1 //===-- AVRAsmBackend.cpp - AVR Asm Backend ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AVRAsmBackend class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "MCTargetDesc/AVRAsmBackend.h"
14 #include "MCTargetDesc/AVRFixupKinds.h"
15 #include "MCTargetDesc/AVRMCTargetDesc.h"
16
17 #include "llvm/MC/MCAsmBackend.h"
18 #include "llvm/MC/MCAssembler.h"
19 #include "llvm/MC/MCContext.h"
20 #include "llvm/MC/MCDirectives.h"
21 #include "llvm/MC/MCELFObjectWriter.h"
22 #include "llvm/MC/MCFixupKindInfo.h"
23 #include "llvm/MC/MCObjectWriter.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/MC/MCValue.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 // FIXME: we should be doing checks to make sure asm operands
31 // are not out of bounds.
32
33 namespace adjust {
34
35 using namespace llvm;
36
signed_width(unsigned Width,uint64_t Value,std::string Description,const MCFixup & Fixup,MCContext * Ctx=nullptr)37 void signed_width(unsigned Width, uint64_t Value, std::string Description,
38 const MCFixup &Fixup, MCContext *Ctx = nullptr) {
39 if (!isIntN(Width, Value)) {
40 std::string Diagnostic = "out of range " + Description;
41
42 int64_t Min = minIntN(Width);
43 int64_t Max = maxIntN(Width);
44
45 Diagnostic += " (expected an integer in the range " + std::to_string(Min) +
46 " to " + std::to_string(Max) + ")";
47
48 if (Ctx) {
49 Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
50 } else {
51 llvm_unreachable(Diagnostic.c_str());
52 }
53 }
54 }
55
unsigned_width(unsigned Width,uint64_t Value,std::string Description,const MCFixup & Fixup,MCContext * Ctx=nullptr)56 void unsigned_width(unsigned Width, uint64_t Value, std::string Description,
57 const MCFixup &Fixup, MCContext *Ctx = nullptr) {
58 if (!isUIntN(Width, Value)) {
59 std::string Diagnostic = "out of range " + Description;
60
61 int64_t Max = maxUIntN(Width);
62
63 Diagnostic += " (expected an integer in the range 0 to " +
64 std::to_string(Max) + ")";
65
66 if (Ctx) {
67 Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
68 } else {
69 llvm_unreachable(Diagnostic.c_str());
70 }
71 }
72 }
73
74 /// Adjusts the value of a branch target before fixup application.
adjustBranch(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)75 void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
76 MCContext *Ctx = nullptr) {
77 // We have one extra bit of precision because the value is rightshifted by
78 // one.
79 unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
80
81 // Rightshifts the value by one.
82 AVR::fixups::adjustBranchTarget(Value);
83 }
84
85 /// Adjusts the value of a relative branch target before fixup application.
adjustRelativeBranch(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)86 void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
87 MCContext *Ctx = nullptr) {
88 // We have one extra bit of precision because the value is rightshifted by
89 // one.
90 signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
91
92 Value -= 2;
93
94 // Rightshifts the value by one.
95 AVR::fixups::adjustBranchTarget(Value);
96 }
97
98 /// 22-bit absolute fixup.
99 ///
100 /// Resolves to:
101 /// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk
102 ///
103 /// Offset of 0 (so the result is left shifted by 3 bits before application).
fixup_call(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)104 void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
105 MCContext *Ctx = nullptr) {
106 adjustBranch(Size, Fixup, Value, Ctx);
107
108 auto top = Value & (0xf00000 << 6); // the top four bits
109 auto middle = Value & (0x1ffff << 5); // the middle 13 bits
110 auto bottom = Value & 0x1f; // end bottom 5 bits
111
112 Value = (top << 6) | (middle << 3) | (bottom << 0);
113 }
114
115 /// 7-bit PC-relative fixup.
116 ///
117 /// Resolves to:
118 /// 0000 00kk kkkk k000
119 /// Offset of 0 (so the result is left shifted by 3 bits before application).
fixup_7_pcrel(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)120 void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
121 MCContext *Ctx = nullptr) {
122 adjustRelativeBranch(Size, Fixup, Value, Ctx);
123
124 // Because the value may be negative, we must mask out the sign bits
125 Value &= 0x7f;
126 }
127
128 /// 12-bit PC-relative fixup.
129 /// Yes, the fixup is 12 bits even though the name says otherwise.
