1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the Hexagon target.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "HexagonISelDAGToDAG.h"
14 #include "Hexagon.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/IR/IntrinsicsHexagon.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26
27 #define DEBUG_TYPE "hexagon-isel"
28
29 static
30 cl::opt<bool>
31 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
32 cl::desc("Rebalance address calculation trees to improve "
33 "instruction selection"));
34
35 // Rebalance only if this allows e.g. combining a GA with an offset or
36 // factoring out a shift.
37 static
38 cl::opt<bool>
39 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
40 cl::desc("Rebalance address tree only if this allows optimizations"));
41
42 static
43 cl::opt<bool>
44 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
45 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
46
47 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
48 cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
49
50 //===----------------------------------------------------------------------===//
51 // Instruction Selector Implementation
52 //===----------------------------------------------------------------------===//
53
54 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
55 #include "HexagonGenDAGISel.inc"
56
57 /// createHexagonISelDag - This pass converts a legalized DAG into a
58 /// Hexagon-specific DAG, ready for instruction scheduling.
59 ///
60 namespace llvm {
createHexagonISelDag(HexagonTargetMachine & TM,CodeGenOpt::Level OptLevel)61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
62 CodeGenOpt::Level OptLevel) {
63 return new HexagonDAGToDAGISel(TM, OptLevel);
64 }
65 }
66
SelectIndexedLoad(LoadSDNode * LD,const SDLoc & dl)67 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
68 SDValue Chain = LD->getChain();
69 SDValue Base = LD->getBasePtr();
70 SDValue Offset = LD->getOffset();
71 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
72 EVT LoadedVT = LD->getMemoryVT();
73 unsigned Opcode = 0;
74
75 // Check for zero extended loads. Treat any-extend loads as zero extended
76 // loads.
77 ISD::LoadExtType ExtType = LD->getExtensionType();
78 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
79 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
80
81 assert(LoadedVT.isSimple());
82 switch (LoadedVT.getSimpleVT().SimpleTy) {
83 case MVT::i8:
84 if (IsZeroExt)
85 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
86 else
87 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
88 break;
89 case MVT::i16:
90 if (IsZeroExt)
91 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
92 else
93 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
94 break;
95 case MVT::i32:
96 case MVT::f32:
97 case MVT::v2i16:
98 case MVT::v4i8:
99 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
100 break;
101 case MVT::i64:
102 case MVT::f64:
103 case MVT::v2i32:
104 case MVT::v4i16:
105 case MVT::v8i8:
106 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
107 break;
108 case MVT::v64i8:
109 case MVT::v32i16:
110 case MVT::v16i32:
111 case MVT::v8i64:
112 case MVT::v128i8:
113 case MVT::v64i16:
114 case MVT::v32i32:
115 case MVT::v16i64:
116 if (isAlignedMemNode(LD)) {
117 if (LD->isNonTemporal())
118 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
119 else
120 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
121 } else {
122 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
123 }
124 break;
125 default:
126 llvm_unreachable("Unexpected memory type in indexed load");
127 }
128
129 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
130 MachineMemOperand *MemOp = LD->getMemOperand();
131
132 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
133 -> MachineSDNode* {
134 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
135 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
136 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
137 Zero, SDValue(N, 0));
138 }
139 if (ExtType == ISD::SEXTLOAD)
140 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
141 SDValue(N, 0));
142 return N;
143 };
144
145 // Loaded value Next address Chain
146 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
147 SDValue To[3];
148
149 EVT ValueVT = LD->getValueType(0);
150 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
151 // A load extending to i64 will actually produce i32, which will then
152 // need to be extended to i64.
153 assert(LoadedVT.getSizeInBits() <= 32);
154 ValueVT = MVT::i32;
155 }
156
157 if (IsValidInc) {
158 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
159 MVT::i32, MVT::Other, Base,
160 IncV, Chain);
161 CurDAG->setNodeMemRefs(L, {MemOp});
162 To[1] = SDValue(L, 1); // Next address.
163 To[2] = SDValue(L, 2); // Chain.
164 // Handle special case for extension to i64.
165 if (LD->getValueType(0) == MVT::i64)
166 L = getExt64(L, dl);
167 To[0] = SDValue(L, 0); // Loaded (extended) value.
168 } else {
169 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
170 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
171 Base, Zero, Chain);
172 CurDAG->setNodeMemRefs(L, {MemOp});
173 To[2] = SDValue(L, 1); // Chain.
174 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
175 Base, IncV);
176 To[1] = SDValue(A, 0); // Next address.
177 // Handle special case for extension to i64.
178 if (LD->getValueType(0) == MVT::i64)
179 L = getExt64(L, dl);
180 To[0] = SDValue(L, 0); // Loaded (extended) value.
181 }
182 ReplaceUses(From, To, 3);
183 CurDAG->RemoveDeadNode(LD);
184 }
185
LoadInstrForLoadIntrinsic(SDNode * IntN)186 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
187 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
188 return nullptr;
189
190 SDLoc dl(IntN);
191 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
192
193 static std::map<unsigned,unsigned> LoadPciMap = {
194 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
195 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
196 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
197 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
198 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
199 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
200 };
201 auto FLC = LoadPciMap.find(IntNo);
202 if (FLC != LoadPciMap.end()) {
203 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
204 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
205 // Operands: { Base, Increment, Modifier, Chain }
206 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
207 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
208 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
209 { IntN->getOperand(2), I, IntN->getOperand(4),
210 IntN->getOperand(0) });
211 return Res;
212 }
213
214 return nullptr;
215 }
216
StoreInstrForLoadIntrinsic(MachineSDNode * LoadN,SDNode * IntN)217 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
218 SDNode *IntN) {
219 // The "LoadN" is just a machine load instruction. The intrinsic also
220 // involves storing it. Generate an appropriate store to the location
221 // given in the intrinsic's operand(3).
222 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
223 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
224 HexagonII::MemAccesSizeMask;
225 unsigned Size = 1U << (SizeBits-1);
226
227 SDLoc dl(IntN);
228 MachinePointerInfo PI;
229 SDValue TS;
230 SDValue Loc = IntN->getOperand(3);
231
232 if (Size >= 4)
233 TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
234 Size);
235 else
236 TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
237 PI, MVT::getIntegerVT(Size * 8), Size);
238
239 SDNode *StoreN;
240 {
241 HandleSDNode Handle(TS);
242 SelectStore(TS.getNode());
243 StoreN = Handle.getValue().getNode();
244 }
245
246 // Load's results are { Loaded value, Updated pointer, Chain }
247 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
248 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
249 return StoreN;
250 }
251
tryLoadOfLoadIntrinsic(LoadSDNode * N)252 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
253 // The intrinsics for load circ/brev perform two operations:
254 // 1. Load a value V from the specified location, using the addressing
255 // mode corresponding to the intrinsic.
256 // 2. Store V into a specified location. This location is typically a
257 // local, temporary object.
258 // In many cases, the program using these intrinsics will immediately
259 // load V again from the local object. In those cases, when certain
260 // conditions are met, the last load can be removed.
261 // This function identifies and optimizes this pattern. If the pattern
262 // cannot be optimized, it returns nullptr, which will cause the load
263 // to be selected separately from the intrinsic (which will be handled
264 // in SelectIntrinsicWChain).
265
266 SDValue Ch = N->getOperand(0);
267 SDValue Loc = N->getOperand(1);
268
269 // Assume that the load and the intrinsic are connected directly with a
270 // chain:
271 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
272 // t2: i32,ch = load t1:1, Loc, ...
273 SDNode *C = Ch.getNode();
274
275 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
276 return false;
277
278 // The second load can only be eliminated if its extension type matches
279 // that of the load instruction corresponding to the intrinsic. The user
280 // can provide an address of an unsigned variable to store the result of
281 // a sign-extending intrinsic into (or the other way around).
282 ISD::LoadExtType IntExt;
283 switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
284 case Intrinsic::hexagon_circ_ldub:
285 case Intrinsic::hexagon_circ_lduh:
286 IntExt = ISD::ZEXTLOAD;
287 break;
288 case Intrinsic::hexagon_circ_ldw:
289 case Intrinsic::hexagon_circ_ldd:
290 IntExt = ISD::NON_EXTLOAD;
291 break;
292 default:
293 IntExt = ISD::SEXTLOAD;
294 break;
295 }
296 if (N->getExtensionType() != IntExt)
297 return false;
298
299 // Make sure the target location for the loaded value in the load intrinsic
300 // is the location from which LD (or N) is loading.
301 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
302 return false;
303
304 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
305 SDNode *S = StoreInstrForLoadIntrinsic(L, C);
306 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
307 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
308 ReplaceUses(F, T, array_lengthof(T));
309 // This transformation will leave the intrinsic dead. If it remains in
310 // the DAG, the selection code will see it again, but without the load,
311 // and it will generate a store that is normally required for it.
312 CurDAG->RemoveDeadNode(C);
313 return true;
314 }
315 return false;
316 }
317
318 // Convert the bit-reverse load intrinsic to appropriate target instruction.
