1 //===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "NVPTXTargetTransformInfo.h"
10 #include "NVPTXUtilities.h"
11 #include "llvm/Analysis/LoopInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/Analysis/ValueTracking.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/TargetLowering.h"
17 #include "llvm/IR/IntrinsicsNVPTX.h"
18 #include "llvm/Support/Debug.h"
19 #include <optional>
20 using namespace llvm;
21
22 #define DEBUG_TYPE "NVPTXtti"
23
24 // Whether the given intrinsic reads threadIdx.x/y/z.
readsThreadIndex(const IntrinsicInst * II)25 static bool readsThreadIndex(const IntrinsicInst *II) {
26 switch (II->getIntrinsicID()) {
27 default: return false;
28 case Intrinsic::nvvm_read_ptx_sreg_tid_x:
29 case Intrinsic::nvvm_read_ptx_sreg_tid_y:
30 case Intrinsic::nvvm_read_ptx_sreg_tid_z:
31 return true;
32 }
33 }
34
readsLaneId(const IntrinsicInst * II)35 static bool readsLaneId(const IntrinsicInst *II) {
36 return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid;
37 }
38
39 // Whether the given intrinsic is an atomic instruction in PTX.
isNVVMAtomic(const IntrinsicInst * II)40 static bool isNVVMAtomic(const IntrinsicInst *II) {
41 switch (II->getIntrinsicID()) {
42 default: return false;
43 case Intrinsic::nvvm_atomic_load_inc_32:
44 case Intrinsic::nvvm_atomic_load_dec_32:
45
46 case Intrinsic::nvvm_atomic_add_gen_f_cta:
47 case Intrinsic::nvvm_atomic_add_gen_f_sys:
48 case Intrinsic::nvvm_atomic_add_gen_i_cta:
49 case Intrinsic::nvvm_atomic_add_gen_i_sys:
50 case Intrinsic::nvvm_atomic_and_gen_i_cta:
51 case Intrinsic::nvvm_atomic_and_gen_i_sys:
52 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
53 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
54 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
55 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
56 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
57 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
58 case Intrinsic::nvvm_atomic_max_gen_i_cta:
59 case Intrinsic::nvvm_atomic_max_gen_i_sys:
60 case Intrinsic::nvvm_atomic_min_gen_i_cta:
61 case Intrinsic::nvvm_atomic_min_gen_i_sys:
62 case Intrinsic::nvvm_atomic_or_gen_i_cta:
63 case Intrinsic::nvvm_atomic_or_gen_i_sys:
64 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
65 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
66 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
67 case Intrinsic::nvvm_atomic_xor_gen_i_sys:
68 return true;
69 }
70 }
71
isSourceOfDivergence(const Value * V)72 bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) {
73 // Without inter-procedural analysis, we conservatively assume that arguments
74 // to __device__ functions are divergent.
75 if (const Argument *Arg = dyn_cast<Argument>(V))
76 return !isKernelFunction(*Arg->getParent());
77
78 if (const Instruction *I = dyn_cast<Instruction>(V)) {
79 // Without pointer analysis, we conservatively assume values loaded from
80 // generic or local address space are divergent.
81 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
82 unsigned AS = LI->getPointerAddressSpace();
83 return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
84 }
85 // Atomic instructions may cause divergence. Atomic instructions are
86 // executed sequentially across all threads in a warp. Therefore, an earlier
87 // executed thread may see different memory inputs than a later executed
88 // thread. For example, suppose *a = 0 initially.
89 //
90 // atom.global.add.s32 d, [a], 1
91 //
92 // returns 0 for the first thread that enters the critical region, and 1 for
93 // the second thread.
94 if (I->isAtomic())
95 return true;
96 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
97 // Instructions that read threadIdx are obviously divergent.
98 if (readsThreadIndex(II) || readsLaneId(II))
99 return true;
100 // Handle the NVPTX atomic intrinsics that cannot be represented as an
101 // atomic IR instruction.
102 if (isNVVMAtomic(II))
103 return true;
104 }
105 // Conservatively consider the return value of function calls as divergent.
106 // We could analyze callees with bodies more precisely using
107 // inter-procedural analysis.
