• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Generate some SavedModels for use by AOT compilation tests."""
16
17import os
18
19from absl import app
20from absl import flags
21
22from tensorflow.python.eager import def_function
23from tensorflow.python.framework import dtypes
24from tensorflow.python.framework import tensor_spec
25from tensorflow.python.ops import array_ops
26from tensorflow.python.ops import math_ops
27from tensorflow.python.saved_model import save
28from tensorflow.python.trackable import autotrackable
29
30
31flags.DEFINE_string('out_dir', None,
32                    'Directory to output saved models to.')
33
34FLAGS = flags.FLAGS
35
36
37def create_large_matmul_savedmodel(out_dir):
38  """Create a SavedModel that performs a large matmul."""
39  root = autotrackable.AutoTrackable()
40  root.f = def_function.function(
41      lambda x, y: math_ops.matmul(x, y),  # pylint: disable=unnecessary-lambda
42      input_signature=[tensor_spec.TensorSpec([3000, 5000], dtypes.float32),
43                       tensor_spec.TensorSpec([5000, 4000], dtypes.float32),])
44  root.f(x=array_ops.zeros((3000, 5000)),
45         y=array_ops.zeros((5000, 4000)))
46  save_dir = os.path.join(out_dir, 'x_matmul_y_large')
47  save.save(root, save_dir, root.f)
48  # This simple SavedModel lacks any variables, but we need to create a
49  # variables.index file to make bazel genrule happy.
50  with open(os.path.join(save_dir, 'variables', 'variables.index'), 'w'):
51    pass
52
53
54def create_small_matmul_savedmodel(out_dir):
55  """Create a SavedModel that performs a small matmul."""
56  root = autotrackable.AutoTrackable()
57  root.f = def_function.function(
58      lambda x, y: math_ops.matmul(x, y),  # pylint: disable=unnecessary-lambda
59      input_signature=[tensor_spec.TensorSpec([3, 5], dtypes.float32),
60                       tensor_spec.TensorSpec([5, 4], dtypes.float32),])
61  root.f(x=array_ops.zeros((3, 5)),
62         y=array_ops.zeros((5, 4)))
63  save_dir = os.path.join(out_dir, 'x_matmul_y_small')
64  save.save(root, save_dir, root.f)
65  # This simple SavedModel lacks any variables, but we need to create a
66  # variables.index file to make bazel genrule happy.
67  with open(os.path.join(save_dir, 'variables', 'variables.index'), 'w'):
68    pass
69
70
71def main(unused_args):
72  create_small_matmul_savedmodel(FLAGS.out_dir)
73  create_large_matmul_savedmodel(FLAGS.out_dir)
74
75
76if __name__ == '__main__':
77  flags.mark_flag_as_required('out_dir')
78  app.run(main)
79