SelectBrevLdIntrinsic(SDNode * IntN)319 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
320 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
321 return false;
322
323 const SDLoc &dl(IntN);
324 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
325
326 static const std::map<unsigned, unsigned> LoadBrevMap = {
327 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
328 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
329 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
330 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
331 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
332 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
333 };
334 auto FLI = LoadBrevMap.find(IntNo);
335 if (FLI != LoadBrevMap.end()) {
336 EVT ValTy =
337 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
338 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
339 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
340 // modifier}.
341 // Operands of target instruction: { Base, Modifier, Chain }.
342 MachineSDNode *Res = CurDAG->getMachineNode(
343 FLI->second, dl, RTys,
344 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
345
346 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
347 CurDAG->setNodeMemRefs(Res, {MemOp});
348
349 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
350 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
351 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
352 CurDAG->RemoveDeadNode(IntN);
353 return true;
354 }
355 return false;
356 }
357
358 /// Generate a machine instruction node for the new circlar buffer intrinsics.
359 /// The new versions use a CSx register instead of the K field.
SelectNewCircIntrinsic(SDNode * IntN)360 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
361 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
362 return false;
363
364 SDLoc DL(IntN);
365 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
366 SmallVector<SDValue, 7> Ops;
367
368 static std::map<unsigned,unsigned> LoadNPcMap = {
369 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
370 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
371 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
372 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
373 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
374 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
375 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
376 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
377 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
378 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
379 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
380 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
381 };
382 auto FLI = LoadNPcMap.find (IntNo);
383 if (FLI != LoadNPcMap.end()) {
384 EVT ValTy = MVT::i32;
385 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
386 IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
387 ValTy = MVT::i64;
388 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
389 // Handle load.*_pci case which has 6 operands.
390 if (IntN->getNumOperands() == 6) {
391 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
392 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
393 // Operands: { Base, Increment, Modifier, Start, Chain }.
394 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
395 IntN->getOperand(0) };
396 } else
397 // Handle load.*_pcr case which has 5 operands.
398 // Operands: { Base, Modifier, Start, Chain }.
399 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
400 IntN->getOperand(0) };
401 MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
402 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
403 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
404 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
405 CurDAG->RemoveDeadNode(IntN);
406 return true;
407 }
408
409 static std::map<unsigned,unsigned> StoreNPcMap = {
410 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
411 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
412 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
413 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
414 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
415 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
416 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
417 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
418 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
419 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
420 };
421 auto FSI = StoreNPcMap.find (IntNo);
422 if (FSI != StoreNPcMap.end()) {
423 EVT RTys[] = { MVT::i32, MVT::Other };
424 // Handle store.*_pci case which has 7 operands.
425 if (IntN->getNumOperands() == 7) {
426 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
427 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
428 // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
429 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
430 IntN->getOperand(6), IntN->getOperand(0) };
431 } else
432 // Handle store.*_pcr case which has 6 operands.
433 // Operands: { Base, Modifier, Value, Start, Chain }.
434 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
435 IntN->getOperand(5), IntN->getOperand(0) };
436 MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
437 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
438 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
439 CurDAG->RemoveDeadNode(IntN);
440 return true;
441 }
442
443 return false;
444 }
445
SelectLoad(SDNode * N)446 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
447 SDLoc dl(N);
448 LoadSDNode *LD = cast<LoadSDNode>(N);
449
450 // Handle indexed loads.
451 ISD::MemIndexedMode AM = LD->getAddressingMode();
452 if (AM != ISD::UNINDEXED) {
453 SelectIndexedLoad(LD, dl);
454 return;
455 }
456
457 // Handle patterns using circ/brev load intrinsics.
458 if (tryLoadOfLoadIntrinsic(LD))
459 return;
460
461 SelectCode(LD);
462 }
463
SelectIndexedStore(StoreSDNode * ST,const SDLoc & dl)464 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
465 SDValue Chain = ST->getChain();
466 SDValue Base = ST->getBasePtr();
467 SDValue Offset = ST->getOffset();
468 SDValue Value = ST->getValue();
469 // Get the constant value.
470 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
471 EVT StoredVT = ST->getMemoryVT();
472 EVT ValueVT = Value.getValueType();
473
474 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
475 unsigned Opcode = 0;
476
477 assert(StoredVT.isSimple());
478 switch (StoredVT.getSimpleVT().SimpleTy) {
479 case MVT::i8:
480 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
481 break;
482 case MVT::i16:
483 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
484 break;
485 case MVT::i32:
486 case MVT::f32:
487 case MVT::v2i16:
488 case MVT::v4i8:
489 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
490 break;
491 case MVT::i64:
492 case MVT::f64:
493 case MVT::v2i32:
494 case MVT::v4i16:
495 case MVT::v8i8:
496 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
497 break;
498 case MVT::v64i8:
499 case MVT::v32i16:
500 case MVT::v16i32:
501 case MVT::v8i64:
502 case MVT::v128i8:
503 case MVT::v64i16:
504 case MVT::v32i32:
505 case MVT::v16i64:
506 if (isAlignedMemNode(ST)) {
507 if (ST->isNonTemporal())
508 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
509 else
510 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
511 } else {
512 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
513 }
514 break;
515 default:
516 llvm_unreachable("Unexpected memory type in indexed store");
517 }
518
519 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
520 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
521 Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
522 dl, MVT::i32, Value);
523 }
524
525 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
526 MachineMemOperand *MemOp = ST->getMemOperand();
527
528 // Next address Chain
529 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
530 SDValue To[2];
531
532 if (IsValidInc) {
533 // Build post increment store.
534 SDValue Ops[] = { Base, IncV, Value, Chain };
535 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
536 Ops);
537 CurDAG->setNodeMemRefs(S, {MemOp});
538 To[0] = SDValue(S, 0);
539 To[1] = SDValue(S, 1);
540 } else {
541 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
542 SDValue Ops[] = { Base, Zero, Value, Chain };
543 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
544 CurDAG->setNodeMemRefs(S, {MemOp});
545 To[1] = SDValue(S, 0);
546 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
547 Base, IncV);
548 To[0] = SDValue(A, 0);
549 }
550
551 ReplaceUses(From, To, 2);
552 CurDAG->RemoveDeadNode(ST);
553 }
554
SelectStore(SDNode * N)555 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
556 SDLoc dl(N);
557 StoreSDNode *ST = cast<StoreSDNode>(N);
558
559 // Handle indexed stores.
560 ISD::MemIndexedMode AM = ST->getAddressingMode();
561 if (AM != ISD::UNINDEXED) {
562 SelectIndexedStore(ST, dl);
563 return;
564 }
565
566 SelectCode(ST);
567 }
568
SelectSHL(SDNode * N)569 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
570 SDLoc dl(N);
571 SDValue Shl_0 = N->getOperand(0);
572 SDValue Shl_1 = N->getOperand(1);
573
574 auto Default = [this,N] () -> void { SelectCode(N); };
575
576 if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
577 return Default();
578
579 // RHS is const.
580 int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
581
582 if (Shl_0.getOpcode() == ISD::MUL) {
583 SDValue Mul_0 = Shl_0.getOperand(0); // Val
584 SDValue Mul_1 = Shl_0.getOperand(1); // Const
585 // RHS of mul is const.
586 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
587 int32_t ValConst = C->getSExtValue() << ShlConst;
588 if (isInt<9>(ValConst)) {
589 SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
590 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
591 MVT::i32, Mul_0, Val);
592 ReplaceNode(N, Result);
593 return;
594 }
595 }
596 return Default();
597 }
598
599 if (Shl_0.getOpcode() == ISD::SUB) {
600 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
601 SDValue Sub_1 = Shl_0.getOperand(1); // Val
602 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
603 if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
604 return Default();
605 SDValue Shl2_0 = Sub_1.getOperand(0); // Val
606 SDValue Shl2_1 = Sub_1.getOperand(1); // Const
607 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
608 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
609 if (isInt<9>(-ValConst)) {
610 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
611 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
612 MVT::i32, Shl2_0, Val);
613 ReplaceNode(N, Result);
614 return;
615 }
616 }
617 }
618 }
619
620 return Default();
621 }
622
623 //
624 // Handling intrinsics for circular load and bitreverse load.
625 //
SelectIntrinsicWChain(SDNode * N)626 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
627 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
628 StoreInstrForLoadIntrinsic(L, N);
629 CurDAG->RemoveDeadNode(N);
630 return;
631 }
632
633 // Handle bit-reverse load intrinsics.
