1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some templates that are useful if you are working with the
11 // STL at all.
12 //
13 // No library is required when using these functions.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19
20 #include <stdint.h>
21
22 #include <algorithm> // for std::all_of
23 #include <cassert>
24 #include <cstddef> // for std::size_t
25 #include <cstdlib> // for qsort
26 #include <functional>
27 #include <iterator>
28 #include <memory>
29 #include <tuple>
30 #include <utility> // for std::pair
31
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Support/Compiler.h"
36
37 namespace llvm {
38
39 // Only used by compiler if both template types are the same. Useful when
40 // using SFINAE to test for the existence of member functions.
41 template <typename T, T> struct SameType;
42
43 namespace detail {
44
45 template <typename RangeT>
46 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
47
48 } // End detail namespace
49
50 /// An efficient, type-erasing, non-owning reference to a callable. This is
51 /// intended for use as the type of a function parameter that is not used
52 /// after the function in question returns.
53 ///
54 /// This class does not own the callable, so it is not in general safe to store
55 /// a function_ref.
56 template<typename Fn> class function_ref;
57
58 template<typename Ret, typename ...Params>
59 class function_ref<Ret(Params...)> {
60 Ret (*callback)(intptr_t callable, Params ...params);
61 intptr_t callable;
62
63 template<typename Callable>
callback_fn(intptr_t callable,Params...params)64 static Ret callback_fn(intptr_t callable, Params ...params) {
65 return (*reinterpret_cast<Callable*>(callable))(
66 std::forward<Params>(params)...);
67 }
68
69 public:
70 template <typename Callable>
71 function_ref(Callable &&callable,
72 typename std::enable_if<
73 !std::is_same<typename std::remove_reference<Callable>::type,
74 function_ref>::value>::type * = nullptr)
callback(callback_fn<typename std::remove_reference<Callable>::type>)75 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
76 callable(reinterpret_cast<intptr_t>(&callable)) {}
operator()77 Ret operator()(Params ...params) const {
78 return callback(callable, std::forward<Params>(params)...);
79 }
80 };
81
82 // deleter - Very very very simple method that is used to invoke operator
83 // delete on something. It is used like this:
84 //
85 // for_each(V.begin(), B.end(), deleter<Interval>);
86 //
87 template <class T>
deleter(T * Ptr)88 inline void deleter(T *Ptr) {
89 delete Ptr;
90 }
91
92
93
94 //===----------------------------------------------------------------------===//
95 // Extra additions to <iterator>
96 //===----------------------------------------------------------------------===//
97
98 // mapped_iterator - This is a simple iterator adapter that causes a function to
99 // be dereferenced whenever operator* is invoked on the iterator.
100 //
101 template <class RootIt, class UnaryFunc>
102 class mapped_iterator {
103 RootIt current;
104 UnaryFunc Fn;
105 public:
106 typedef typename std::iterator_traits<RootIt>::iterator_category
107 iterator_category;
108 typedef typename std::iterator_traits<RootIt>::difference_type
109 difference_type;
110 typedef typename std::invoke_result_t<UnaryFunc,
111 decltype(*std::declval<RootIt>())>
112 value_type;
113
114 typedef void pointer;
115 //typedef typename UnaryFunc::result_type *pointer;
116 typedef void reference; // Can't modify value returned by fn
117
118 typedef RootIt iterator_type;
119
getCurrent()120 inline const RootIt &getCurrent() const { return current; }
getFunc()121 inline const UnaryFunc &getFunc() const { return Fn; }
122
mapped_iterator(const RootIt & I,UnaryFunc F)123 inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
124 : current(I), Fn(F) {}
125
126 inline value_type operator*() const { // All this work to do this
127 return Fn(*current); // little change
128 }
129
130 mapped_iterator &operator++() {
131 ++current;
132 return *this;
133 }
134 mapped_iterator &operator--() {
135 --current;
136 return *this;
137 }
138 mapped_iterator operator++(int) {
139 mapped_iterator __tmp = *this;
140 ++current;
141 return __tmp;
142 }
143 mapped_iterator operator--(int) {
144 mapped_iterator __tmp = *this;
145 --current;
146 return __tmp;
147 }
148 mapped_iterator operator+(difference_type n) const {
149 return mapped_iterator(current + n, Fn);
150 }
151 mapped_iterator &operator+=(difference_type n) {
152 current += n;
153 return *this;
154 }
155 mapped_iterator operator-(difference_type n) const {
156 return mapped_iterator(current - n, Fn);
157 }
158 mapped_iterator &operator-=(difference_type n) {
159 current -= n;
160 return *this;
161 }
162 reference operator[](difference_type n) const { return *(*this + n); }
163
164 bool operator!=(const mapped_iterator &X) const { return !operator==(X); }
165 bool operator==(const mapped_iterator &X) const {
166 return current == X.current;
167 }
168 bool operator<(const mapped_iterator &X) const { return current < X.current; }
169
170 difference_type operator-(const mapped_iterator &X) const {
171 return current - X.current;
172 }
173 };
174
175 template <class Iterator, class Func>
176 inline mapped_iterator<Iterator, Func>
177 operator+(typename mapped_iterator<Iterator, Func>::difference_type N,
178 const mapped_iterator<Iterator, Func> &X) {
179 return mapped_iterator<Iterator, Func>(X.getCurrent() - N, X.getFunc());
180 }
181
182
183 // map_iterator - Provide a convenient way to create mapped_iterators, just like
184 // make_pair is useful for creating pairs...
