(op) || op == spv::Op::OpCopyObject) {
156 if (HasLoads(user->result_id())) {
157 return false;
158 }
159 } else if (op != spv::Op::OpStore && op != spv::Op::OpName &&
160 !IsNonTypeDecorate(op)) {
161 return false;
162 }
163 return true;
164 });
165 }
166
IsLiveVar(uint32_t varId) const167 bool MemPass::IsLiveVar(uint32_t varId) const {
168 const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
169 // assume live if not a variable eg. function parameter
170 if (varInst->opcode() != spv::Op::OpVariable) return true;
171 // non-function scope vars are live
172 const uint32_t varTypeId = varInst->type_id();
173 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
174 if (spv::StorageClass(varTypeInst->GetSingleWordInOperand(
175 kTypePointerStorageClassInIdx)) != spv::StorageClass::Function)
176 return true;
177 // test if variable is loaded from
178 return HasLoads(varId);
179 }
180
AddStores(uint32_t ptr_id,std::queue<Instruction * > * insts)181 void MemPass::AddStores(uint32_t ptr_id, std::queue<Instruction*>* insts) {
182 get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](Instruction* user) {
183 spv::Op op = user->opcode();
184 if (IsNonPtrAccessChain(op)) {
185 AddStores(user->result_id(), insts);
186 } else if (op == spv::Op::OpStore) {
187 insts->push(user);
188 }
189 });
190 }
191
DCEInst(Instruction * inst,const std::function<void (Instruction *)> & call_back)192 void MemPass::DCEInst(Instruction* inst,
193 const std::function<void(Instruction*)>& call_back) {
194 std::queue<Instruction*> deadInsts;
195 deadInsts.push(inst);
196 while (!deadInsts.empty()) {
197 Instruction* di = deadInsts.front();
198 // Don't delete labels
199 if (di->opcode() == spv::Op::OpLabel) {
200 deadInsts.pop();
201 continue;
202 }
203 // Remember operands
204 std::set<uint32_t> ids;
205 di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
206 uint32_t varId = 0;
207 // Remember variable if dead load
208 if (di->opcode() == spv::Op::OpLoad) (void)GetPtr(di, &varId);
209 if (call_back) {
210 call_back(di);
211 }
212 context()->KillInst(di);
213 // For all operands with no remaining uses, add their instruction
214 // to the dead instruction queue.
215 for (auto id : ids)
216 if (HasOnlyNamesAndDecorates(id)) {
217 Instruction* odi = get_def_use_mgr()->GetDef(id);
218 if (context()->IsCombinatorInstruction(odi)) deadInsts.push(odi);
219 }
220 // if a load was deleted and it was the variable's
221 // last load, add all its stores to dead queue
222 if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
223 deadInsts.pop();
224 }
225 }
226
MemPass()227 MemPass::MemPass() {}
228
HasOnlySupportedRefs(uint32_t varId)229 bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
230 return get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
231 auto dbg_op = user->GetCommonDebugOpcode();
232 if (dbg_op == CommonDebugInfoDebugDeclare ||
233 dbg_op == CommonDebugInfoDebugValue) {
234 return true;
235 }
236 spv::Op op = user->opcode();
237 if (op != spv::Op::OpStore && op != spv::Op::OpLoad &&
238 op != spv::Op::OpName && !IsNonTypeDecorate(op)) {
239 return false;
240 }
241 return true;
242 });
243 }
244
Type2Undef(uint32_t type_id)245 uint32_t MemPass::Type2Undef(uint32_t type_id) {
246 const auto uitr = type2undefs_.find(type_id);
247 if (uitr != type2undefs_.end()) return uitr->second;
248 const uint32_t undefId = TakeNextId();
249 if (undefId == 0) {
250 return 0;
251 }
252
253 std::unique_ptr<Instruction> undef_inst(
254 new Instruction(context(), spv::Op::OpUndef, type_id, undefId, {}));
255 get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
256 get_module()->AddGlobalValue(std::move(undef_inst));
257 type2undefs_[type_id] = undefId;
258 return undefId;
259 }
260
IsTargetVar(uint32_t varId)261 bool MemPass::IsTargetVar(uint32_t varId) {
262 if (varId == 0) {
263 return false;
264 }
265
266 if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
267 return false;
268 if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
269 const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
270 if (varInst->opcode() != spv::Op::OpVariable) return false;
271 const uint32_t varTypeId = varInst->type_id();
272 const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
273 if (spv::StorageClass(varTypeInst->GetSingleWordInOperand(
274 kTypePointerStorageClassInIdx)) != spv::StorageClass::Function) {
275 seen_non_target_vars_.insert(varId);
276 return false;
277 }
278 const uint32_t varPteTypeId =
279 varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
280 Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
281 if (!IsTargetType(varPteTypeInst)) {
282 seen_non_target_vars_.insert(varId);
283 return false;
284 }
285 seen_target_vars_.insert(varId);
286 return true;
287 }
288
289 // Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
290 // |reachable_blocks|). There are two types of removal that this function can
291 // perform:
292 //
293 // 1- Any operand that comes directly from an unreachable block is completely
294 // removed. Since the block is unreachable, the edge between the unreachable
295 // block and the block holding |phi| has been removed.