634 if (SelectBrevLdIntrinsic(N))
635 return;
636
637 if (SelectNewCircIntrinsic(N))
638 return;
639
640 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
641 if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
642 IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
643 IntNo == Intrinsic::hexagon_V6_vgathermh ||
644 IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
645 IntNo == Intrinsic::hexagon_V6_vgathermhw ||
646 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
647 SelectV65Gather(N);
648 return;
649 }
650 if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
651 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
652 IntNo == Intrinsic::hexagon_V6_vgathermhq ||
653 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
654 IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
655 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
656 SelectV65GatherPred(N);
657 return;
658 }
659
660 SelectCode(N);
661 }
662
SelectIntrinsicWOChain(SDNode * N)663 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
664 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
665 unsigned Bits;
666 switch (IID) {
667 case Intrinsic::hexagon_S2_vsplatrb:
668 Bits = 8;
669 break;
670 case Intrinsic::hexagon_S2_vsplatrh:
671 Bits = 16;
672 break;
673 case Intrinsic::hexagon_V6_vaddcarry:
674 case Intrinsic::hexagon_V6_vaddcarry_128B:
675 case Intrinsic::hexagon_V6_vsubcarry:
676 case Intrinsic::hexagon_V6_vsubcarry_128B:
677 SelectHVXDualOutput(N);
678 return;
679 default:
680 SelectCode(N);
681 return;
682 }
683
684 SDValue V = N->getOperand(1);
685 SDValue U;
686 if (keepsLowBits(V, Bits, U)) {
687 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
688 N->getOperand(0), U);
689 ReplaceNode(N, R.getNode());
690 SelectCode(R.getNode());
691 return;
692 }
693 SelectCode(N);
694 }
695
696 //
697 // Map floating point constant values.
698 //
SelectConstantFP(SDNode * N)699 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
700 SDLoc dl(N);
701 auto *CN = cast<ConstantFPSDNode>(N);
702 APInt A = CN->getValueAPF().bitcastToAPInt();
703 if (N->getValueType(0) == MVT::f32) {
704 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
705 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
706 return;
707 }
708 if (N->getValueType(0) == MVT::f64) {
709 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
710 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
711 return;
712 }
713
714 SelectCode(N);
715 }
716
717 //
718 // Map boolean values.
719 //
SelectConstant(SDNode * N)720 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
721 if (N->getValueType(0) == MVT::i1) {
722 assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1));
723 unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
724 ? Hexagon::PS_true
725 : Hexagon::PS_false;
726 ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
727 return;
728 }
729
730 SelectCode(N);
731 }
732
SelectFrameIndex(SDNode * N)733 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
734 MachineFrameInfo &MFI = MF->getFrameInfo();
735 const HexagonFrameLowering *HFI = HST->getFrameLowering();
736 int FX = cast<FrameIndexSDNode>(N)->getIndex();
737 unsigned StkA = HFI->getStackAlignment();
738 unsigned MaxA = MFI.getMaxAlignment();
739 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
740 SDLoc DL(N);
741 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
742 SDNode *R = nullptr;
743
744 // Use PS_fi when:
745 // - the object is fixed, or
746 // - there are no objects with higher-than-default alignment, or
747 // - there are no dynamically allocated objects.
748 // Otherwise, use PS_fia.
749 if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
750 R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
751 } else {
752 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
753 unsigned AR = HMFI.getStackAlignBaseVReg();
754 SDValue CH = CurDAG->getEntryNode();
755 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
756 R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
757 }
758
759 ReplaceNode(N, R);
760 }
761
SelectAddSubCarry(SDNode * N)762 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
763 unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
764 : Hexagon::A4_subp_c;
765 SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
766 { N->getOperand(0), N->getOperand(1),
767 N->getOperand(2) });
768 ReplaceNode(N, C);
769 }
770
SelectVAlign(SDNode * N)771 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
772 MVT ResTy = N->getValueType(0).getSimpleVT();
773 if (HST->isHVXVectorType(ResTy, true))
774 return SelectHvxVAlign(N);
775
776 const SDLoc &dl(N);
777 unsigned VecLen = ResTy.getSizeInBits();
778 if (VecLen == 32) {
779 SDValue Ops[] = {
780 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
781 N->getOperand(0),
782 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
783 N->getOperand(1),
784 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
785 };
786 SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
787 MVT::i64, Ops);
788
789 // Shift right by "(Addr & 0x3) * 8" bytes.
790 SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
791 SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
792 SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
793 M0, N->getOperand(2), M1);
794 SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
795 SDValue(R, 0), SDValue(C, 0));
796 SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
797 SDValue(S, 0));
798 ReplaceNode(N, E.getNode());
799 } else {
800 assert(VecLen == 64);
801 SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
802 N->getOperand(2));
803 SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
804 N->getOperand(0), N->getOperand(1),
805 SDValue(Pu,0));
806 ReplaceNode(N, VA);
807 }
808 }
809
SelectVAlignAddr(SDNode * N)810 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
811 const SDLoc &dl(N);
812 SDValue A = N->getOperand(1);
813 int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
814 assert(isPowerOf2_32(-Mask));
815
816 SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
817 SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
818 N->getOperand(0), M);
819 ReplaceNode(N, AA);
820 }
821
822 // Handle these nodes here to avoid having to write patterns for all
823 // combinations of input/output types. In all cases, the resulting
824 // instruction is the same.
SelectTypecast(SDNode * N)825 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
826 SDValue Op = N->getOperand(0);
827 MVT OpTy = Op.getValueType().getSimpleVT();
828 SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
829 CurDAG->getVTList(OpTy), {Op});
830 ReplaceNode(T, Op.getNode());
831 }
832
SelectP2D(SDNode * N)833 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
834 MVT ResTy = N->getValueType(0).getSimpleVT();
835 SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
836 N->getOperand(0));
837 ReplaceNode(N, T);
838 }
839
SelectD2P(SDNode * N)840 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
841 const SDLoc &dl(N);
842 MVT ResTy = N->getValueType(0).getSimpleVT();
843 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
844 SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
845 N->getOperand(0), Zero);
846 ReplaceNode(N, T);
847 }
848
SelectV2Q(SDNode * N)849 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
850 const SDLoc &dl(N);
851 MVT ResTy = N->getValueType(0).getSimpleVT();
852 // The argument to V2Q should be a single vector.
853 MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
854 assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits());
855
856 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
857 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
858 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
859 N->getOperand(0), SDValue(R,0));
860 ReplaceNode(N, T);
861 }
862
SelectQ2V(SDNode * N)863 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
864 const SDLoc &dl(N);
865 MVT ResTy = N->getValueType(0).getSimpleVT();
866 // The result of V2Q should be a single vector.
867 assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits());
868
869 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
870 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
871 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
872 N->getOperand(0), SDValue(R,0));
873 ReplaceNode(N, T);
874 }
875
Select(SDNode * N)876 void HexagonDAGToDAGISel::Select(SDNode *N) {
877 if (N->isMachineOpcode())
878 return N->setNodeId(-1); // Already selected.
879
880 switch (N->getOpcode()) {
881 case ISD::Constant: return SelectConstant(N);
882 case ISD::ConstantFP: return SelectConstantFP(N);
883 case ISD::FrameIndex: return SelectFrameIndex(N);
884 case ISD::SHL: return SelectSHL(N);
885 case ISD::LOAD: return SelectLoad(N);
886 case ISD::STORE: return SelectStore(N);
887 case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N);
888 case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N);
889
890 case HexagonISD::ADDC:
891 case HexagonISD::SUBC: return SelectAddSubCarry(N);
892 case HexagonISD::VALIGN: return SelectVAlign(N);
893 case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N);
894 case HexagonISD::TYPECAST: return SelectTypecast(N);
895 case HexagonISD::P2D: return SelectP2D(N);
896 case HexagonISD::D2P: return SelectD2P(N);
897 case HexagonISD::Q2V: return SelectQ2V(N);
898 case HexagonISD::V2Q: return SelectV2Q(N);
899 }
900
901 if (HST->useHVXOps()) {
902 switch (N->getOpcode()) {
903 case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N);
904 case HexagonISD::VROR: return SelectHvxRor(N);
905 }
906 }
907
908 SelectCode(N);
909 }
910
911 bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)912 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
913 std::vector<SDValue> &OutOps) {
914 SDValue Inp = Op, Res;
915
916 switch (ConstraintID) {
917 default:
918 return true;
919 case InlineAsm::Constraint_o: // Offsetable.
920 case InlineAsm::Constraint_v: // Not offsetable.
921 case InlineAsm::Constraint_m: // Memory.
922 if (SelectAddrFI(Inp, Res))
923 OutOps.push_back(Res);
924 else
925 OutOps.push_back(Inp);
926 break;
927 }
928
929 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
930 return false;
931 }
932
933
isMemOPCandidate(SDNode * I,SDNode * U)934 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
935 // I is an operand of U. Check if U is an arithmetic (binary) operation
936 // usable in a memop, where the other operand is a loaded value, and the
937 // result of U is stored in the same location.
938
939 if (!U->hasOneUse())
940 return false;
941 unsigned Opc = U->getOpcode();
942 switch (Opc) {
943 case ISD::ADD:
944 case ISD::SUB:
945 case ISD::AND:
946 case ISD::OR:
947 break;
948 default:
949 return false;
950 }
951
952 SDValue S0 = U->getOperand(0);
953 SDValue S1 = U->getOperand(1);
954 SDValue SY = (S0.getNode() == I) ? S1 : S0;
955
956 SDNode *UUse = *U->use_begin();
957 if (UUse->getNumValues() != 1)
958 return false;
959
960 // Check if one of the inputs to U is a load instruction and the output
961 // is used by a store instruction. If so and they also have the same
962 // base pointer, then don't preoprocess this node sequence as it
963 // can be matched to a memop.