185 //
186 template <class ItTy, class FuncTy>
map_iterator(const ItTy & I,FuncTy F)187 inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
188 return mapped_iterator<ItTy, FuncTy>(I, F);
189 }
190
191 /// Helper to determine if type T has a member called rbegin().
192 template <typename Ty> class has_rbegin_impl {
193 typedef char yes[1];
194 typedef char no[2];
195
196 template <typename Inner>
197 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
198
199 template <typename>
200 static no& test(...);
201
202 public:
203 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
204 };
205
206 /// Metafunction to determine if T& or T has a member called rbegin().
207 template <typename Ty>
208 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
209 };
210
211 // Returns an iterator_range over the given container which iterates in reverse.
212 // Note that the container must have rbegin()/rend() methods for this to work.
213 template <typename ContainerTy>
214 auto reverse(ContainerTy &&C,
215 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
216 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
217 return make_range(C.rbegin(), C.rend());
218 }
219
220 // Returns a std::reverse_iterator wrapped around the given iterator.
221 template <typename IteratorTy>
make_reverse_iterator(IteratorTy It)222 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
223 return std::reverse_iterator<IteratorTy>(It);
224 }
225
226 // Returns an iterator_range over the given container which iterates in reverse.
227 // Note that the container must have begin()/end() methods which return
228 // bidirectional iterators for this to work.
229 template <typename ContainerTy>
230 auto reverse(
231 ContainerTy &&C,
232 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
233 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
234 llvm::make_reverse_iterator(std::begin(C)))) {
235 return make_range(llvm::make_reverse_iterator(std::end(C)),
236 llvm::make_reverse_iterator(std::begin(C)));
237 }
238
239 /// An iterator adaptor that filters the elements of given inner iterators.
240 ///
241 /// The predicate parameter should be a callable object that accepts the wrapped
242 /// iterator's reference type and returns a bool. When incrementing or
243 /// decrementing the iterator, it will call the predicate on each element and
244 /// skip any where it returns false.
245 ///
246 /// \code
247 /// int A[] = { 1, 2, 3, 4 };
248 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
249 /// // R contains { 1, 3 }.
250 /// \endcode
251 template <typename WrappedIteratorT, typename PredicateT>
252 class filter_iterator
253 : public iterator_adaptor_base<
254 filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
255 typename std::common_type<
256 std::forward_iterator_tag,
257 typename std::iterator_traits<
258 WrappedIteratorT>::iterator_category>::type> {
259 using BaseT = iterator_adaptor_base<
260 filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
261 typename std::common_type<
262 std::forward_iterator_tag,
263 typename std::iterator_traits<WrappedIteratorT>::iterator_category>::
264 type>;
265
266 struct PayloadType {
267 WrappedIteratorT End;
268 PredicateT Pred;
269 };
270
271 Optional<PayloadType> Payload;
272
findNextValid()273 void findNextValid() {
274 assert(Payload && "Payload should be engaged when findNextValid is called");
275 while (this->I != Payload->End && !Payload->Pred(*this->I))
276 BaseT::operator++();
277 }
278
279 // Construct the begin iterator. The begin iterator requires to know where end
280 // is, so that it can properly stop when it hits end.
filter_iterator(WrappedIteratorT Begin,WrappedIteratorT End,PredicateT Pred)281 filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
282 : BaseT(std::move(Begin)),
283 Payload(PayloadType{std::move(End), std::move(Pred)}) {
284 findNextValid();
285 }
286
287 // Construct the end iterator. It's not incrementable, so Payload doesn't
288 // have to be engaged.
filter_iterator(WrappedIteratorT End)289 filter_iterator(WrappedIteratorT End) : BaseT(End) {}
290
291 public:
292 using BaseT::operator++;
293
294 filter_iterator &operator++() {
295 BaseT::operator++();
296 findNextValid();
297 return *this;
298 }
299
300 template <typename RT, typename PT>
301 friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>>
302 make_filter_range(RT &&, PT);
303 };
304
305 /// Convenience function that takes a range of elements and a predicate,
306 /// and return a new filter_iterator range.