296 //
297 // 2- Any operand that comes via a live block and was defined at an unreachable
298 // block gets its value replaced with an OpUndef value. Since the argument
299 // was generated in an unreachable block, it no longer exists, so it cannot
300 // be referenced. However, since the value does not reach |phi| directly
301 // from the unreachable block, the operand cannot be removed from |phi|.
302 // Therefore, we replace the argument value with OpUndef.
303 //
304 // For example, in the switch() below, assume that we want to remove the
305 // argument with value %11 coming from block %41.
306 //
307 // [ ... ]
308 // %41 = OpLabel <--- Unreachable block
309 // %11 = OpLoad %int %y
310 // [ ... ]
311 // OpSelectionMerge %16 None
312 // OpSwitch %12 %16 10 %13 13 %14 18 %15
313 // %13 = OpLabel
314 // OpBranch %16
315 // %14 = OpLabel
316 // OpStore %outparm %int_14
317 // OpBranch %16
318 // %15 = OpLabel
319 // OpStore %outparm %int_15
320 // OpBranch %16
321 // %16 = OpLabel
322 // %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
323 //
324 // Since %41 is now an unreachable block, the first operand of |phi| needs to
325 // be removed completely. But the operands (%11 %14) and (%11 %15) cannot be
326 // removed because %14 and %15 are reachable blocks. Since %11 no longer exist,
327 // in those arguments, we replace all references to %11 with an OpUndef value.
328 // This results in |phi| looking like:
329 //
330 // %50 = OpUndef %int
331 // [ ... ]
332 // %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
RemovePhiOperands(Instruction * phi,const std::unordered_set<BasicBlock * > & reachable_blocks)333 void MemPass::RemovePhiOperands(
334 Instruction* phi, const std::unordered_set<BasicBlock*>& reachable_blocks) {
335 std::vector<Operand> keep_operands;
336 uint32_t type_id = 0;
337 // The id of an undefined value we've generated.
338 uint32_t undef_id = 0;
339
340 // Traverse all the operands in |phi|. Build the new operand vector by adding
341 // all the original operands from |phi| except the unwanted ones.
342 for (uint32_t i = 0; i < phi->NumOperands();) {
343 if (i < 2) {
344 // The first two arguments are always preserved.
345 keep_operands.push_back(phi->GetOperand(i));
346 ++i;
347 continue;
348 }
349
350 // The remaining Phi arguments come in pairs. Index 'i' contains the
351 // variable id, index 'i + 1' is the originating block id.
352 assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
353 "malformed Phi arguments");
354
355 BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
356 if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
357 // If the incoming block is unreachable, remove both operands as this
358 // means that the |phi| has lost an incoming edge.
359 i += 2;
360 continue;
361 }
362
363 // In all other cases, the operand must be kept but may need to be changed.
364 uint32_t arg_id = phi->GetSingleWordOperand(i);
365 Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
366 BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
367 if (def_block &&
368 reachable_blocks.find(def_block) == reachable_blocks.end()) {
369 // If the current |phi| argument was defined in an unreachable block, it
370 // means that this |phi| argument is no longer defined. Replace it with
371 // |undef_id|.
372 if (!undef_id) {
373 type_id = arg_def_instr->type_id();
374 undef_id = Type2Undef(type_id);
375 }
376 keep_operands.push_back(
377 Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
378 } else {
379 // Otherwise, the argument comes from a reachable block or from no block
380 // at all (meaning that it was defined in the global section of the
381 // program). In both cases, keep the argument intact.