964 SDNode *SYNode = SY.getNode();
965 if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
966 SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
967 SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
968 if (LDBasePtr == STBasePtr)
969 return true;
970 }
971 return false;
972 }
973
974
975 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
976 // (or (select c 0 y) z) -> (select c z (or y z))
ppSimplifyOrSelect0(std::vector<SDNode * > && Nodes)977 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
978 SelectionDAG &DAG = *CurDAG;
979
980 for (auto I : Nodes) {
981 if (I->getOpcode() != ISD::OR)
982 continue;
983
984 auto IsZero = [] (const SDValue &V) -> bool {
985 if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
986 return SC->isNullValue();
987 return false;
988 };
989 auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
990 if (Op.getOpcode() != ISD::SELECT)
991 return false;
992 return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
993 };
994
995 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
996 EVT VT = I->getValueType(0);
997 bool SelN0 = IsSelect0(N0);
998 SDValue SOp = SelN0 ? N0 : N1;
999 SDValue VOp = SelN0 ? N1 : N0;
1000
1001 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1002 SDValue SC = SOp.getOperand(0);
1003 SDValue SX = SOp.getOperand(1);
1004 SDValue SY = SOp.getOperand(2);
1005 SDLoc DLS = SOp;
1006 if (IsZero(SY)) {
1007 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1008 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1009 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1010 } else if (IsZero(SX)) {
1011 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1012 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1013 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1014 }
1015 }
1016 }
1017 }
1018
1019 // Transform: (store ch val (add x (add (shl y c) e)))
1020 // to: (store ch val (add x (shl (add y d) c))),
1021 // where e = (shl d c) for some integer d.
1022 // The purpose of this is to enable generation of loads/stores with
1023 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1024 // value c must be 0, 1 or 2.
ppAddrReorderAddShl(std::vector<SDNode * > && Nodes)1025 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1026 SelectionDAG &DAG = *CurDAG;
1027
1028 for (auto I : Nodes) {
1029 if (I->getOpcode() != ISD::STORE)
1030 continue;
1031
1032 // I matched: (store ch val Off)
1033 SDValue Off = I->getOperand(2);
1034 // Off needs to match: (add x (add (shl y c) (shl d c))))
1035 if (Off.getOpcode() != ISD::ADD)
1036 continue;
1037 // Off matched: (add x T0)
1038 SDValue T0 = Off.getOperand(1);
1039 // T0 needs to match: (add T1 T2):
1040 if (T0.getOpcode() != ISD::ADD)
1041 continue;
1042 // T0 matched: (add T1 T2)
1043 SDValue T1 = T0.getOperand(0);
1044 SDValue T2 = T0.getOperand(1);
1045 // T1 needs to match: (shl y c)
1046 if (T1.getOpcode() != ISD::SHL)
1047 continue;
1048 SDValue C = T1.getOperand(1);
1049 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1050 if (CN == nullptr)
1051 continue;
1052 unsigned CV = CN->getZExtValue();
1053 if (CV > 2)
1054 continue;
1055 // T2 needs to match e, where e = (shl d c) for some d.
1056 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1057 if (EN == nullptr)
1058 continue;
1059 unsigned EV = EN->getZExtValue();
1060 if (EV % (1 << CV) != 0)
1061 continue;
1062 unsigned DV = EV / (1 << CV);
1063
1064 // Replace T0 with: (shl (add y d) c)
1065 SDLoc DL = SDLoc(I);
1066 EVT VT = T0.getValueType();
1067 SDValue D = DAG.getConstant(DV, DL, VT);
1068 // NewAdd = (add y d)
1069 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1070 // NewShl = (shl NewAdd c)
1071 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1072 ReplaceNode(T0.getNode(), NewShl.getNode());
1073 }
1074 }
1075
1076 // Transform: (load ch (add x (and (srl y c) Mask)))
1077 // to: (load ch (add x (shl (srl y d) d-c)))
1078 // where
1079 // Mask = 00..0 111..1 0.0
1080 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1081 // | +-------- 1s
1082 // +-------------- at most c 0s
1083 // Motivating example:
1084 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1085 // to (add x (and (srl y 3) 1FFFFFFC))
1086 // which results in a constant-extended and(##...,lsr). This transformation
1087 // undoes this simplification for cases where the shl can be folded into
1088 // an addressing mode.
ppAddrRewriteAndSrl(std::vector<SDNode * > && Nodes)1089 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1090 SelectionDAG &DAG = *CurDAG;
1091
1092 for (SDNode *N : Nodes) {
1093 unsigned Opc = N->getOpcode();
1094 if (Opc != ISD::LOAD && Opc != ISD::STORE)
1095 continue;
1096 SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1097 // Addr must match: (add x T0)
1098 if (Addr.getOpcode() != ISD::ADD)
1099 continue;
1100 SDValue T0 = Addr.getOperand(1);
1101 // T0 must match: (and T1 Mask)
1102 if (T0.getOpcode() != ISD::AND)
1103 continue;
1104
1105 // We have an AND.
1106 //
1107 // Check the first operand. It must be: (srl y c).
1108 SDValue S = T0.getOperand(0);
1109 if (S.getOpcode() != ISD::SRL)
1110 continue;
1111 ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1112 if (SN == nullptr)
1113 continue;
1114 if (SN->getAPIntValue().getBitWidth() != 32)
1115 continue;
1116 uint32_t CV = SN->getZExtValue();
1117
1118 // Check the second operand: the supposed mask.
1119 ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1120 if (MN == nullptr)
1121 continue;
1122 if (MN->getAPIntValue().getBitWidth() != 32)
1123 continue;
1124 uint32_t Mask = MN->getZExtValue();
1125 // Examine the mask.
1126 uint32_t TZ = countTrailingZeros(Mask);
1127 uint32_t M1 = countTrailingOnes(Mask >> TZ);
1128 uint32_t LZ = countLeadingZeros(Mask);
1129 // Trailing zeros + middle ones + leading zeros must equal the width.
1130 if (TZ + M1 + LZ != 32)
1131 continue;
1132 // The number of trailing zeros will be encoded in the addressing mode.
1133 if (TZ > 2)
1134 continue;
1135 // The number of leading zeros must be at most c.
1136 if (LZ > CV)
1137 continue;
1138
1139 // All looks good.
1140 SDValue Y = S.getOperand(0);
1141 EVT VT = Addr.getValueType();
1142 SDLoc dl(S);
1143 // TZ = D-C, so D = TZ+C.
1144 SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1145 SDValue DC = DAG.getConstant(TZ, dl, VT);
1146 SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1147 SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1148 ReplaceNode(T0.getNode(), NewShl.getNode());
1149 }
1150 }
1151
1152 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1153 // (op ... 1 ...))
ppHoistZextI1(std::vector<SDNode * > && Nodes)1154 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1155 SelectionDAG &DAG = *CurDAG;
1156
1157 for (SDNode *N : Nodes) {
1158 unsigned Opc = N->getOpcode();
1159 if (Opc != ISD::ZERO_EXTEND)
1160 continue;
1161 SDValue OpI1 = N->getOperand(0);
1162 EVT OpVT = OpI1.getValueType();
1163 if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1164 continue;
1165 for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1166 SDNode *U = *I;
1167 if (U->getNumValues() != 1)
1168 continue;
1169 EVT UVT = U->getValueType(0);
1170 if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1171 continue;
1172 if (isMemOPCandidate(N, U))
1173 continue;
1174
1175 // Potentially simplifiable operation.
1176 unsigned I1N = I.getOperandNo();
1177 SmallVector<SDValue,2> Ops(U->getNumOperands());
1178 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1179 Ops[i] = U->getOperand(i);
1180 EVT BVT = Ops[I1N].getValueType();
1181
1182 SDLoc dl(U);
1183 SDValue C0 = DAG.getConstant(0, dl, BVT);
1184 SDValue C1 = DAG.getConstant(1, dl, BVT);
1185 SDValue If0, If1;
1186
1187 if (isa<MachineSDNode>(U)) {
1188 unsigned UseOpc = U->getMachineOpcode();
1189 Ops[I1N] = C0;
1190 If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1191 Ops[I1N] = C1;
1192 If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1193 } else {
1194 unsigned UseOpc = U->getOpcode();
1195 Ops[I1N] = C0;
1196 If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1197 Ops[I1N] = C1;
1198 If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1199 }
1200 SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0);
1201 DAG.ReplaceAllUsesWith(U, Sel.getNode());
1202 }
1203 }
1204 }
1205
PreprocessISelDAG()1206 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1207 // Repack all nodes before calling each preprocessing function,
1208 // because each of them can modify the set of nodes.