307 ///
308 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
309 /// lifetime of that temporary is not kept by the returned range object, and the
310 /// temporary is going to be dropped on the floor after the make_iterator_range
311 /// full expression that contains this function call.
312 template <typename RangeT, typename PredicateT>
313 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
make_filter_range(RangeT && Range,PredicateT Pred)314 make_filter_range(RangeT &&Range, PredicateT Pred) {
315 using FilterIteratorT =
316 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
317 return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
318 std::end(std::forward<RangeT>(Range)),
319 std::move(Pred)),
320 FilterIteratorT(std::end(std::forward<RangeT>(Range))));
321 }
322
323 //===----------------------------------------------------------------------===//
324 // Extra additions to <utility>
325 //===----------------------------------------------------------------------===//
326
327 /// \brief Function object to check whether the first component of a std::pair
328 /// compares less than the first component of another std::pair.
329 struct less_first {
operatorless_first330 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
331 return lhs.first < rhs.first;
332 }
333 };
334
335 /// \brief Function object to check whether the second component of a std::pair
336 /// compares less than the second component of another std::pair.
337 struct less_second {
operatorless_second338 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
339 return lhs.second < rhs.second;
340 }
341 };
342
343 // A subset of N3658. More stuff can be added as-needed.
344
345 /// \brief Represents a compile-time sequence of integers.
346 template <class T, T... I> struct integer_sequence {
347 typedef T value_type;
348
sizeinteger_sequence349 static constexpr size_t size() { return sizeof...(I); }
350 };
351
352 /// \brief Alias for the common case of a sequence of size_ts.
353 template <size_t... I>
354 struct index_sequence : integer_sequence<std::size_t, I...> {};
355
356 template <std::size_t N, std::size_t... I>
357 struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
358 template <std::size_t... I>
359 struct build_index_impl<0, I...> : index_sequence<I...> {};
360
361 /// \brief Creates a compile-time integer sequence for a parameter pack.
362 template <class... Ts>
363 struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
364
365 /// Utility type to build an inheritance chain that makes it easy to rank
366 /// overload candidates.
367 template <int N> struct rank : rank<N - 1> {};
368 template <> struct rank<0> {};
369
370 /// \brief traits class for checking whether type T is one of any of the given
371 /// types in the variadic list.
372 template <typename T, typename... Ts> struct is_one_of {
373 static const bool value = false;
374 };
375
376 template <typename T, typename U, typename... Ts>
377 struct is_one_of<T, U, Ts...> {
378 static const bool value =
379 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
380 };
381
382 //===----------------------------------------------------------------------===//
383 // Extra additions for arrays
384 //===----------------------------------------------------------------------===//
385
386 /// Find the length of an array.
387 template <class T, std::size_t N>
388 constexpr inline size_t array_lengthof(T (&)[N]) {
389 return N;
390 }
391
392 /// Adapt std::less<T> for array_pod_sort.
393 template<typename T>
394 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
395 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
396 *reinterpret_cast<const T*>(P2)))
397 return -1;
398 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
399 *reinterpret_cast<const T*>(P1)))
400 return 1;
401 return 0;
402 }
403
404 /// get_array_pod_sort_comparator - This is an internal helper function used to
405 /// get type deduction of T right.
406 template<typename T>
407 inline int (*get_array_pod_sort_comparator(const T &))
408 (const void*, const void*) {
409 return array_pod_sort_comparator<T>;
410 }
411
412
413 /// array_pod_sort - This sorts an array with the specified start and end
414 /// extent. This is just like std::sort, except that it calls qsort instead of
415 /// using an inlined template. qsort is slightly slower than std::sort, but
416 /// most sorts are not performance critical in LLVM and std::sort has to be
417 /// template instantiated for each type, leading to significant measured code
418 /// bloat. This function should generally be used instead of std::sort where
419 /// possible.
420 ///
421 /// This function assumes that you have simple POD-like types that can be
422 /// compared with std::less and can be moved with memcpy. If this isn't true,
423 /// you should use std::sort.
424 ///
425 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
426 /// default to std::less.
427 template<class IteratorTy>
428 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
429 // Don't inefficiently call qsort with one element or trigger undefined
430 // behavior with an empty sequence.