130 ///
131 /// Resolves to:
132 /// 0000 kkkk kkkk kkkk
133 /// Offset of 0 (so the result isn't left-shifted before application).
fixup_13_pcrel(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)134 void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
135 MCContext *Ctx = nullptr) {
136 adjustRelativeBranch(Size, Fixup, Value, Ctx);
137
138 // Because the value may be negative, we must mask out the sign bits
139 Value &= 0xfff;
140 }
141
142 /// 6-bit fixup for the immediate operand of the ADIW family of
143 /// instructions.
144 ///
145 /// Resolves to:
146 /// 0000 0000 kk00 kkkk
fixup_6_adiw(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)147 void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value,
148 MCContext *Ctx = nullptr) {
149 unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
150
151 Value = ((Value & 0x30) << 2) | (Value & 0x0f);
152 }
153
154 /// 5-bit port number fixup on the SBIC family of instructions.
155 ///
156 /// Resolves to:
157 /// 0000 0000 AAAA A000
fixup_port5(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)158 void fixup_port5(const MCFixup &Fixup, uint64_t &Value,
159 MCContext *Ctx = nullptr) {
160 unsigned_width(5, Value, std::string("port number"), Fixup, Ctx);
161
162 Value &= 0x1f;
163
164 Value <<= 3;
165 }
166
167 /// 6-bit port number fixup on the `IN` family of instructions.
168 ///
169 /// Resolves to:
170 /// 1011 0AAd dddd AAAA
fixup_port6(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)171 void fixup_port6(const MCFixup &Fixup, uint64_t &Value,
172 MCContext *Ctx = nullptr) {
173 unsigned_width(6, Value, std::string("port number"), Fixup, Ctx);
174
175 Value = ((Value & 0x30) << 5) | (Value & 0x0f);
176 }
177
178 /// Adjusts a program memory address.
179 /// This is a simple right-shift.
pm(uint64_t & Value)180 void pm(uint64_t &Value) {
181 Value >>= 1;
182 }
183
184 /// Fixups relating to the LDI instruction.
185 namespace ldi {
186
187 /// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction.
188 ///
189 /// Resolves to:
190 /// 0000 KKKK 0000 KKKK
191 /// Offset of 0 (so the result isn't left-shifted before application).
fixup(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)192 void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
193 MCContext *Ctx = nullptr) {
194 uint64_t upper = Value & 0xf0;
195 uint64_t lower = Value & 0x0f;
196
197 Value = (upper << 4) | lower;
198 }
199
neg(uint64_t & Value)200 void neg(uint64_t &Value) { Value *= -1; }
201
lo8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)202 void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
203 MCContext *Ctx = nullptr) {
204 Value &= 0xff;
205 ldi::fixup(Size, Fixup, Value, Ctx);
206 }
207
hi8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)208 void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
209 MCContext *Ctx = nullptr) {
210 Value = (Value & 0xff00) >> 8;
211 ldi::fixup(Size, Fixup, Value, Ctx);
212 }
213
hh8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)214 void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
215 MCContext *Ctx = nullptr) {
216 Value = (Value & 0xff0000) >> 16;
217 ldi::fixup(Size, Fixup, Value, Ctx);
218 }
219
ms8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)220 void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
221 MCContext *Ctx = nullptr) {
222 Value = (Value & 0xff000000) >> 24;
223 ldi::fixup(Size, Fixup, Value, Ctx);
224 }
225
226 } // end of ldi namespace
227 } // end of adjust namespace
228
229 namespace llvm {
230
231 // Prepare value for the target space for it
adjustFixupValue(const MCFixup & Fixup,const MCValue & Target,uint64_t & Value,MCContext * Ctx) const232 void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup,
233 const MCValue &Target,
234 uint64_t &Value,
235 MCContext *Ctx) const {
236 // The size of the fixup in bits.
237 uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize;
238
239 unsigned Kind = Fixup.getKind();
240
241 // Parsed LLVM-generated temporary labels are already
242 // adjusted for instruction size, but normal labels aren't.
243 //
244 // To handle both cases, we simply un-adjust the temporary label
245 // case so it acts like all other labels.