108 if (isa<CallInst>(I))
109 return true;
110 }
111
112 return false;
113 }
114
115 // Convert NVVM intrinsics to target-generic LLVM code where possible.
simplifyNvvmIntrinsic(IntrinsicInst * II,InstCombiner & IC)116 static Instruction *simplifyNvvmIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
117 // Each NVVM intrinsic we can simplify can be replaced with one of:
118 //
119 // * an LLVM intrinsic,
120 // * an LLVM cast operation,
121 // * an LLVM binary operation, or
122 // * ad-hoc LLVM IR for the particular operation.
123
124 // Some transformations are only valid when the module's
125 // flush-denormals-to-zero (ftz) setting is true/false, whereas other
126 // transformations are valid regardless of the module's ftz setting.
127 enum FtzRequirementTy {
128 FTZ_Any, // Any ftz setting is ok.
129 FTZ_MustBeOn, // Transformation is valid only if ftz is on.
130 FTZ_MustBeOff, // Transformation is valid only if ftz is off.
131 };
132 // Classes of NVVM intrinsics that can't be replaced one-to-one with a
133 // target-generic intrinsic, cast op, or binary op but that we can nonetheless
134 // simplify.
135 enum SpecialCase {
136 SPC_Reciprocal,
137 };
138
139 // SimplifyAction is a poor-man's variant (plus an additional flag) that
140 // represents how to replace an NVVM intrinsic with target-generic LLVM IR.
141 struct SimplifyAction {
142 // Invariant: At most one of these Optionals has a value.
143 std::optional<Intrinsic::ID> IID;
144 std::optional<Instruction::CastOps> CastOp;
145 std::optional<Instruction::BinaryOps> BinaryOp;
146 std::optional<SpecialCase> Special;
147
148 FtzRequirementTy FtzRequirement = FTZ_Any;
149 // Denormal handling is guarded by different attributes depending on the
150 // type (denormal-fp-math vs denormal-fp-math-f32), take note of halfs.
151 bool IsHalfTy = false;
152
153 SimplifyAction() = default;
154
155 SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq,
156 bool IsHalfTy = false)
157 : IID(IID), FtzRequirement(FtzReq), IsHalfTy(IsHalfTy) {}
158
159 // Cast operations don't have anything to do with FTZ, so we skip that
160 // argument.
161 SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
162
163 SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
164 : BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
165
166 SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
167 : Special(Special), FtzRequirement(FtzReq) {}
168 };
169
170 // Try to generate a SimplifyAction describing how to replace our
171 // IntrinsicInstr with target-generic LLVM IR.
172 const SimplifyAction Action = [II]() -> SimplifyAction {
173 switch (II->getIntrinsicID()) {
174 // NVVM intrinsics that map directly to LLVM intrinsics.
175 case Intrinsic::nvvm_ceil_d:
176 return {Intrinsic::ceil, FTZ_Any};
177 case Intrinsic::nvvm_ceil_f:
178 return {Intrinsic::ceil, FTZ_MustBeOff};
179 case Intrinsic::nvvm_ceil_ftz_f:
180 return {Intrinsic::ceil, FTZ_MustBeOn};
181 case Intrinsic::nvvm_fabs_d:
182 return {Intrinsic::fabs, FTZ_Any};
183 case Intrinsic::nvvm_fabs_f:
184 return {Intrinsic::fabs, FTZ_MustBeOff};
185 case Intrinsic::nvvm_fabs_ftz_f:
186 return {Intrinsic::fabs, FTZ_MustBeOn};
187 case Intrinsic::nvvm_floor_d:
188 return {Intrinsic::floor, FTZ_Any};
189 case Intrinsic::nvvm_floor_f:
190 return {Intrinsic::floor, FTZ_MustBeOff};
191 case Intrinsic::nvvm_floor_ftz_f:
192 return {Intrinsic::floor, FTZ_MustBeOn};
193 case Intrinsic::nvvm_fma_rn_d:
