1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetTransformInfo.h"
15 #include "TargetInfo/SystemZTargetInfo.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/TargetRegistry.h"
25 #include "llvm/Support/CodeGen.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include <optional>
29 #include <string>
30
31 using namespace llvm;
32
LLVMInitializeSystemZTarget()33 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
34 // Register the target.
35 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
36 auto &PR = *PassRegistry::getPassRegistry();
37 initializeSystemZElimComparePass(PR);
38 initializeSystemZShortenInstPass(PR);
39 initializeSystemZLongBranchPass(PR);
40 initializeSystemZLDCleanupPass(PR);
41 initializeSystemZShortenInstPass(PR);
42 initializeSystemZPostRewritePass(PR);
43 initializeSystemZTDCPassPass(PR);
44 initializeSystemZDAGToDAGISelPass(PR);
45 }
46
computeDataLayout(const Triple & TT)47 static std::string computeDataLayout(const Triple &TT) {
48 std::string Ret;
49
50 // Big endian.
51 Ret += "E";
52
53 // Data mangling.
54 Ret += DataLayout::getManglingComponent(TT);
55
56 // Make sure that global data has at least 16 bits of alignment by
57 // default, so that we can refer to it using LARL. We don't have any
58 // special requirements for stack variables though.
59 Ret += "-i1:8:16-i8:8:16";
60
61 // 64-bit integers are naturally aligned.
62 Ret += "-i64:64";
63
64 // 128-bit floats are aligned only to 64 bits.
65 Ret += "-f128:64";
66
67 // The DataLayout string always holds a vector alignment of 64 bits, see
68 // comment in clang/lib/Basic/Targets/SystemZ.h.
69 Ret += "-v128:64";
70
71 // We prefer 16 bits of aligned for all globals; see above.
72 Ret += "-a:8:16";
73
74 // Integer registers are 32 or 64 bits.
75 Ret += "-n32:64";
76
77 return Ret;
78 }
79
createTLOF(const Triple & TT)80 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
81 if (TT.isOSzOS())
82 return std::make_unique<TargetLoweringObjectFileGOFF>();
83
84 // Note: Some times run with -triple s390x-unknown.
85 // In this case, default to ELF unless z/OS specifically provided.
86 return std::make_unique<TargetLoweringObjectFileELF>();
87 }
88
getEffectiveRelocModel(std::optional<Reloc::Model> RM)89 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
90 // Static code is suitable for use in a dynamic executable; there is no
91 // separate DynamicNoPIC model.
92 if (!RM || *RM == Reloc::DynamicNoPIC)
93 return Reloc::Static;
94 return *RM;
95 }
96
97 // For SystemZ we define the models as follows:
98 //
99 // Small: BRASL can call any function and will use a stub if necessary.
100 // Locally-binding symbols will always be in range of LARL.
101 //
102 // Medium: BRASL can call any function and will use a stub if necessary.
103 // GOT slots and locally-defined text will always be in range
104 // of LARL, but other symbols might not be.
105 //
106 // Large: Equivalent to Medium for now.
107 //
108 // Kernel: Equivalent to Medium for now.
109 //
110 // This means that any PIC module smaller than 4GB meets the
111 // requirements of Small, so Small seems like the best default there.
112 //
113 // All symbols bind locally in a non-PIC module, so the choice is less
114 // obvious. There are two cases:
115 //
116 // - When creating an executable, PLTs and copy relocations allow
117 // us to treat external symbols as part of the executable.
118 // Any executable smaller than 4GB meets the requirements of Small,
119 // so that seems like the best default.
120 //
121 // - When creating JIT code, stubs will be in range of BRASL if the
122 // image is less than 4GB in size. GOT entries will likewise be
123 // in range of LARL. However, the JIT environment has no equivalent
124 // of copy relocs, so locally-binding data symbols might not be in
125 // the range of LARL. We need the Medium model in that case.
126 static CodeModel::Model
getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,Reloc::Model RM,bool JIT)127 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
128 Reloc::Model RM, bool JIT) {
129 if (CM) {
130 if (*CM == CodeModel::Tiny)
131 report_fatal_error("Target does not support the tiny CodeModel", false);
132 if (*CM == CodeModel::Kernel)
133 report_fatal_error("Target does not support the kernel CodeModel", false);
134 return *CM;
135 }
136 if (JIT)
137 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
138 return CodeModel::Small;
139 }
140
SystemZTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,std::optional<Reloc::Model> RM,std::optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)141 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
142 StringRef CPU, StringRef FS,
143 const TargetOptions &Options,
144 std::optional<Reloc::Model> RM,
145 std::optional<CodeModel::Model> CM,
146 CodeGenOpt::Level OL, bool JIT)
147 : LLVMTargetMachine(
148 T, computeDataLayout(TT), TT, CPU, FS, Options,
149 getEffectiveRelocModel(RM),
150 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
151 OL),
152 TLOF(createTLOF(getTargetTriple())) {
153 initAsmInfo();
154 }
155
156 SystemZTargetMachine::~SystemZTargetMachine() = default;
157
158 const SystemZSubtarget *
getSubtargetImpl(const Function & F) const159 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
160 Attribute CPUAttr = F.getFnAttribute("target-cpu");
161 Attribute TuneAttr = F.getFnAttribute("tune-cpu");
162 Attribute FSAttr = F.getFnAttribute("target-features");
163
164 std::string CPU =
165 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
166 std::string TuneCPU =
167 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
168 std::string FS =
169 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
170
171 // FIXME: This is related to the code below to reset the target options,
172 // we need to know whether or not the soft float flag is set on the
173 // function, so we can enable it as a subtarget feature.