246 if (const MCSymbolRefExpr *A = Target.getSymA()) {
247 if (A->getSymbol().isTemporary())
248 Value += 2;
249 }
250
251 switch (Kind) {
252 default:
253 llvm_unreachable("unhandled fixup");
254 case AVR::fixup_7_pcrel:
255 adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx);
256 break;
257 case AVR::fixup_13_pcrel:
258 adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx);
259 break;
260 case AVR::fixup_call:
261 adjust::fixup_call(Size, Fixup, Value, Ctx);
262 break;
263 case AVR::fixup_ldi:
264 adjust::ldi::fixup(Size, Fixup, Value, Ctx);
265 break;
266 case AVR::fixup_lo8_ldi:
267 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
268 break;
269 case AVR::fixup_lo8_ldi_pm:
270 case AVR::fixup_lo8_ldi_gs:
271 adjust::pm(Value);
272 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
273 break;
274 case AVR::fixup_hi8_ldi:
275 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
276 break;
277 case AVR::fixup_hi8_ldi_pm:
278 case AVR::fixup_hi8_ldi_gs:
279 adjust::pm(Value);
280 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
281 break;
282 case AVR::fixup_hh8_ldi:
283 case AVR::fixup_hh8_ldi_pm:
284 if (Kind == AVR::fixup_hh8_ldi_pm) adjust::pm(Value);
285
286 adjust::ldi::hh8(Size, Fixup, Value, Ctx);
287 break;
288 case AVR::fixup_ms8_ldi:
289 adjust::ldi::ms8(Size, Fixup, Value, Ctx);
290 break;
291
292 case AVR::fixup_lo8_ldi_neg:
293 case AVR::fixup_lo8_ldi_pm_neg:
294 if (Kind == AVR::fixup_lo8_ldi_pm_neg) adjust::pm(Value);
295
296 adjust::ldi::neg(Value);
297 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
298 break;
299 case AVR::fixup_hi8_ldi_neg:
300 case AVR::fixup_hi8_ldi_pm_neg:
301 if (Kind == AVR::fixup_hi8_ldi_pm_neg) adjust::pm(Value);
302
303 adjust::ldi::neg(Value);
304 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
305 break;
306 case AVR::fixup_hh8_ldi_neg:
307 case AVR::fixup_hh8_ldi_pm_neg:
308 if (Kind == AVR::fixup_hh8_ldi_pm_neg) adjust::pm(Value);
309
310 adjust::ldi::neg(Value);
311 adjust::ldi::hh8(Size, Fixup, Value, Ctx);
312 break;
313 case AVR::fixup_ms8_ldi_neg:
314 adjust::ldi::neg(Value);
315 adjust::ldi::ms8(Size, Fixup, Value, Ctx);
316 break;
317 case AVR::fixup_16:
318 adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
319
320 Value &= 0xffff;
321 break;
322 case AVR::fixup_16_pm:
323 Value >>= 1; // Flash addresses are always shifted.
324 adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
325
326 Value &= 0xffff;
327 break;
328
329 case AVR::fixup_6_adiw:
330 adjust::fixup_6_adiw(Fixup, Value, Ctx);
331 break;
332
333 case AVR::fixup_port5:
334 adjust::fixup_port5(Fixup, Value, Ctx);
335 break;
336
337 case AVR::fixup_port6:
338 adjust::fixup_port6(Fixup, Value, Ctx);
339 break;
340
341 // Fixups which do not require adjustments.
342 case FK_Data_1:
343 case FK_Data_2:
344 case FK_Data_4:
345 case FK_Data_8:
346 break;
347
348 case FK_GPRel_4:
349 llvm_unreachable("don't know how to adjust this fixup");
350 break;
351 }
352 }
353
354 std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const355 AVRAsmBackend::createObjectTargetWriter() const {
356 return createAVRELFObjectWriter(MCELFObjectTargetWriter::getOSABI(OSType));
357 }
358
applyFixup(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,MutableArrayRef<char> Data,uint64_t Value,bool IsResolved,const MCSubtargetInfo * STI) const359 void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
360 const MCValue &Target,
361 MutableArrayRef<char> Data, uint64_t Value,
362 bool IsResolved,
363 const MCSubtargetInfo *STI) const {
364 adjustFixupValue(Fixup, Target, Value, &Asm.getContext());
365 if (Value == 0)
366 return; // Doesn't change encoding.
367
368 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
369
370 // The number of bits in the fixup mask
371 auto NumBits = Info.TargetSize + Info.TargetOffset;
372 auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1);
373
374 // Shift the value into position.
375 Value <<= Info.TargetOffset;
376
377 unsigned Offset = Fixup.getOffset();
378 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
379
380 // For each byte of the fragment that the fixup touches, mask in the
381 // bits from the fixup value.