194 return {Intrinsic::fma, FTZ_Any};
195 case Intrinsic::nvvm_fma_rn_f:
196 return {Intrinsic::fma, FTZ_MustBeOff};
197 case Intrinsic::nvvm_fma_rn_ftz_f:
198 return {Intrinsic::fma, FTZ_MustBeOn};
199 case Intrinsic::nvvm_fma_rn_f16:
200 return {Intrinsic::fma, FTZ_MustBeOff, true};
201 case Intrinsic::nvvm_fma_rn_ftz_f16:
202 return {Intrinsic::fma, FTZ_MustBeOn, true};
203 case Intrinsic::nvvm_fma_rn_f16x2:
204 return {Intrinsic::fma, FTZ_MustBeOff, true};
205 case Intrinsic::nvvm_fma_rn_ftz_f16x2:
206 return {Intrinsic::fma, FTZ_MustBeOn, true};
207 case Intrinsic::nvvm_fmax_d:
208 return {Intrinsic::maxnum, FTZ_Any};
209 case Intrinsic::nvvm_fmax_f:
210 return {Intrinsic::maxnum, FTZ_MustBeOff};
211 case Intrinsic::nvvm_fmax_ftz_f:
212 return {Intrinsic::maxnum, FTZ_MustBeOn};
213 case Intrinsic::nvvm_fmax_nan_f:
214 return {Intrinsic::maximum, FTZ_MustBeOff};
215 case Intrinsic::nvvm_fmax_ftz_nan_f:
216 return {Intrinsic::maximum, FTZ_MustBeOn};
217 case Intrinsic::nvvm_fmax_f16:
218 return {Intrinsic::maxnum, FTZ_MustBeOff, true};
219 case Intrinsic::nvvm_fmax_ftz_f16:
220 return {Intrinsic::maxnum, FTZ_MustBeOn, true};
221 case Intrinsic::nvvm_fmax_f16x2:
222 return {Intrinsic::maxnum, FTZ_MustBeOff, true};
223 case Intrinsic::nvvm_fmax_ftz_f16x2:
224 return {Intrinsic::maxnum, FTZ_MustBeOn, true};
225 case Intrinsic::nvvm_fmax_nan_f16:
226 return {Intrinsic::maximum, FTZ_MustBeOff, true};
227 case Intrinsic::nvvm_fmax_ftz_nan_f16:
228 return {Intrinsic::maximum, FTZ_MustBeOn, true};
229 case Intrinsic::nvvm_fmax_nan_f16x2:
230 return {Intrinsic::maximum, FTZ_MustBeOff, true};
231 case Intrinsic::nvvm_fmax_ftz_nan_f16x2:
232 return {Intrinsic::maximum, FTZ_MustBeOn, true};
233 case Intrinsic::nvvm_fmin_d:
234 return {Intrinsic::minnum, FTZ_Any};
235 case Intrinsic::nvvm_fmin_f:
236 return {Intrinsic::minnum, FTZ_MustBeOff};
237 case Intrinsic::nvvm_fmin_ftz_f:
238 return {Intrinsic::minnum, FTZ_MustBeOn};
239 case Intrinsic::nvvm_fmin_nan_f:
240 return {Intrinsic::minimum, FTZ_MustBeOff};
241 case Intrinsic::nvvm_fmin_ftz_nan_f:
242 return {Intrinsic::minimum, FTZ_MustBeOn};
243 case Intrinsic::nvvm_fmin_f16:
244 return {Intrinsic::minnum, FTZ_MustBeOff, true};
245 case Intrinsic::nvvm_fmin_ftz_f16:
246 return {Intrinsic::minnum, FTZ_MustBeOn, true};
247 case Intrinsic::nvvm_fmin_f16x2:
248 return {Intrinsic::minnum, FTZ_MustBeOff, true};
249 case Intrinsic::nvvm_fmin_ftz_f16x2:
250 return {Intrinsic::minnum, FTZ_MustBeOn, true};
251 case Intrinsic::nvvm_fmin_nan_f16:
252 return {Intrinsic::minimum, FTZ_MustBeOff, true};
253 case Intrinsic::nvvm_fmin_ftz_nan_f16:
254 return {Intrinsic::minimum, FTZ_MustBeOn, true};
255 case Intrinsic::nvvm_fmin_nan_f16x2:
256 return {Intrinsic::minimum, FTZ_MustBeOff, true};
257 case Intrinsic::nvvm_fmin_ftz_nan_f16x2:
258 return {Intrinsic::minimum, FTZ_MustBeOn, true};
259 case Intrinsic::nvvm_round_d:
260 return {Intrinsic::round, FTZ_Any};
261 case Intrinsic::nvvm_round_f:
262 return {Intrinsic::round, FTZ_MustBeOff};
263 case Intrinsic::nvvm_round_ftz_f:
264 return {Intrinsic::round, FTZ_MustBeOn};
265 case Intrinsic::nvvm_sqrt_rn_d:
266 return {Intrinsic::sqrt, FTZ_Any};
267 case Intrinsic::nvvm_sqrt_f:
268 // nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
269 // ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
270 // the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
271 // the versions with explicit ftz-ness.