431 auto NElts = End - Start;
432 if (NElts <= 1) return;
433 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
434 }
435
436 template <class IteratorTy>
437 inline void array_pod_sort(
438 IteratorTy Start, IteratorTy End,
439 int (*Compare)(
440 const typename std::iterator_traits<IteratorTy>::value_type *,
441 const typename std::iterator_traits<IteratorTy>::value_type *)) {
442 // Don't inefficiently call qsort with one element or trigger undefined
443 // behavior with an empty sequence.
444 auto NElts = End - Start;
445 if (NElts <= 1) return;
446 qsort(&*Start, NElts, sizeof(*Start),
447 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
448 }
449
450 //===----------------------------------------------------------------------===//
451 // Extra additions to <algorithm>
452 //===----------------------------------------------------------------------===//
453
454 /// For a container of pointers, deletes the pointers and then clears the
455 /// container.
456 template<typename Container>
457 void DeleteContainerPointers(Container &C) {
458 for (auto V : C)
459 delete V;
460 C.clear();
461 }
462
463 /// In a container of pairs (usually a map) whose second element is a pointer,
464 /// deletes the second elements and then clears the container.
465 template<typename Container>
466 void DeleteContainerSeconds(Container &C) {
467 for (auto &V : C)
468 delete V.second;
469 C.clear();
470 }
471
472 /// Provide wrappers to std::all_of which take ranges instead of having to pass
473 /// begin/end explicitly.
474 template <typename R, typename UnaryPredicate>
475 bool all_of(R &&Range, UnaryPredicate P) {
476 return std::all_of(std::begin(Range), std::end(Range), P);
477 }
478
479 /// Provide wrappers to std::any_of which take ranges instead of having to pass
480 /// begin/end explicitly.
481 template <typename R, typename UnaryPredicate>
482 bool any_of(R &&Range, UnaryPredicate P) {
483 return std::any_of(std::begin(Range), std::end(Range), P);
484 }
485
486 /// Provide wrappers to std::none_of which take ranges instead of having to pass
487 /// begin/end explicitly.
488 template <typename R, typename UnaryPredicate>
489 bool none_of(R &&Range, UnaryPredicate P) {
490 return std::none_of(std::begin(Range), std::end(Range), P);
491 }
492
493 /// Provide wrappers to std::find which take ranges instead of having to pass
494 /// begin/end explicitly.
495 template <typename R, typename T>
496 auto find(R &&Range, const T &Val) -> decltype(std::begin(Range)) {
497 return std::find(std::begin(Range), std::end(Range), Val);
498 }
499
500 /// Provide wrappers to std::find_if which take ranges instead of having to pass
501 /// begin/end explicitly.
502 template <typename R, typename UnaryPredicate>
503 auto find_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
504 return std::find_if(std::begin(Range), std::end(Range), P);
505 }
506
507 template <typename R, typename UnaryPredicate>
508 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
509 return std::find_if_not(std::begin(Range), std::end(Range), P);
510 }
511
512 /// Provide wrappers to std::remove_if which take ranges instead of having to
513 /// pass begin/end explicitly.
514 template <typename R, typename UnaryPredicate>
515 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
516 return std::remove_if(std::begin(Range), std::end(Range), P);
517 }
518
519 /// Wrapper function around std::find to detect if an element exists
520 /// in a container.
521 template <typename R, typename E>
522 bool is_contained(R &&Range, const E &Element) {
523 return std::find(std::begin(Range), std::end(Range), Element) !=
524 std::end(Range);
525 }
526
527 /// Wrapper function around std::count to count the number of times an element
528 /// \p Element occurs in the given range \p Range.
529 template <typename R, typename E>
530 auto count(R &&Range, const E &Element) -> typename std::iterator_traits<
531 decltype(std::begin(Range))>::difference_type {
532 return std::count(std::begin(Range), std::end(Range), Element);
533 }
534
535 /// Wrapper function around std::count_if to count the number of times an
536 /// element satisfying a given predicate occurs in a range.
537 template <typename R, typename UnaryPredicate>
538 auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits<
539 decltype(std::begin(Range))>::difference_type {
540 return std::count_if(std::begin(Range), std::end(Range), P);
541 }
542
543 /// Wrapper function around std::transform to apply a function to a range and
544 /// store the result elsewhere.
545 template <typename R, typename OutputIt, typename UnaryPredicate>
546 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
547 return std::transform(std::begin(Range), std::end(Range), d_first, P);
548 }
549
550 //===----------------------------------------------------------------------===//
551 // Extra additions to <memory>
552 //===----------------------------------------------------------------------===//
553
554 // Implement make_unique according to N3656.
