1 //===- ARMRegisterBankInfo.cpp -----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the RegisterBankInfo class for ARM.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
12
13 #include "ARMRegisterBankInfo.h"
14 #include "ARMInstrInfo.h" // For the register classes
15 #include "ARMSubtarget.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/RegisterBank.h"
18 #include "llvm/CodeGen/RegisterBankInfo.h"
19 #include "llvm/CodeGen/TargetRegisterInfo.h"
20
21 #define GET_TARGET_REGBANK_IMPL
22 #include "ARMGenRegisterBank.inc"
23
24 using namespace llvm;
25
26 // FIXME: TableGen this.
27 // If it grows too much and TableGen still isn't ready to do the job, extract it
28 // into an ARMGenRegisterBankInfo.def (similar to AArch64).
29 namespace llvm {
30 namespace ARM {
31 enum PartialMappingIdx {
32 PMI_GPR,
33 PMI_SPR,
34 PMI_DPR,
35 PMI_Min = PMI_GPR,
36 };
37
38 RegisterBankInfo::PartialMapping PartMappings[]{
39 // GPR Partial Mapping
40 {0, 32, GPRRegBank},
41 // SPR Partial Mapping
42 {0, 32, FPRRegBank},
43 // DPR Partial Mapping
44 {0, 64, FPRRegBank},
45 };
46
47 #ifndef NDEBUG
checkPartMapping(const RegisterBankInfo::PartialMapping & PM,unsigned Start,unsigned Length,unsigned RegBankID)48 static bool checkPartMapping(const RegisterBankInfo::PartialMapping &PM,
49 unsigned Start, unsigned Length,
50 unsigned RegBankID) {
51 return PM.StartIdx == Start && PM.Length == Length &&
52 PM.RegBank->getID() == RegBankID;
53 }
54
checkPartialMappings()55 static void checkPartialMappings() {
56 assert(
57 checkPartMapping(PartMappings[PMI_GPR - PMI_Min], 0, 32, GPRRegBankID) &&
58 "Wrong mapping for GPR");
59 assert(
60 checkPartMapping(PartMappings[PMI_SPR - PMI_Min], 0, 32, FPRRegBankID) &&
61 "Wrong mapping for SPR");
62 assert(
63 checkPartMapping(PartMappings[PMI_DPR - PMI_Min], 0, 64, FPRRegBankID) &&
64 "Wrong mapping for DPR");
65 }
66 #endif
67
68 enum ValueMappingIdx {
69 InvalidIdx = 0,
70 GPR3OpsIdx = 1,
71 SPR3OpsIdx = 4,
72 DPR3OpsIdx = 7,
73 };
74
75 RegisterBankInfo::ValueMapping ValueMappings[] = {
76 // invalid
77 {nullptr, 0},
78 // 3 ops in GPRs
79 {&PartMappings[PMI_GPR - PMI_Min], 1},
80 {&PartMappings[PMI_GPR - PMI_Min], 1},
81 {&PartMappings[PMI_GPR - PMI_Min], 1},
82 // 3 ops in SPRs
83 {&PartMappings[PMI_SPR - PMI_Min], 1},
84 {&PartMappings[PMI_SPR - PMI_Min], 1},
85 {&PartMappings[PMI_SPR - PMI_Min], 1},
86 // 3 ops in DPRs
87 {&PartMappings[PMI_DPR - PMI_Min], 1},
88 {&PartMappings[PMI_DPR - PMI_Min], 1},
89 {&PartMappings[PMI_DPR - PMI_Min], 1}};
90
91 #ifndef NDEBUG
checkValueMapping(const RegisterBankInfo::ValueMapping & VM,RegisterBankInfo::PartialMapping * BreakDown)92 static bool checkValueMapping(const RegisterBankInfo::ValueMapping &VM,
93 RegisterBankInfo::PartialMapping *BreakDown) {
94 return VM.NumBreakDowns == 1 && VM.BreakDown == BreakDown;
95 }
96
checkValueMappings()97 static void checkValueMappings() {
98 assert(checkValueMapping(ValueMappings[GPR3OpsIdx],
99 &PartMappings[PMI_GPR - PMI_Min]) &&
100 "Wrong value mapping for 3 GPR ops instruction");
101 assert(checkValueMapping(ValueMappings[GPR3OpsIdx + 1],
102 &PartMappings[PMI_GPR - PMI_Min]) &&
103 "Wrong value mapping for 3 GPR ops instruction");
104 assert(checkValueMapping(ValueMappings[GPR3OpsIdx + 2],