1209 auto getNodes = [this] () -> std::vector<SDNode*> {
1210 std::vector<SDNode*> T;
1211 T.reserve(CurDAG->allnodes_size());
1212 for (SDNode &N : CurDAG->allnodes())
1213 T.push_back(&N);
1214 return T;
1215 };
1216
1217 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
1218 // (or (select c 0 y) z) -> (select c z (or y z))
1219 ppSimplifyOrSelect0(getNodes());
1220
1221 // Transform: (store ch val (add x (add (shl y c) e)))
1222 // to: (store ch val (add x (shl (add y d) c))),
1223 // where e = (shl d c) for some integer d.
1224 // The purpose of this is to enable generation of loads/stores with
1225 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1226 // value c must be 0, 1 or 2.
1227 ppAddrReorderAddShl(getNodes());
1228
1229 // Transform: (load ch (add x (and (srl y c) Mask)))
1230 // to: (load ch (add x (shl (srl y d) d-c)))
1231 // where
1232 // Mask = 00..0 111..1 0.0
1233 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1234 // | +-------- 1s
1235 // +-------------- at most c 0s
1236 // Motivating example:
1237 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1238 // to (add x (and (srl y 3) 1FFFFFFC))
1239 // which results in a constant-extended and(##...,lsr). This transformation
1240 // undoes this simplification for cases where the shl can be folded into
1241 // an addressing mode.
1242 ppAddrRewriteAndSrl(getNodes());
1243
1244 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1245 // (op ... 1 ...))
1246 ppHoistZextI1(getNodes());
1247
1248 DEBUG_WITH_TYPE("isel", {
1249 dbgs() << "Preprocessed (Hexagon) selection DAG:";
1250 CurDAG->dump();
1251 });
1252
1253 if (EnableAddressRebalancing) {
1254 rebalanceAddressTrees();
1255
1256 DEBUG_WITH_TYPE("isel", {
1257 dbgs() << "Address tree balanced selection DAG:";
1258 CurDAG->dump();
1259 });
1260 }
1261 }
1262
EmitFunctionEntryCode()1263 void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
1264 auto &HST = MF->getSubtarget<HexagonSubtarget>();
1265 auto &HFI = *HST.getFrameLowering();
1266 if (!HFI.needsAligna(*MF))
1267 return;
1268
1269 MachineFrameInfo &MFI = MF->getFrameInfo();
1270 MachineBasicBlock *EntryBB = &MF->front();
1271 unsigned AR = FuncInfo->CreateReg(MVT::i32);
1272 unsigned EntryMaxA = MFI.getMaxAlignment();
1273 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR)
1274 .addImm(EntryMaxA);
1275 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
1276 }
1277
updateAligna()1278 void HexagonDAGToDAGISel::updateAligna() {
1279 auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering();
1280 if (!HFI.needsAligna(*MF))
1281 return;
1282 auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF));
1283 assert(AlignaI != nullptr);
1284 unsigned MaxA = MF->getFrameInfo().getMaxAlignment();
1285 if (AlignaI->getOperand(1).getImm() < MaxA)
1286 AlignaI->getOperand(1).setImm(MaxA);
1287 }
1288
1289 // Match a frame index that can be used in an addressing mode.
SelectAddrFI(SDValue & N,SDValue & R)1290 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1291 if (N.getOpcode() != ISD::FrameIndex)
1292 return false;
1293 auto &HFI = *HST->getFrameLowering();
1294 MachineFrameInfo &MFI = MF->getFrameInfo();
1295 int FX = cast<FrameIndexSDNode>(N)->getIndex();
1296 if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1297 return false;
1298 R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1299 return true;
1300 }
1301
SelectAddrGA(SDValue & N,SDValue & R)1302 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1303 return SelectGlobalAddress(N, R, false, 0);
1304 }
1305
SelectAddrGP(SDValue & N,SDValue & R)1306 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1307 return SelectGlobalAddress(N, R, true, 0);
1308 }
1309
SelectAnyImm(SDValue & N,SDValue & R)1310 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1311 return SelectAnyImmediate(N, R, 0);
1312 }
1313
SelectAnyImm0(SDValue & N,SDValue & R)1314 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1315 return SelectAnyImmediate(N, R, 0);
1316 }
SelectAnyImm1(SDValue & N,SDValue & R)1317 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1318 return SelectAnyImmediate(N, R, 1);
1319 }
SelectAnyImm2(SDValue & N,SDValue & R)1320 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1321 return SelectAnyImmediate(N, R, 2);
1322 }
SelectAnyImm3(SDValue & N,SDValue & R)1323 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1324 return SelectAnyImmediate(N, R, 3);
1325 }
1326
SelectAnyInt(SDValue & N,SDValue & R)1327 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1328 EVT T = N.getValueType();
1329 if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1330 return false;
1331 R = N;
1332 return true;
1333 }
1334
SelectAnyImmediate(SDValue & N,SDValue & R,uint32_t LogAlign)1335 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1336 uint32_t LogAlign) {
1337 auto IsAligned = [LogAlign] (uint64_t V) -> bool {
1338 return alignTo(V, (uint64_t)1 << LogAlign) == V;
1339 };
1340
1341 switch (N.getOpcode()) {
1342 case ISD::Constant: {
1343 if (N.getValueType() != MVT::i32)
1344 return false;
1345 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1346 if (!IsAligned(V))
1347 return false;
1348 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1349 return true;
1350 }
1351 case HexagonISD::JT:
1352 case HexagonISD::CP:
1353 // These are assumed to always be aligned at least 8-byte boundary.
1354 if (LogAlign > 3)
1355 return false;
1356 R = N.getOperand(0);
1357 return true;
1358 case ISD::ExternalSymbol:
1359 // Symbols may be aligned at any boundary.
1360 if (LogAlign > 0)
1361 return false;
1362 R = N;
1363 return true;
1364 case ISD::BlockAddress:
1365 // Block address is always aligned at least 4-byte boundary.
1366 if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset()))
1367 return false;
1368 R = N;
1369 return true;
1370 }
1371
1372 if (SelectGlobalAddress(N, R, false, LogAlign) ||
1373 SelectGlobalAddress(N, R, true, LogAlign))
1374 return true;
1375
1376 return false;
1377 }
1378
SelectGlobalAddress(SDValue & N,SDValue & R,bool UseGP,uint32_t LogAlign)1379 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1380 bool UseGP, uint32_t LogAlign) {
1381 auto IsAligned = [LogAlign] (uint64_t V) -> bool {
1382 return alignTo(V, (uint64_t)1 << LogAlign) == V;
1383 };
1384
1385 switch (N.getOpcode()) {
1386 case ISD::ADD: {
1387 SDValue N0 = N.getOperand(0);
1388 SDValue N1 = N.getOperand(1);
1389 unsigned GAOpc = N0.getOpcode();
1390 if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1391 return false;
1392 if (!UseGP && GAOpc != HexagonISD::CONST32)
1393 return false;
1394 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1395 SDValue Addr = N0.getOperand(0);
1396 // For the purpose of alignment, sextvalue and zextvalue are the same.
1397 if (!IsAligned(Const->getZExtValue()))
1398 return false;
1399 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1400 if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1401 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1402 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1403 N.getValueType(), NewOff);
1404 return true;
1405 }
1406 }
1407 }
1408 break;
1409 }
1410 case HexagonISD::CP:
1411 case HexagonISD::JT:
1412 case HexagonISD::CONST32:
1413 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1414 // want in the instruction.
1415 if (!UseGP)
1416 R = N.getOperand(0);
1417 return !UseGP;
1418 case HexagonISD::CONST32_GP:
1419 if (UseGP)
1420 R = N.getOperand(0);
1421 return UseGP;
1422 default:
1423 return false;
1424 }
1425
1426 return false;
1427 }
1428
DetectUseSxtw(SDValue & N,SDValue & R)1429 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1430 // This (complex pattern) function is meant to detect a sign-extension
1431 // i32->i64 on a per-operand basis. This would allow writing single
1432 // patterns that would cover a number of combinations of different ways
1433 // a sign-extensions could be written. For example:
1434 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1435 // could match either one of these:
1436 // (mul (sext x) (sext_inreg y))
1437 // (mul (sext-load *p) (sext_inreg y))
1438 // (mul (sext_inreg x) (sext y))
1439 // etc.
1440 //
1441 // The returned value will have type i64 and its low word will
1442 // contain the value being extended. The high bits are not specified.
1443 // The returned type is i64 because the original type of N was i64,
1444 // but the users of this function should only use the low-word of the
1445 // result, e.g.
1446 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1447
1448 if (N.getValueType() != MVT::i64)
1449 return false;
1450 unsigned Opc = N.getOpcode();
1451 switch (Opc) {
1452 case ISD::SIGN_EXTEND:
1453 case ISD::SIGN_EXTEND_INREG: {
1454 // sext_inreg has the source type as a separate operand.