382 for (unsigned i = 0; i < NumBytes; ++i) {
383 uint8_t mask = (((Value >> (i * 8)) & 0xff));
384 Data[Offset + i] |= mask;
385 }
386 }
387
getFixupKindInfo(MCFixupKind Kind) const388 MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
389 // NOTE: Many AVR fixups work on sets of non-contignous bits. We work around
390 // this by saying that the fixup is the size of the entire instruction.
391 const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = {
392 // This table *must* be in same the order of fixup_* kinds in
393 // AVRFixupKinds.h.
394 //
395 // name offset bits flags
396 {"fixup_32", 0, 32, 0},
397
398 {"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel},
399 {"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel},
400
401 {"fixup_16", 0, 16, 0},
402 {"fixup_16_pm", 0, 16, 0},
403
404 {"fixup_ldi", 0, 8, 0},
405
406 {"fixup_lo8_ldi", 0, 8, 0},
407 {"fixup_hi8_ldi", 0, 8, 0},
408 {"fixup_hh8_ldi", 0, 8, 0},
409 {"fixup_ms8_ldi", 0, 8, 0},
410
411 {"fixup_lo8_ldi_neg", 0, 8, 0},
412 {"fixup_hi8_ldi_neg", 0, 8, 0},
413 {"fixup_hh8_ldi_neg", 0, 8, 0},
414 {"fixup_ms8_ldi_neg", 0, 8, 0},
415
416 {"fixup_lo8_ldi_pm", 0, 8, 0},
417 {"fixup_hi8_ldi_pm", 0, 8, 0},
418 {"fixup_hh8_ldi_pm", 0, 8, 0},
419
420 {"fixup_lo8_ldi_pm_neg", 0, 8, 0},
421 {"fixup_hi8_ldi_pm_neg", 0, 8, 0},
422 {"fixup_hh8_ldi_pm_neg", 0, 8, 0},
423
424 {"fixup_call", 0, 22, 0},
425
426 {"fixup_6", 0, 16, 0}, // non-contiguous
427 {"fixup_6_adiw", 0, 6, 0},
428
429 {"fixup_lo8_ldi_gs", 0, 8, 0},
430 {"fixup_hi8_ldi_gs", 0, 8, 0},
431
432 {"fixup_8", 0, 8, 0},
433 {"fixup_8_lo8", 0, 8, 0},
434 {"fixup_8_hi8", 0, 8, 0},
435 {"fixup_8_hlo8", 0, 8, 0},
436
437 {"fixup_diff8", 0, 8, 0},
438 {"fixup_diff16", 0, 16, 0},
439 {"fixup_diff32", 0, 32, 0},
440
441 {"fixup_lds_sts_16", 0, 16, 0},
442
443 {"fixup_port6", 0, 16, 0}, // non-contiguous
444 {"fixup_port5", 3, 5, 0},
445 };
446
447 if (Kind < FirstTargetFixupKind)
448 return MCAsmBackend::getFixupKindInfo(Kind);
449
450 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
451 "Invalid kind!");
452
453 return Infos[Kind - FirstTargetFixupKind];
454 }
455
writeNopData(raw_ostream & OS,uint64_t Count) const456 bool AVRAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
457 // If the count is not 2-byte aligned, we must be writing data into the text
458 // section (otherwise we have unaligned instructions, and thus have far
459 // bigger problems), so just write zeros instead.
460 assert((Count % 2) == 0 && "NOP instructions must be 2 bytes");
461
462 OS.write_zeros(Count);
463 return true;
464 }
465
shouldForceRelocation(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target)466 bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
467 const MCFixup &Fixup,
468 const MCValue &Target) {
469 switch ((unsigned) Fixup.getKind()) {
470 default: return false;
471 // Fixups which should always be recorded as relocations.
472 case AVR::fixup_7_pcrel:
473 case AVR::fixup_13_pcrel:
474 case AVR::fixup_call:
475 return true;
476 }
477 }
478
createAVRAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const llvm::MCTargetOptions & TO)479 MCAsmBackend *createAVRAsmBackend(const Target &T, const MCSubtargetInfo &STI,
480 const MCRegisterInfo &MRI,
481 const llvm::MCTargetOptions &TO) {
482 return new AVRAsmBackend(STI.getTargetTriple().getOS());
483 }
484
485 } // end of namespace llvm
486
487