105 &PartMappings[PMI_GPR - PMI_Min]) &&
106 "Wrong value mapping for 3 GPR ops instruction");
107
108 assert(checkValueMapping(ValueMappings[SPR3OpsIdx],
109 &PartMappings[PMI_SPR - PMI_Min]) &&
110 "Wrong value mapping for 3 SPR ops instruction");
111 assert(checkValueMapping(ValueMappings[SPR3OpsIdx + 1],
112 &PartMappings[PMI_SPR - PMI_Min]) &&
113 "Wrong value mapping for 3 SPR ops instruction");
114 assert(checkValueMapping(ValueMappings[SPR3OpsIdx + 2],
115 &PartMappings[PMI_SPR - PMI_Min]) &&
116 "Wrong value mapping for 3 SPR ops instruction");
117
118 assert(checkValueMapping(ValueMappings[DPR3OpsIdx],
119 &PartMappings[PMI_DPR - PMI_Min]) &&
120 "Wrong value mapping for 3 DPR ops instruction");
121 assert(checkValueMapping(ValueMappings[DPR3OpsIdx + 1],
122 &PartMappings[PMI_DPR - PMI_Min]) &&
123 "Wrong value mapping for 3 DPR ops instruction");
124 assert(checkValueMapping(ValueMappings[DPR3OpsIdx + 2],
125 &PartMappings[PMI_DPR - PMI_Min]) &&
126 "Wrong value mapping for 3 DPR ops instruction");
127 }
128 #endif
129 } // end namespace arm
130 } // end namespace llvm
131
ARMRegisterBankInfo(const TargetRegisterInfo & TRI)132 ARMRegisterBankInfo::ARMRegisterBankInfo(const TargetRegisterInfo &TRI) {
133 // We have only one set of register banks, whatever the subtarget
134 // is. Therefore, the initialization of the RegBanks table should be
135 // done only once. Indeed the table of all register banks
136 // (ARM::RegBanks) is unique in the compiler. At some point, it
137 // will get tablegen'ed and the whole constructor becomes empty.
138 static llvm::once_flag InitializeRegisterBankFlag;
139
140 static auto InitializeRegisterBankOnce = [&]() {
141 const RegisterBank &RBGPR = getRegBank(ARM::GPRRegBankID);
142 (void)RBGPR;
143 assert(&ARM::GPRRegBank == &RBGPR && "The order in RegBanks is messed up");
144
145 // Initialize the GPR bank.
146 assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRRegClassID)) &&
147 "Subclass not added?");
148 assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRwithAPSRRegClassID)) &&
149 "Subclass not added?");
150 assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRnopcRegClassID)) &&
151 "Subclass not added?");
152 assert(RBGPR.covers(*TRI.getRegClass(ARM::rGPRRegClassID)) &&
153 "Subclass not added?");
154 assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPRRegClassID)) &&
155 "Subclass not added?");
156 assert(RBGPR.covers(*TRI.getRegClass(ARM::tcGPRRegClassID)) &&
157 "Subclass not added?");
158 assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRnoip_and_tcGPRRegClassID)) &&
159 "Subclass not added?");
160 assert(RBGPR.covers(*TRI.getRegClass(
161 ARM::tGPREven_and_GPRnoip_and_tcGPRRegClassID)) &&
162 "Subclass not added?");
163 assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPROdd_and_tcGPRRegClassID)) &&
164 "Subclass not added?");
165 assert(RBGPR.getSize() == 32 && "GPRs should hold up to 32-bit");
166
167 #ifndef NDEBUG
168 ARM::checkPartialMappings();
169 ARM::checkValueMappings();
170 #endif
171 };
172
173 llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
174 }
175
176 const RegisterBank &
getRegBankFromRegClass(const TargetRegisterClass & RC,LLT) const177 ARMRegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