1455 EVT T = Opc == ISD::SIGN_EXTEND
1456 ? N.getOperand(0).getValueType()
1457 : cast<VTSDNode>(N.getOperand(1))->getVT();
1458 unsigned SW = T.getSizeInBits();
1459 if (SW == 32)
1460 R = N.getOperand(0);
1461 else if (SW < 32)
1462 R = N;
1463 else
1464 return false;
1465 break;
1466 }
1467 case ISD::LOAD: {
1468 LoadSDNode *L = cast<LoadSDNode>(N);
1469 if (L->getExtensionType() != ISD::SEXTLOAD)
1470 return false;
1471 // All extending loads extend to i32, so even if the value in
1472 // memory is shorter than 32 bits, it will be i32 after the load.
1473 if (L->getMemoryVT().getSizeInBits() > 32)
1474 return false;
1475 R = N;
1476 break;
1477 }
1478 case ISD::SRA: {
1479 auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1480 if (!S || S->getZExtValue() != 32)
1481 return false;
1482 R = N;
1483 break;
1484 }
1485 default:
1486 return false;
1487 }
1488 EVT RT = R.getValueType();
1489 if (RT == MVT::i64)
1490 return true;
1491 assert(RT == MVT::i32);
1492 // This is only to produce a value of type i64. Do not rely on the
1493 // high bits produced by this.
1494 const SDLoc &dl(N);
1495 SDValue Ops[] = {
1496 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1497 R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1498 R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1499 };
1500 SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1501 MVT::i64, Ops);
1502 R = SDValue(T, 0);
1503 return true;
1504 }
1505
keepsLowBits(const SDValue & Val,unsigned NumBits,SDValue & Src)1506 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1507 SDValue &Src) {
1508 unsigned Opc = Val.getOpcode();
1509 switch (Opc) {
1510 case ISD::SIGN_EXTEND:
1511 case ISD::ZERO_EXTEND:
1512 case ISD::ANY_EXTEND: {
1513 const SDValue &Op0 = Val.getOperand(0);
1514 EVT T = Op0.getValueType();
1515 if (T.isInteger() && T.getSizeInBits() == NumBits) {
1516 Src = Op0;
1517 return true;
1518 }
1519 break;
1520 }
1521 case ISD::SIGN_EXTEND_INREG:
1522 case ISD::AssertSext:
1523 case ISD::AssertZext:
1524 if (Val.getOperand(0).getValueType().isInteger()) {
1525 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1526 if (T->getVT().getSizeInBits() == NumBits) {
1527 Src = Val.getOperand(0);
1528 return true;
1529 }
1530 }
1531 break;
1532 case ISD::AND: {
1533 // Check if this is an AND with NumBits of lower bits set to 1.
1534 uint64_t Mask = (1 << NumBits) - 1;
1535 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1536 if (C->getZExtValue() == Mask) {
1537 Src = Val.getOperand(1);
1538 return true;
1539 }
1540 }
1541 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1542 if (C->getZExtValue() == Mask) {
1543 Src = Val.getOperand(0);
1544 return true;
1545 }
1546 }
1547 break;
1548 }
1549 case ISD::OR:
1550 case ISD::XOR: {
1551 // OR/XOR with the lower NumBits bits set to 0.
1552 uint64_t Mask = (1 << NumBits) - 1;
1553 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1554 if ((C->getZExtValue() & Mask) == 0) {
1555 Src = Val.getOperand(1);
1556 return true;
1557 }
1558 }
1559 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1560 if ((C->getZExtValue() & Mask) == 0) {
1561 Src = Val.getOperand(0);
1562 return true;
1563 }
1564 }
1565 break;
1566 }
1567 default:
1568 break;
1569 }
1570 return false;
1571 }
1572
isAlignedMemNode(const MemSDNode * N) const1573 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1574 return N->getAlignment() >= N->getMemoryVT().getStoreSize();
1575 }
1576
isSmallStackStore(const StoreSDNode * N) const1577 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1578 unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1579 switch (N->getMemoryVT().getStoreSize()) {
1580 case 1:
1581 return StackSize <= 56; // 1*2^6 - 8
1582 case 2:
1583 return StackSize <= 120; // 2*2^6 - 8
1584 case 4:
1585 return StackSize <= 248; // 4*2^6 - 8
1586 default:
1587 return false;
1588 }
1589 }
1590
1591 // Return true when the given node fits in a positive half word.
isPositiveHalfWord(const SDNode * N) const1592 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1593 if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1594 int64_t V = CN->getSExtValue();
1595 return V > 0 && isInt<16>(V);
1596 }
1597 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1598 const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1599 return VN->getVT().getSizeInBits() <= 16;
1600 }
1601 return false;
1602 }
1603
hasOneUse(const SDNode * N) const1604 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1605 return !CheckSingleUse || N->hasOneUse();
1606 }
1607
1608 ////////////////////////////////////////////////////////////////////////////////
1609 // Rebalancing of address calculation trees
1610
isOpcodeHandled(const SDNode * N)1611 static bool isOpcodeHandled(const SDNode *N) {
1612 switch (N->getOpcode()) {
1613 case ISD::ADD:
1614 case ISD::MUL:
1615 return true;
1616 case ISD::SHL:
1617 // We only handle constant shifts because these can be easily flattened
1618 // into multiplications by 2^Op1.
1619 return isa<ConstantSDNode>(N->getOperand(1).getNode());
1620 default:
1621 return false;
1622 }
1623 }
1624
1625 /// Return the weight of an SDNode
getWeight(SDNode * N)1626 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1627 if (!isOpcodeHandled(N))
1628 return 1;
1629 assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1630 assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1631 assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1632 return RootWeights[N];
1633 }
1634
getHeight(SDNode * N)1635 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1636 if (!isOpcodeHandled(N))
1637 return 0;
1638 assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1639 "Cannot query height of unvisited/RAUW'd node!");
1640 return RootHeights[N];
1641 }
1642
1643 namespace {
1644 struct WeightedLeaf {
1645 SDValue Value;
1646 int Weight;
1647 int InsertionOrder;
1648
WeightedLeaf__anon49c974cb0811::WeightedLeaf1649 WeightedLeaf() : Value(SDValue()) { }
1650
WeightedLeaf__anon49c974cb0811::WeightedLeaf1651 WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1652 Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1653 assert(Weight >= 0 && "Weight must be >= 0");
1654 }
1655
Compare__anon49c974cb0811::WeightedLeaf1656 static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1657 assert(A.Value.getNode() && B.Value.getNode());
1658 return A.Weight == B.Weight ?
1659 (A.InsertionOrder > B.InsertionOrder) :
1660 (A.Weight > B.Weight);
1661 }
1662 };
1663
1664 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1665 /// constants and allows removal of non-top elements while maintaining the
1666 /// priority order.
1667 class LeafPrioQueue {
1668 SmallVector<WeightedLeaf, 8> Q;
1669 bool HaveConst;
1670 WeightedLeaf ConstElt;
1671 unsigned Opcode;
1672
1673 public:
empty()1674 bool empty() {
1675 return (!HaveConst && Q.empty());
1676 }
1677
size()1678 size_t size() {
1679 return Q.size() + HaveConst;
1680 }
1681
hasConst()1682 bool hasConst() {
1683 return HaveConst;
1684 }
1685
top()1686 const WeightedLeaf &top() {
1687 if (HaveConst)
1688 return ConstElt;
1689 return Q.front();
1690 }
1691
pop()1692 WeightedLeaf pop() {
1693 if (HaveConst) {
1694 HaveConst = false;
1695 return ConstElt;
1696 }
1697 std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1698 return Q.pop_back_val();
1699 }
1700
push(WeightedLeaf L,bool SeparateConst=true)1701 void push(WeightedLeaf L, bool SeparateConst=true) {
1702 if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1703 if (Opcode == ISD::MUL &&
1704 cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1705 return;
1706 if (Opcode == ISD::ADD &&
1707 cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1708 return;
1709
1710 HaveConst = true;
1711 ConstElt = L;
1712 } else {
1713 Q.push_back(L);
1714 std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1715 }
1716 }
1717
1718 /// Push L to the bottom of the queue regardless of its weight. If L is
1719 /// constant, it will not be folded with other constants in the queue.
pushToBottom(WeightedLeaf L)1720 void pushToBottom(WeightedLeaf L) {
1721 L.Weight = 1000;
1722 push(L, false);
1723 }
1724
1725 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1726 /// lowest weight and remove it from the queue.