555
556 /// \brief Constructs a `new T()` with the given args and returns a
557 /// `unique_ptr<T>` which owns the object.
558 ///
559 /// Example:
560 ///
561 /// auto p = make_unique<int>();
562 /// auto p = make_unique<std::tuple<int, int>>(0, 1);
563 template <class T, class... Args>
564 typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
565 make_unique(Args &&... args) {
566 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
567 }
568
569 /// \brief Constructs a `new T[n]` with the given args and returns a
570 /// `unique_ptr<T[]>` which owns the object.
571 ///
572 /// \param n size of the new array.
573 ///
574 /// Example:
575 ///
576 /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
577 template <class T>
578 typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
579 std::unique_ptr<T>>::type
580 make_unique(size_t n) {
581 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
582 }
583
584 /// This function isn't used and is only here to provide better compile errors.
585 template <class T, class... Args>
586 typename std::enable_if<std::extent<T>::value != 0>::type
587 make_unique(Args &&...) = delete;
588
589 struct FreeDeleter {
590 void operator()(void* v) {
591 ::free(v);
592 }
593 };
594
595 template<typename First, typename Second>
596 struct pair_hash {
597 size_t operator()(const std::pair<First, Second> &P) const {
598 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
599 }
600 };
601
602 /// A functor like C++14's std::less<void> in its absence.
603 struct less {
604 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
605 return std::forward<A>(a) < std::forward<B>(b);
606 }
607 };
608
609 /// A functor like C++14's std::equal<void> in its absence.
610 struct equal {
611 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
612 return std::forward<A>(a) == std::forward<B>(b);
613 }
614 };
615
616 /// Binary functor that adapts to any other binary functor after dereferencing
617 /// operands.
618 template <typename T> struct deref {
619 T func;
620 // Could be further improved to cope with non-derivable functors and
621 // non-binary functors (should be a variadic template member function
622 // operator()).
623 template <typename A, typename B>
624 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
625 assert(lhs);
626 assert(rhs);
627 return func(*lhs, *rhs);
628 }
629 };
630
631 namespace detail {
632 template <typename R> class enumerator_impl {
633 public:
634 template <typename X> struct result_pair {
635 result_pair(std::size_t Index, X Value) : Index(Index), Value(Value) {}
636
637 const std::size_t Index;
638 X Value;
639 };
640
641 class iterator {
642 typedef
643 typename std::iterator_traits<IterOfRange<R>>::reference iter_reference;
644 typedef result_pair<iter_reference> result_type;
645
646 public:
647 iterator(IterOfRange<R> &&Iter, std::size_t Index)
648 : Iter(Iter), Index(Index) {}
649
650 result_type operator*() const { return result_type(Index, *Iter); }
651
652 iterator &operator++() {
653 ++Iter;
654 ++Index;
655 return *this;
656 }
657
658 bool operator!=(const iterator &RHS) const { return Iter != RHS.Iter; }
659
660 private:
661 IterOfRange<R> Iter;
662 std::size_t Index;
663 };
664
665 public:
666 explicit enumerator_impl(R &&Range) : Range(std::forward<R>(Range)) {}
667
668 iterator begin() { return iterator(std::begin(Range), 0); }
669 iterator end() { return iterator(std::end(Range), std::size_t(-1)); }
670
671 private:
672 R Range;
673 };
674 }
675
676 /// Given an input range, returns a new range whose values are are pair (A,B)
677 /// such that A is the 0-based index of the item in the sequence, and B is
678 /// the value from the original sequence. Example:
679 ///
680 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
681 /// for (auto X : enumerate(Items)) {
682 /// printf("Item %d - %c\n", X.Index, X.Value);
683 /// }
684 ///
685 /// Output:
686 /// Item 0 - A
687 /// Item 1 - B
688 /// Item 2 - C
689 /// Item 3 - D
690 ///
691 template <typename R> detail::enumerator_impl<R> enumerate(R &&Range) {
692 return detail::enumerator_impl<R>(std::forward<R>(Range));
693 }
694
695 namespace detail {
696 template <typename F, typename Tuple, std::size_t... I>
697 auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
698 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
699 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
700 }
701 }
702
703 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
704 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
705 /// return the result.
706 template <typename F, typename Tuple>
707 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
708 std::forward<F>(f), std::forward<Tuple>(t),
709 build_index_impl<
710 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
711 using Indices = build_index_impl<
712 std::tuple_size<typename std::decay<Tuple>::type>::value>;
713
714 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
715 Indices{});
716 }
717 } // End llvm namespace
718
719 #endif
720