178 LLT) const {
179 using namespace ARM;
180
181 switch (RC.getID()) {
182 case GPRRegClassID:
183 case GPRwithAPSRRegClassID:
184 case GPRnoipRegClassID:
185 case GPRnopcRegClassID:
186 case GPRnoip_and_GPRnopcRegClassID:
187 case rGPRRegClassID:
188 case GPRspRegClassID:
189 case GPRnoip_and_tcGPRRegClassID:
190 case tcGPRRegClassID:
191 case tGPRRegClassID:
192 case tGPREvenRegClassID:
193 case tGPROddRegClassID:
194 case tGPR_and_tGPREvenRegClassID:
195 case tGPR_and_tGPROddRegClassID:
196 case tGPREven_and_tcGPRRegClassID:
197 case tGPREven_and_GPRnoip_and_tcGPRRegClassID:
198 case tGPROdd_and_tcGPRRegClassID:
199 return getRegBank(ARM::GPRRegBankID);
200 case HPRRegClassID:
201 case SPR_8RegClassID:
202 case SPRRegClassID:
203 case DPR_8RegClassID:
204 case DPRRegClassID:
205 case QPRRegClassID:
206 return getRegBank(ARM::FPRRegBankID);
207 default:
208 llvm_unreachable("Unsupported register kind");
209 }
210
211 llvm_unreachable("Switch should handle all register classes");
212 }
213
214 const RegisterBankInfo::InstructionMapping &
getInstrMapping(const MachineInstr & MI) const215 ARMRegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
216 auto Opc = MI.getOpcode();
217
218 // Try the default logic for non-generic instructions that are either copies
219 // or already have some operands assigned to banks.
220 if (!isPreISelGenericOpcode(Opc) || Opc == TargetOpcode::G_PHI) {
221 const InstructionMapping &Mapping = getInstrMappingImpl(MI);
222 if (Mapping.isValid())
223 return Mapping;
224 }
225
226 using namespace TargetOpcode;
227
228 const MachineFunction &MF = *MI.getParent()->getParent();
229 const MachineRegisterInfo &MRI = MF.getRegInfo();
230 unsigned NumOperands = MI.getNumOperands();
231 const ValueMapping *OperandsMapping = &ARM::ValueMappings[ARM::GPR3OpsIdx];
232
233 switch (Opc) {
234 case G_ADD:
235 case G_SUB: {
236 // Integer operations where the source and destination are in the
237 // same register class.
238 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
239 OperandsMapping = Ty.getSizeInBits() == 64
240 ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
241 : &ARM::ValueMappings[ARM::GPR3OpsIdx];
242 break;
243 }
244 case G_MUL:
245 case G_AND:
246 case G_OR:
247 case G_XOR:
248 case G_LSHR:
249 case G_ASHR:
250 case G_SHL:
251 case G_SDIV:
252 case G_UDIV:
253 case G_SEXT:
254 case G_ZEXT:
255 case G_ANYEXT:
256 case G_PTR_ADD:
257 case G_INTTOPTR:
258 case G_PTRTOINT:
259 case G_CTLZ:
260 // FIXME: We're abusing the fact that everything lives in a GPR for now; in
261 // the real world we would use different mappings.
262 OperandsMapping = &ARM::ValueMappings[ARM::GPR3OpsIdx];
263 break;
264 case G_TRUNC: {
265 // In some cases we may end up with a G_TRUNC from a 64-bit value to a
266 // 32-bit value. This isn't a real floating point trunc (that would be a
267 // G_FPTRUNC). Instead it is an integer trunc in disguise, which can appear
268 // because the legalizer doesn't distinguish between integer and floating
269 // point values so it may leave some 64-bit integers un-narrowed. Until we
270 // have a more principled solution that doesn't let such things sneak all
271 // the way to this point, just map the source to a DPR and the destination
272 // to a GPR.