1727 WeightedLeaf findSHL(uint64_t MaxAmount);
1728
1729 WeightedLeaf findMULbyConst();
1730
LeafPrioQueue(unsigned Opcode)1731 LeafPrioQueue(unsigned Opcode) :
1732 HaveConst(false), Opcode(Opcode) { }
1733 };
1734 } // end anonymous namespace
1735
findSHL(uint64_t MaxAmount)1736 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1737 int ResultPos;
1738 WeightedLeaf Result;
1739
1740 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1741 const WeightedLeaf &L = Q[Pos];
1742 const SDValue &Val = L.Value;
1743 if (Val.getOpcode() != ISD::SHL ||
1744 !isa<ConstantSDNode>(Val.getOperand(1)) ||
1745 Val.getConstantOperandVal(1) > MaxAmount)
1746 continue;
1747 if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1748 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1749 {
1750 Result = L;
1751 ResultPos = Pos;
1752 }
1753 }
1754
1755 if (Result.Value.getNode()) {
1756 Q.erase(&Q[ResultPos]);
1757 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1758 }
1759
1760 return Result;
1761 }
1762
findMULbyConst()1763 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1764 int ResultPos;
1765 WeightedLeaf Result;
1766
1767 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1768 const WeightedLeaf &L = Q[Pos];
1769 const SDValue &Val = L.Value;
1770 if (Val.getOpcode() != ISD::MUL ||
1771 !isa<ConstantSDNode>(Val.getOperand(1)) ||
1772 Val.getConstantOperandVal(1) > 127)
1773 continue;
1774 if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1775 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1776 {
1777 Result = L;
1778 ResultPos = Pos;
1779 }
1780 }
1781
1782 if (Result.Value.getNode()) {
1783 Q.erase(&Q[ResultPos]);
1784 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1785 }
1786
1787 return Result;
1788 }
1789
getMultiplierForSHL(SDNode * N)1790 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1791 uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1792 return CurDAG->getConstant(MulFactor, SDLoc(N),
1793 N->getOperand(1).getValueType());
1794 }
1795
1796 /// @returns the value x for which 2^x is a factor of Val
getPowerOf2Factor(SDValue Val)1797 static unsigned getPowerOf2Factor(SDValue Val) {
1798 if (Val.getOpcode() == ISD::MUL) {
1799 unsigned MaxFactor = 0;
1800 for (int i = 0; i < 2; ++i) {
1801 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1802 if (!C)
1803 continue;
1804 const APInt &CInt = C->getAPIntValue();
1805 if (CInt.getBoolValue())
1806 MaxFactor = CInt.countTrailingZeros();
1807 }
1808 return MaxFactor;
1809 }
1810 if (Val.getOpcode() == ISD::SHL) {
1811 if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1812 return 0;
1813 return (unsigned) Val.getConstantOperandVal(1);
1814 }
1815
1816 return 0;
1817 }
1818
1819 /// @returns true if V>>Amount will eliminate V's operation on its child
willShiftRightEliminate(SDValue V,unsigned Amount)1820 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1821 if (V.getOpcode() == ISD::MUL) {
1822 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1823 for (int i = 0; i < 2; ++i)
1824 if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1825 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1826 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1827 return (NewConst == 1);
1828 }
1829 } else if (V.getOpcode() == ISD::SHL) {
1830 return (Amount == V.getConstantOperandVal(1));
1831 }
1832
1833 return false;
1834 }
1835
factorOutPowerOf2(SDValue V,unsigned Power)1836 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1837 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1838 if (V.getOpcode() == ISD::MUL) {
1839 for (int i=0; i < 2; ++i) {
1840 if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1841 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1842 uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
1843 if (NewConst == 1)
1844 return Ops[!i];
1845 Ops[i] = CurDAG->getConstant(NewConst,
1846 SDLoc(V), V.getValueType());
1847 break;
1848 }
1849 }
1850 } else if (V.getOpcode() == ISD::SHL) {
1851 uint64_t ShiftAmount = V.getConstantOperandVal(1);
1852 if (ShiftAmount == Power)
1853 return Ops[0];
1854 Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
1855 SDLoc(V), V.getValueType());
1856 }
1857
1858 return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
1859 }
1860
isTargetConstant(const SDValue & V)1861 static bool isTargetConstant(const SDValue &V) {
1862 return V.getOpcode() == HexagonISD::CONST32 ||
1863 V.getOpcode() == HexagonISD::CONST32_GP;
1864 }
1865
getUsesInFunction(const Value * V)1866 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
1867 if (GAUsesInFunction.count(V))
1868 return GAUsesInFunction[V];
1869
1870 unsigned Result = 0;
1871 const Function &CurF = CurDAG->getMachineFunction().getFunction();
1872 for (const User *U : V->users()) {
1873 if (isa<Instruction>(U) &&
1874 cast<Instruction>(U)->getParent()->getParent() == &CurF)
1875 ++Result;
1876 }
1877
1878 GAUsesInFunction[V] = Result;
1879
1880 return Result;
1881 }
1882
1883 /// Note - After calling this, N may be dead. It may have been replaced by a
1884 /// new node, so always use the returned value in place of N.
1885 ///
1886 /// @returns The SDValue taking the place of N (which could be N if it is
1887 /// unchanged)
balanceSubTree(SDNode * N,bool TopLevel)1888 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
1889 assert(RootWeights.count(N) && "Cannot balance non-root node.");
1890 assert(RootWeights[N] != -2 && "This node was RAUW'd!");
1891 assert(!TopLevel || N->getOpcode() == ISD::ADD);
1892
1893 // Return early if this node was already visited
1894 if (RootWeights[N] != -1)
1895 return SDValue(N, 0);
1896
1897 assert(isOpcodeHandled(N));
1898
1899 SDValue Op0 = N->getOperand(0);
1900 SDValue Op1 = N->getOperand(1);
1901
1902 // Return early if the operands will remain unchanged or are all roots
1903 if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
1904 (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
1905 SDNode *Op0N = Op0.getNode();
1906 int Weight;
1907 if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
1908 Weight = getWeight(balanceSubTree(Op0N).getNode());
1909 // Weight = calculateWeight(Op0N);
1910 } else
1911 Weight = getWeight(Op0N);
1912
1913 SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
1914 if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
1915 Weight += getWeight(balanceSubTree(Op1N).getNode());
1916 // Weight += calculateWeight(Op1N);
1917 } else
1918 Weight += getWeight(Op1N);
1919
1920 RootWeights[N] = Weight;
1921 RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
1922 getHeight(N->getOperand(1).getNode())) + 1;
1923
1924 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1925 << " Height=" << RootHeights[N] << "): ");
1926 LLVM_DEBUG(N->dump(CurDAG));
1927
1928 return SDValue(N, 0);
1929 }
1930
1931 LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1932 LLVM_DEBUG(N->dump(CurDAG));
1933
1934 unsigned NOpcode = N->getOpcode();
1935
1936 LeafPrioQueue Leaves(NOpcode);
1937 SmallVector<SDValue, 4> Worklist;
1938 Worklist.push_back(SDValue(N, 0));
1939
1940 // SHL nodes will be converted to MUL nodes
1941 if (NOpcode == ISD::SHL)
1942 NOpcode = ISD::MUL;
1943
1944 bool CanFactorize = false;
1945 WeightedLeaf Mul1, Mul2;
1946 unsigned MaxPowerOf2 = 0;
1947 WeightedLeaf GA;
1948
1949 // Do not try to factor out a shift if there is already a shift at the tip of
1950 // the tree.
1951 bool HaveTopLevelShift = false;
1952 if (TopLevel &&
1953 ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
1954 Op0.getConstantOperandVal(1) < 4) ||
1955 (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
1956 Op1.getConstantOperandVal(1) < 4)))
1957 HaveTopLevelShift = true;
1958
1959 // Flatten the subtree into an ordered list of leaves; at the same time
1960 // determine whether the tree is already balanced.
1961 int InsertionOrder = 0;
1962 SmallDenseMap<SDValue, int> NodeHeights;
1963 bool Imbalanced = false;
1964 int CurrentWeight = 0;
1965 while (!Worklist.empty()) {
1966 SDValue Child = Worklist.pop_back_val();
1967
1968 if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
1969 // CASE 1: Child is a root note
1970
1971 int Weight = RootWeights[Child.getNode()];
1972 if (Weight == -1) {
1973 Child = balanceSubTree(Child.getNode());
1974 // calculateWeight(Child.getNode());
1975 Weight = getWeight(Child.getNode());
1976 } else if (Weight == -2) {
1977 // Whoops, this node was RAUWd by one of the balanceSubTree calls we
1978 // made. Our worklist isn't up to date anymore.
1979 // Restart the whole process.
1980 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
1981 return balanceSubTree(N, TopLevel);
1982 }
1983
1984 NodeHeights[Child] = 1;
1985 CurrentWeight += Weight;
1986
1987 unsigned PowerOf2;
1988 if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
1989 (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
1990 Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
1991 // Try to identify two factorizable MUL/SHL children greedily. Leave
1992 // them out of the priority queue for now so we can deal with them
1993 // after.
1994 if (!Mul1.Value.getNode()) {
1995 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
1996 MaxPowerOf2 = PowerOf2;
1997 } else {
1998 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
1999 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
2000
2001 // Our addressing modes can only shift by a maximum of 3
2002 if (MaxPowerOf2 > 3)
2003 MaxPowerOf2 = 3;
2004
2005 CanFactorize = true;
2006 }
2007 } else
2008 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2009 } else if (!isOpcodeHandled(Child.getNode())) {
2010 // CASE 2: Child is an unhandled kind of node (e.g. constant)
2011 int Weight = getWeight(Child.getNode());
2012
2013 NodeHeights[Child] = getHeight(Child.getNode());
2014 CurrentWeight += Weight;
2015
2016 if (isTargetConstant(Child) && !GA.Value.getNode())
2017 GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2018 else
2019 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2020 } else {
2021 // CASE 3: Child is a subtree of same opcode
2022 // Visit children first, then flatten.