382 keep_operands.push_back(phi->GetOperand(i));
383 }
384
385 keep_operands.push_back(phi->GetOperand(i + 1));
386
387 i += 2;
388 }
389
390 context()->ForgetUses(phi);
391 phi->ReplaceOperands(keep_operands);
392 context()->AnalyzeUses(phi);
393 }
394
RemoveBlock(Function::iterator * bi)395 void MemPass::RemoveBlock(Function::iterator* bi) {
396 auto& rm_block = **bi;
397
398 // Remove instructions from the block.
399 rm_block.ForEachInst([&rm_block, this](Instruction* inst) {
400 // Note that we do not kill the block label instruction here. The label
401 // instruction is needed to identify the block, which is needed by the
402 // removal of phi operands.
403 if (inst != rm_block.GetLabelInst()) {
404 context()->KillInst(inst);
405 }
406 });
407
408 // Remove the label instruction last.
409 auto label = rm_block.GetLabelInst();
410 context()->KillInst(label);
411
412 *bi = bi->Erase();
413 }
414
RemoveUnreachableBlocks(Function * func)415 bool MemPass::RemoveUnreachableBlocks(Function* func) {
416 bool modified = false;
417
418 // Mark reachable all blocks reachable from the function's entry block.
419 std::unordered_set<BasicBlock*> reachable_blocks;
420 std::unordered_set<BasicBlock*> visited_blocks;
421 std::queue<BasicBlock*> worklist;
422 reachable_blocks.insert(func->entry().get());
423
424 // Initially mark the function entry point as reachable.
425 worklist.push(func->entry().get());
426
427 auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
428 this](uint32_t label_id) {
429 auto successor = cfg()->block(label_id);
430 if (visited_blocks.count(successor) == 0) {
431 reachable_blocks.insert(successor);
432 worklist.push(successor);
433 visited_blocks.insert(successor);
434 }
435 };
436
437 // Transitively mark all blocks reachable from the entry as reachable.
438 while (!worklist.empty()) {
439 BasicBlock* block = worklist.front();
440 worklist.pop();
441
442 // All the successors of a live block are also live.
443 static_cast<const BasicBlock*>(block)->ForEachSuccessorLabel(
444 mark_reachable);
445
446 // All the Merge and ContinueTarget blocks of a live block are also live.
447 block->ForMergeAndContinueLabel(mark_reachable);
448 }
449
450 // Update operands of Phi nodes that reference unreachable blocks.
451 for (auto& block : *func) {
452 // If the block is about to be removed, don't bother updating its
453 // Phi instructions.
454 if (reachable_blocks.count(&block) == 0) {
455 continue;
456 }
457
458 // If the block is reachable and has Phi instructions, remove all
459 // operands from its Phi instructions that reference unreachable blocks.
460 // If the block has no Phi instructions, this is a no-op.
461 block.ForEachPhiInst([&reachable_blocks, this](Instruction* phi) {
462 RemovePhiOperands(phi, reachable_blocks);
463 });
464 }
465
466 // Erase unreachable blocks.
467 for (auto ebi = func->begin(); ebi != func->end();) {
468 if (reachable_blocks.count(&*ebi) == 0) {
469 RemoveBlock(&ebi);
470 modified = true;
471 } else {
472 ++ebi;
473 }
474 }
475
476 return modified;
477 }
478
CFGCleanup(Function * func)479 bool MemPass::CFGCleanup(Function* func) {
480 bool modified = false;
481 modified |= RemoveUnreachableBlocks(func);
482 return modified;
483 }
484
CollectTargetVars(Function * func)485 void MemPass::CollectTargetVars(Function* func) {
486 seen_target_vars_.clear();
487 seen_non_target_vars_.clear();
488 type2undefs_.clear();
489
490 // Collect target (and non-) variable sets. Remove variables with
491 // non-load/store refs from target variable set
492 for (auto& blk : *func) {
493 for (auto& inst : blk) {
494 switch (inst.opcode()) {
495 case spv::Op::OpStore:
496 case spv::Op::OpLoad: {
497 uint32_t varId;
498 (void)GetPtr(&inst, &varId);
499 if (!IsTargetVar(varId)) break;
500 if (HasOnlySupportedRefs(varId)) break;
501 seen_non_target_vars_.insert(varId);
502 seen_target_vars_.erase(varId);
503 } break;
504 default:
505 break;
506 }
507 }
508 }
509 }
510
511 } // namespace opt
512 } // namespace spvtools
513