273 LLT LargeTy = MRI.getType(MI.getOperand(1).getReg());
274 OperandsMapping =
275 LargeTy.getSizeInBits() <= 32
276 ? &ARM::ValueMappings[ARM::GPR3OpsIdx]
277 : getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
278 &ARM::ValueMappings[ARM::DPR3OpsIdx]});
279 break;
280 }
281 case G_LOAD:
282 case G_STORE: {
283 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
284 OperandsMapping =
285 Ty.getSizeInBits() == 64
286 ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
287 &ARM::ValueMappings[ARM::GPR3OpsIdx]})
288 : &ARM::ValueMappings[ARM::GPR3OpsIdx];
289 break;
290 }
291 case G_FADD:
292 case G_FSUB:
293 case G_FMUL:
294 case G_FDIV:
295 case G_FNEG: {
296 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
297 OperandsMapping =Ty.getSizeInBits() == 64
298 ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
299 : &ARM::ValueMappings[ARM::SPR3OpsIdx];
300 break;
301 }
302 case G_FMA: {
303 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
304 OperandsMapping =
305 Ty.getSizeInBits() == 64
306 ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
307 &ARM::ValueMappings[ARM::DPR3OpsIdx],
308 &ARM::ValueMappings[ARM::DPR3OpsIdx],
309 &ARM::ValueMappings[ARM::DPR3OpsIdx]})
310 : getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
311 &ARM::ValueMappings[ARM::SPR3OpsIdx],
312 &ARM::ValueMappings[ARM::SPR3OpsIdx],
313 &ARM::ValueMappings[ARM::SPR3OpsIdx]});
314 break;
315 }
316 case G_FPEXT: {
317 LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
318 LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
319 if (ToTy.getSizeInBits() == 64 && FromTy.getSizeInBits() == 32)
320 OperandsMapping =
321 getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
322 &ARM::ValueMappings[ARM::SPR3OpsIdx]});
323 break;
324 }
325 case G_FPTRUNC: {
326 LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
327 LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
328 if (ToTy.getSizeInBits() == 32 && FromTy.getSizeInBits() == 64)
329 OperandsMapping =
330 getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
331 &ARM::ValueMappings[ARM::DPR3OpsIdx]});
332 break;
333 }
334 case G_FPTOSI:
335 case G_FPTOUI: {
336 LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
337 LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
338 if ((FromTy.getSizeInBits() == 32 || FromTy.getSizeInBits() == 64) &&
339 ToTy.getSizeInBits() == 32)
340 OperandsMapping =
341 FromTy.getSizeInBits() == 64
342 ? getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
343 &ARM::ValueMappings[ARM::DPR3OpsIdx]})
344 : getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
345 &ARM::ValueMappings[ARM::SPR3OpsIdx]});
346 break;
347 }
348 case G_SITOFP:
349 case G_UITOFP: {
350 LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
351 LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
352 if (FromTy.getSizeInBits() == 32 &&
353 (ToTy.getSizeInBits() == 32 || ToTy.getSizeInBits() == 64))
354 OperandsMapping =
355 ToTy.getSizeInBits() == 64
356 ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
357 &ARM::ValueMappings[ARM::GPR3OpsIdx]})
358 : getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
359 &ARM::ValueMappings[ARM::GPR3OpsIdx]});
360 break;
361 }
362 case G_FCONSTANT: {
363 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
364 OperandsMapping = getOperandsMapping(
365 {Ty.getSizeInBits() == 64 ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
366 : &ARM::ValueMappings[ARM::SPR3OpsIdx],
367 nullptr});
368 break;
369 }
370 case G_CONSTANT:
371 case G_FRAME_INDEX:
372 case G_GLOBAL_VALUE:
373 OperandsMapping =
374 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr});
375 break;
376 case G_SELECT: {
377 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
378 (void)Ty;
379 LLT Ty2 = MRI.getType(MI.getOperand(1).getReg());
380 (void)Ty2;
381 assert(Ty.getSizeInBits() == 32 && "Unsupported size for G_SELECT");