2023 unsigned ChildOpcode = Child.getOpcode();
2024 assert(ChildOpcode == NOpcode ||
2025 (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2026
2027 // Convert SHL to MUL
2028 SDValue Op1;
2029 if (ChildOpcode == ISD::SHL)
2030 Op1 = getMultiplierForSHL(Child.getNode());
2031 else
2032 Op1 = Child->getOperand(1);
2033
2034 if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2035 assert(!NodeHeights.count(Child) && "Parent visited before children?");
2036 // Visit children first, then re-visit this node
2037 Worklist.push_back(Child);
2038 Worklist.push_back(Op1);
2039 Worklist.push_back(Child->getOperand(0));
2040 } else {
2041 // Back at this node after visiting the children
2042 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2043 Imbalanced = true;
2044
2045 NodeHeights[Child] = std::max(NodeHeights[Op1],
2046 NodeHeights[Child->getOperand(0)]) + 1;
2047 }
2048 }
2049 }
2050
2051 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2052 << " weight=" << CurrentWeight
2053 << " imbalanced=" << Imbalanced << "\n");
2054
2055 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2056 // This factors out a shift in order to match memw(a<<Y+b).
2057 if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2058 willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2059 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2060 int Weight = Mul1.Weight + Mul2.Weight;
2061 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2062 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2063 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2064 SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2065 Mul1Factored, Mul2Factored);
2066 SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2067 Mul1.Value.getValueType());
2068 SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2069 Sum, Const);
2070 NodeHeights[New] = Height;
2071 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2072 } else if (Mul1.Value.getNode()) {
2073 // We failed to factorize two MULs, so now the Muls are left outside the
2074 // queue... add them back.
2075 Leaves.push(Mul1);
2076 if (Mul2.Value.getNode())
2077 Leaves.push(Mul2);
2078 CanFactorize = false;
2079 }
2080
2081 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2082 // and the root node itself is not used more than twice. This reduces the
2083 // amount of additional constant extenders introduced by this optimization.
2084 bool CombinedGA = false;
2085 if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2086 GA.Value.hasOneUse() && N->use_size() < 3) {
2087 GlobalAddressSDNode *GANode =
2088 cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2089 ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2090
2091 if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2092 getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2093 LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2094 << Offset->getSExtValue() << "): ");
2095 LLVM_DEBUG(GANode->dump(CurDAG));
2096
2097 SDValue NewTGA =
2098 CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2099 GANode->getValueType(0),
2100 GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2101 GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2102 GA.Value.getValueType(), NewTGA);
2103 GA.Weight += Leaves.top().Weight;
2104
2105 NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2106 CombinedGA = true;
2107
2108 Leaves.pop(); // Remove the offset constant from the queue
2109 }
2110 }
2111
2112 if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2113 (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2114 RootWeights[N] = CurrentWeight;
2115 RootHeights[N] = NodeHeights[SDValue(N, 0)];
2116
2117 return SDValue(N, 0);
2118 }
2119
2120 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2121 if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2122 WeightedLeaf SHL = Leaves.findSHL(31);
2123 if (SHL.Value.getNode()) {
2124 int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2125 GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2126 GA.Value.getValueType(),
2127 GA.Value, SHL.Value);
2128 GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2129 NodeHeights[GA.Value] = Height;
2130 }
2131 }
2132
2133 if (GA.Value.getNode())
2134 Leaves.push(GA);
2135
2136 // If this is the top level and we haven't factored out a shift, we should try
2137 // to move a constant to the bottom to match addressing modes like memw(rX+C)
2138 if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2139 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2140 Leaves.pushToBottom(Leaves.pop());
2141 }
2142
2143 const DataLayout &DL = CurDAG->getDataLayout();
2144 const TargetLowering &TLI = *getTargetLowering();
2145
2146 // Rebuild the tree using Huffman's algorithm
2147 while (Leaves.size() > 1) {
2148 WeightedLeaf L0 = Leaves.pop();
2149
2150 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2151 // otherwise just get the next leaf
2152 WeightedLeaf L1 = Leaves.findMULbyConst();
2153 if (!L1.Value.getNode())
2154 L1 = Leaves.pop();
2155
2156 assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2157
2158 SDValue V0 = L0.Value;
2159 int V0Weight = L0.Weight;
2160 SDValue V1 = L1.Value;
2161 int V1Weight = L1.Weight;
2162
2163 // Make sure that none of these nodes have been RAUW'd
2164 if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2165 (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2166 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2167 return balanceSubTree(N, TopLevel);
2168 }
2169
2170 ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2171 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2172 EVT VT = N->getValueType(0);
2173 SDValue NewNode;
2174
2175 if (V0C && !V1C) {
2176 std::swap(V0, V1);
2177 std::swap(V0C, V1C);
2178 }
2179
2180 // Calculate height of this node
2181 assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2182 "Children must have been visited before re-combining them!");
2183 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2184
2185 // Rebuild this node (and restore SHL from MUL if needed)
2186 if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2187 NewNode = CurDAG->getNode(
2188 ISD::SHL, SDLoc(V0), VT, V0,
2189 CurDAG->getConstant(
2190 V1C->getAPIntValue().logBase2(), SDLoc(N),
2191 TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2192 else
2193 NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2194
2195 NodeHeights[NewNode] = Height;
2196
2197 int Weight = V0Weight + V1Weight;
2198 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2199
2200 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2201 << ",Height=" << Height << "):\n");
2202 LLVM_DEBUG(NewNode.dump());
2203 }
2204
2205 assert(Leaves.size() == 1);
2206 SDValue NewRoot = Leaves.top().Value;
2207
2208 assert(NodeHeights.count(NewRoot));
2209 int Height = NodeHeights[NewRoot];
2210
2211 // Restore SHL if we earlier converted it to a MUL
2212 if (NewRoot.getOpcode() == ISD::MUL) {
2213 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2214 if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2215 EVT VT = NewRoot.getValueType();
2216 SDValue V0 = NewRoot.getOperand(0);
2217 NewRoot = CurDAG->getNode(
2218 ISD::SHL, SDLoc(NewRoot), VT, V0,
2219 CurDAG->getConstant(
2220 V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2221 TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2222 }
2223 }
2224
2225 if (N != NewRoot.getNode()) {
2226 LLVM_DEBUG(dbgs() << "--> Root is now: ");
2227 LLVM_DEBUG(NewRoot.dump());
2228
2229 // Replace all uses of old root by new root
2230 CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2231 // Mark that we have RAUW'd N
2232 RootWeights[N] = -2;
2233 } else {
2234 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2235 }
2236
2237 RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2238 RootHeights[NewRoot.getNode()] = Height;
2239
2240 return NewRoot;
2241 }
2242
rebalanceAddressTrees()2243 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2244 for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) {
2245 SDNode *N = &*I++;
2246 if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2247 continue;
2248
2249 SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2250 if (BasePtr.getOpcode() != ISD::ADD)
2251 continue;
2252
2253 // We've already processed this node
2254 if (RootWeights.count(BasePtr.getNode()))
2255 continue;
2256
2257 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2258 LLVM_DEBUG(N->dump(CurDAG));
2259
2260 // FindRoots
2261 SmallVector<SDNode *, 4> Worklist;
2262
2263 Worklist.push_back(BasePtr.getOperand(0).getNode());
2264 Worklist.push_back(BasePtr.getOperand(1).getNode());
2265
2266 while (!Worklist.empty()) {
2267 SDNode *N = Worklist.pop_back_val();
2268 unsigned Opcode = N->getOpcode();
2269
2270 if (!isOpcodeHandled(N))
2271 continue;
2272
2273 Worklist.push_back(N->getOperand(0).getNode());
2274 Worklist.push_back(N->getOperand(1).getNode());
2275
2276 // Not a root if it has only one use and same opcode as its parent
2277 if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2278 continue;
2279
2280 // This root node has already been processed
2281 if (RootWeights.count(N))
2282 continue;
2283
2284 RootWeights[N] = -1;
2285 }
2286
2287 // Balance node itself
2288 RootWeights[BasePtr.getNode()] = -1;
2289 SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2290
2291 if (N->getOpcode() == ISD::LOAD)
2292 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2293 NewBasePtr, N->getOperand(2));
2294 else
2295 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2296 NewBasePtr, N->getOperand(3));
2297
2298 LLVM_DEBUG(dbgs() << "--> Final node: ");
2299 LLVM_DEBUG(N->dump(CurDAG));
2300 }
2301
2302 CurDAG->RemoveDeadNodes();
2303 GAUsesInFunction.clear();
2304 RootHeights.clear();
2305 RootWeights.clear();
2306 }
2307