272 return {Intrinsic::sqrt, FTZ_Any};
273 case Intrinsic::nvvm_sqrt_rn_f:
274 return {Intrinsic::sqrt, FTZ_MustBeOff};
275 case Intrinsic::nvvm_sqrt_rn_ftz_f:
276 return {Intrinsic::sqrt, FTZ_MustBeOn};
277 case Intrinsic::nvvm_trunc_d:
278 return {Intrinsic::trunc, FTZ_Any};
279 case Intrinsic::nvvm_trunc_f:
280 return {Intrinsic::trunc, FTZ_MustBeOff};
281 case Intrinsic::nvvm_trunc_ftz_f:
282 return {Intrinsic::trunc, FTZ_MustBeOn};
283
284 // NVVM intrinsics that map to LLVM cast operations.
285 //
286 // Note that llvm's target-generic conversion operators correspond to the rz
287 // (round to zero) versions of the nvvm conversion intrinsics, even though
288 // most everything else here uses the rn (round to nearest even) nvvm ops.
289 case Intrinsic::nvvm_d2i_rz:
290 case Intrinsic::nvvm_f2i_rz:
291 case Intrinsic::nvvm_d2ll_rz:
292 case Intrinsic::nvvm_f2ll_rz:
293 return {Instruction::FPToSI};
294 case Intrinsic::nvvm_d2ui_rz:
295 case Intrinsic::nvvm_f2ui_rz:
296 case Intrinsic::nvvm_d2ull_rz:
297 case Intrinsic::nvvm_f2ull_rz:
298 return {Instruction::FPToUI};
299 case Intrinsic::nvvm_i2d_rz:
300 case Intrinsic::nvvm_i2f_rz:
301 case Intrinsic::nvvm_ll2d_rz:
302 case Intrinsic::nvvm_ll2f_rz:
303 return {Instruction::SIToFP};
304 case Intrinsic::nvvm_ui2d_rz:
305 case Intrinsic::nvvm_ui2f_rz:
306 case Intrinsic::nvvm_ull2d_rz:
307 case Intrinsic::nvvm_ull2f_rz:
308 return {Instruction::UIToFP};
309
310 // NVVM intrinsics that map to LLVM binary ops.
311 case Intrinsic::nvvm_add_rn_d:
312 return {Instruction::FAdd, FTZ_Any};
313 case Intrinsic::nvvm_add_rn_f:
314 return {Instruction::FAdd, FTZ_MustBeOff};
315 case Intrinsic::nvvm_add_rn_ftz_f:
316 return {Instruction::FAdd, FTZ_MustBeOn};
317 case Intrinsic::nvvm_mul_rn_d:
318 return {Instruction::FMul, FTZ_Any};
319 case Intrinsic::nvvm_mul_rn_f:
320 return {Instruction::FMul, FTZ_MustBeOff};
321 case Intrinsic::nvvm_mul_rn_ftz_f:
322 return {Instruction::FMul, FTZ_MustBeOn};
323 case Intrinsic::nvvm_div_rn_d:
324 return {Instruction::FDiv, FTZ_Any};
325 case Intrinsic::nvvm_div_rn_f:
326 return {Instruction::FDiv, FTZ_MustBeOff};
327 case Intrinsic::nvvm_div_rn_ftz_f:
328 return {Instruction::FDiv, FTZ_MustBeOn};
329
330 // The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
331 // need special handling.
332 //
333 // We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
334 // as well.
335 case Intrinsic::nvvm_rcp_rn_d:
336 return {SPC_Reciprocal, FTZ_Any};
337 case Intrinsic::nvvm_rcp_rn_f:
338 return {SPC_Reciprocal, FTZ_MustBeOff};
339 case Intrinsic::nvvm_rcp_rn_ftz_f:
340 return {SPC_Reciprocal, FTZ_MustBeOn};
341
342 // We do not currently simplify intrinsics that give an approximate
343 // answer. These include:
344 //
345 // - nvvm_cos_approx_{f,ftz_f}
346 // - nvvm_ex2_approx_{d,f,ftz_f}
347 // - nvvm_lg2_approx_{d,f,ftz_f}
348 // - nvvm_sin_approx_{f,ftz_f}
349 // - nvvm_sqrt_approx_{f,ftz_f}
350 // - nvvm_rsqrt_approx_{d,f,ftz_f}
351 // - nvvm_div_approx_{ftz_d,ftz_f,f}
352 // - nvvm_rcp_approx_ftz_d
353 //
354 // Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
355 // means that fastmath is enabled in the intrinsic. Unfortunately only
356 // binary operators (currently) have a fastmath bit in SelectionDAG, so
357 // this information gets lost and we can't select on it.