382 assert(Ty2.getSizeInBits() == 1 && "Unsupported size for G_SELECT");
383 OperandsMapping =
384 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
385 &ARM::ValueMappings[ARM::GPR3OpsIdx],
386 &ARM::ValueMappings[ARM::GPR3OpsIdx],
387 &ARM::ValueMappings[ARM::GPR3OpsIdx]});
388 break;
389 }
390 case G_ICMP: {
391 LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
392 (void)Ty2;
393 assert(Ty2.getSizeInBits() == 32 && "Unsupported size for G_ICMP");
394 OperandsMapping =
395 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr,
396 &ARM::ValueMappings[ARM::GPR3OpsIdx],
397 &ARM::ValueMappings[ARM::GPR3OpsIdx]});
398 break;
399 }
400 case G_FCMP: {
401 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
402 (void)Ty;
403 LLT Ty1 = MRI.getType(MI.getOperand(2).getReg());
404 LLT Ty2 = MRI.getType(MI.getOperand(3).getReg());
405 (void)Ty2;
406 assert(Ty.getSizeInBits() == 1 && "Unsupported size for G_FCMP");
407 assert(Ty1.getSizeInBits() == Ty2.getSizeInBits() &&
408 "Mismatched operand sizes for G_FCMP");
409
410 unsigned Size = Ty1.getSizeInBits();
411 assert((Size == 32 || Size == 64) && "Unsupported size for G_FCMP");
412
413 auto FPRValueMapping = Size == 32 ? &ARM::ValueMappings[ARM::SPR3OpsIdx]
414 : &ARM::ValueMappings[ARM::DPR3OpsIdx];
415 OperandsMapping =
416 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr,
417 FPRValueMapping, FPRValueMapping});
418 break;
419 }
420 case G_MERGE_VALUES: {
421 // We only support G_MERGE_VALUES for creating a double precision floating
422 // point value out of two GPRs.
423 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
424 LLT Ty1 = MRI.getType(MI.getOperand(1).getReg());
425 LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
426 if (Ty.getSizeInBits() != 64 || Ty1.getSizeInBits() != 32 ||
427 Ty2.getSizeInBits() != 32)
428 return getInvalidInstructionMapping();
429 OperandsMapping =
430 getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
431 &ARM::ValueMappings[ARM::GPR3OpsIdx],
432 &ARM::ValueMappings[ARM::GPR3OpsIdx]});
433 break;
434 }
435 case G_UNMERGE_VALUES: {
436 // We only support G_UNMERGE_VALUES for splitting a double precision
437 // floating point value into two GPRs.
438 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
439 LLT Ty1 = MRI.getType(MI.getOperand(1).getReg());
440 LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
441 if (Ty.getSizeInBits() != 32 || Ty1.getSizeInBits() != 32 ||
442 Ty2.getSizeInBits() != 64)
443 return getInvalidInstructionMapping();
444 OperandsMapping =
445 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
446 &ARM::ValueMappings[ARM::GPR3OpsIdx],
447 &ARM::ValueMappings[ARM::DPR3OpsIdx]});
448 break;
449 }
450 case G_BR:
451 OperandsMapping = getOperandsMapping({nullptr});
452 break;
453 case G_BRCOND:
454 OperandsMapping =
455 getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr});
456 break;
457 case DBG_VALUE: {
458 SmallVector<const ValueMapping *, 4> OperandBanks(NumOperands);
459 const MachineOperand &MaybeReg = MI.getOperand(0);
460 if (MaybeReg.isReg() && MaybeReg.getReg()) {
461 unsigned Size = MRI.getType(MaybeReg.getReg()).getSizeInBits();
462 if (Size > 32 && Size != 64)
463 return getInvalidInstructionMapping();
464 OperandBanks[0] = Size == 64 ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
465 : &ARM::ValueMappings[ARM::GPR3OpsIdx];
466 }
467 OperandsMapping = getOperandsMapping(OperandBanks);
468 break;
469 }
470 default:
471 return getInvalidInstructionMapping();
472 }
473
474 #ifndef NDEBUG
475 for (unsigned i = 0; i < NumOperands; i++) {
476 for (const auto &Mapping : OperandsMapping[i]) {
477 assert(
478 (Mapping.RegBank->getID() != ARM::FPRRegBankID ||
479 MF.getSubtarget<ARMSubtarget>().hasVFP2Base()) &&
480 "Trying to use floating point register bank on target without vfp");
481 }
482 }
483 #endif
484
485 return getInstructionMapping(DefaultMappingID, /*Cost=*/1, OperandsMapping,
486 NumOperands);
487 }
488