174 bool softFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
175
176 if (softFloat)
177 FS += FS.empty() ? "+soft-float" : ",+soft-float";
178
179 auto &I = SubtargetMap[CPU + TuneCPU + FS];
180 if (!I) {
181 // This needs to be done before we create a new subtarget since any
182 // creation will depend on the TM and the code generation flags on the
183 // function that reside in TargetOptions.
184 resetTargetOptions(F);
185 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
186 *this);
187 }
188
189 return I.get();
190 }
191
192 namespace {
193
194 /// SystemZ Code Generator Pass Configuration Options.
195 class SystemZPassConfig : public TargetPassConfig {
196 public:
SystemZPassConfig(SystemZTargetMachine & TM,PassManagerBase & PM)197 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
198 : TargetPassConfig(TM, PM) {}
199
getSystemZTargetMachine() const200 SystemZTargetMachine &getSystemZTargetMachine() const {
201 return getTM<SystemZTargetMachine>();
202 }
203
204 ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext * C) const205 createPostMachineScheduler(MachineSchedContext *C) const override {
206 return new ScheduleDAGMI(C,
207 std::make_unique<SystemZPostRASchedStrategy>(C),
208 /*RemoveKillFlags=*/true);
209 }
210
211 void addIRPasses() override;
212 bool addInstSelector() override;
213 bool addILPOpts() override;
214 void addPreRegAlloc() override;
215 void addPostRewrite() override;
216 void addPostRegAlloc() override;
217 void addPreSched2() override;
218 void addPreEmitPass() override;
219 };
220
221 } // end anonymous namespace
222
addIRPasses()223 void SystemZPassConfig::addIRPasses() {
224 if (getOptLevel() != CodeGenOpt::None) {
225 addPass(createSystemZTDCPass());
226 addPass(createLoopDataPrefetchPass());
227 }
228
229 TargetPassConfig::addIRPasses();
230 }
231
addInstSelector()232 bool SystemZPassConfig::addInstSelector() {
233 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
234
235 if (getOptLevel() != CodeGenOpt::None)
236 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
237
238 return false;
239 }
240
addILPOpts()241 bool SystemZPassConfig::addILPOpts() {
242 addPass(&EarlyIfConverterID);
243 return true;
244 }
245
addPreRegAlloc()246 void SystemZPassConfig::addPreRegAlloc() {
247 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
248 }
249
addPostRewrite()250 void SystemZPassConfig::addPostRewrite() {
251 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
252 }
253
addPostRegAlloc()254 void SystemZPassConfig::addPostRegAlloc() {
255 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
256 // is not called).
257 if (getOptLevel() == CodeGenOpt::None)
258 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
259 }
260
addPreSched2()261 void SystemZPassConfig::addPreSched2() {
262 if (getOptLevel() != CodeGenOpt::None)
263 addPass(&IfConverterID);
264 }
265
addPreEmitPass()266 void SystemZPassConfig::addPreEmitPass() {
267 // Do instruction shortening before compare elimination because some
268 // vector instructions will be shortened into opcodes that compare
269 // elimination recognizes.
270 if (getOptLevel() != CodeGenOpt::None)
271 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
272
273 // We eliminate comparisons here rather than earlier because some
274 // transformations can change the set of available CC values and we
275 // generally want those transformations to have priority. This is
276 // especially true in the commonest case where the result of the comparison
277 // is used by a single in-range branch instruction, since we will then
278 // be able to fuse the compare and the branch instead.
279 //
280 // For example, two-address NILF can sometimes be converted into
281 // three-address RISBLG. NILF produces a CC value that indicates whether
282 // the low word is zero, but RISBLG does not modify CC at all. On the
283 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
284 // The CC value produced by NILL isn't useful for our purposes, but the
285 // value produced by RISBG can be used for any comparison with zero
286 // (not just equality). So there are some transformations that lose
287 // CC values (while still being worthwhile) and others that happen to make
288 // the CC result more useful than it was originally.
289 //
290 // Another reason is that we only want to use BRANCH ON COUNT in cases
291 // where we know that the count register is not going to be spilled.
292 //
293 // Doing it so late makes it more likely that a register will be reused
294 // between the comparison and the branch, but it isn't clear whether
295 // preventing that would be a win or not.
296 if (getOptLevel() != CodeGenOpt::None)
297 addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
298 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
299
300 // Do final scheduling after all other optimizations, to get an
301 // optimal input for the decoder (branch relaxation must happen
302 // after block placement).
303 if (getOptLevel() != CodeGenOpt::None)
304 addPass(&PostMachineSchedulerID);
305 }
306
createPassConfig(PassManagerBase & PM)307 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
308 return new SystemZPassConfig(*this, PM);
309 }
310
311 TargetTransformInfo
getTargetTransformInfo(const Function & F) const312 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
313 return TargetTransformInfo(SystemZTTIImpl(this, F));
314 }
315
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI) const316 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
317 BumpPtrAllocator &Allocator, const Function &F,
318 const TargetSubtargetInfo *STI) const {
319 return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
320 Allocator, F, STI);
321 }
322