358 //
359 // TODO: div and rcp are lowered to a binary op, so these we could in
360 // theory lower them to "fast fdiv".
361
362 default:
363 return {};
364 }
365 }();
366
367 // If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
368 // can bail out now. (Notice that in the case that IID is not an NVVM
369 // intrinsic, we don't have to look up any module metadata, as
370 // FtzRequirementTy will be FTZ_Any.)
371 if (Action.FtzRequirement != FTZ_Any) {
372 // FIXME: Broken for f64
373 DenormalMode Mode = II->getFunction()->getDenormalMode(
374 Action.IsHalfTy ? APFloat::IEEEhalf() : APFloat::IEEEsingle());
375 bool FtzEnabled = Mode.Output == DenormalMode::PreserveSign;
376
377 if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
378 return nullptr;
379 }
380
381 // Simplify to target-generic intrinsic.
382 if (Action.IID) {
383 SmallVector<Value *, 4> Args(II->args());
384 // All the target-generic intrinsics currently of interest to us have one
385 // type argument, equal to that of the nvvm intrinsic's argument.
386 Type *Tys[] = {II->getArgOperand(0)->getType()};
387 return CallInst::Create(
388 Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
389 }
390
391 // Simplify to target-generic binary op.
392 if (Action.BinaryOp)
393 return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
394 II->getArgOperand(1), II->getName());
395
396 // Simplify to target-generic cast op.
397 if (Action.CastOp)
398 return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
399 II->getName());
400
401 // All that's left are the special cases.
402 if (!Action.Special)
403 return nullptr;
404
405 switch (*Action.Special) {
406 case SPC_Reciprocal:
407 // Simplify reciprocal.
408 return BinaryOperator::Create(
409 Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
410 II->getArgOperand(0), II->getName());
411 }
412 llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
413 }
414
415 std::optional<Instruction *>
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II) const416 NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
417 if (Instruction *I = simplifyNvvmIntrinsic(&II, IC)) {
418 return I;
419 }
420 return std::nullopt;
421 }
422
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueInfo Op1Info,TTI::OperandValueInfo Op2Info,ArrayRef<const Value * > Args,const Instruction * CxtI)423 InstructionCost NVPTXTTIImpl::getArithmeticInstrCost(
424 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
425 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
426 ArrayRef<const Value *> Args,
427 const Instruction *CxtI) {
428 // Legalize the type.
429 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
430
431 int ISD = TLI->InstructionOpcodeToISD(Opcode);
432
433 switch (ISD) {
434 default:
435 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
436 Op2Info);
437 case ISD::ADD:
438 case ISD::MUL:
439 case ISD::XOR:
440 case ISD::OR:
441 case ISD::AND:
442 // The machine code (SASS) simulates an i64 with two i32. Therefore, we
443 // estimate that arithmetic operations on i64 are twice as expensive as
444 // those on types that can fit into one machine register.
445 if (LT.second.SimpleTy == MVT::i64)
446 return 2 * LT.first;
447 // Delegate other cases to the basic TTI.
448 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
449 Op2Info);
450 }
451 }
452
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP,OptimizationRemarkEmitter * ORE)453 void NVPTXTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
454 TTI::UnrollingPreferences &UP,
455 OptimizationRemarkEmitter *ORE) {
456 BaseT::getUnrollingPreferences(L, SE, UP, ORE);
457
458 // Enable partial unrolling and runtime unrolling, but reduce the
459 // threshold. This partially unrolls small loops which are often
460 // unrolled by the PTX to SASS compiler and unrolling earlier can be
461 // beneficial.
462 UP.Partial = UP.Runtime = true;
463 UP.PartialThreshold = UP.Threshold / 4;
464 }
465
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)466 void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
467 TTI::PeelingPreferences &PP) {
468 BaseT::getPeelingPreferences(L, SE, PP);
469 }
470