• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022-2024, Arm Limited. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <limits.h>
11 #include <stdint.h>
12 
13 #include <arch.h>
14 #include <arch_features.h>
15 #include <arch_helpers.h>
16 #include <common/debug.h>
17 #include "gpt_rme_private.h"
18 #include <lib/gpt_rme/gpt_rme.h>
19 #include <lib/smccc.h>
20 #include <lib/spinlock.h>
21 #include <lib/xlat_tables/xlat_tables_v2.h>
22 
23 #if !ENABLE_RME
24 #error "ENABLE_RME must be enabled to use the GPT library"
25 #endif
26 
27 /*
28  * Lookup T from PPS
29  *
30  *   PPS    Size    T
31  *   0b000  4GB     32
32  *   0b001  64GB    36
33  *   0b010  1TB     40
34  *   0b011  4TB     42
35  *   0b100  16TB    44
36  *   0b101  256TB   48
37  *   0b110  4PB     52
38  *
39  * See section 15.1.27 of the RME specification.
40  */
41 static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
42 					   PPS_1TB_T, PPS_4TB_T,
43 					   PPS_16TB_T, PPS_256TB_T,
44 					   PPS_4PB_T};
45 
46 /*
47  * Lookup P from PGS
48  *
49  *   PGS    Size    P
50  *   0b00   4KB     12
51  *   0b10   16KB    14
52  *   0b01   64KB    16
53  *
54  * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
55  *
56  * See section 15.1.27 of the RME specification.
57  */
58 static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};
59 
60 static void shatter_2mb(uintptr_t base, const gpi_info_t *gpi_info,
61 				uint64_t l1_desc);
62 static void shatter_32mb(uintptr_t base, const gpi_info_t *gpi_info,
63 				uint64_t l1_desc);
64 static void shatter_512mb(uintptr_t base, const gpi_info_t *gpi_info,
65 				uint64_t l1_desc);
66 
67 /*
68  * This structure contains GPT configuration data
69  */
70 typedef struct {
71 	uintptr_t plat_gpt_l0_base;
72 	gpccr_pps_e pps;
73 	gpt_t_val_e t;
74 	gpccr_pgs_e pgs;
75 	gpt_p_val_e p;
76 } gpt_config_t;
77 
78 static gpt_config_t gpt_config;
79 
80 /*
81  * Number of L1 entries in 2MB, depending on GPCCR_EL3.PGS:
82  * +-------+------------+
83  * |  PGS  | L1 entries |
84  * +-------+------------+
85  * |  4KB  |     32     |
86  * +-------+------------+
87  * |  16KB |     8      |
88  * +-------+------------+
89  * |  64KB |     2      |
90  * +-------+------------+
91  */
92 static unsigned int gpt_l1_cnt_2mb;
93 
94 /*
95  * Mask for the L1 index field, depending on
96  * GPCCR_EL3.L0GPTSZ and GPCCR_EL3.PGS:
97  * +---------+-------------------------------+
98  * |         |             PGS               |
99  * +---------+----------+----------+---------+
100  * | L0GPTSZ |   4KB    |   16KB   |   64KB  |
101  * +---------+----------+----------+---------+
102  * |  1GB    |  0x3FFF  |  0xFFF   |  0x3FF  |
103  * +---------+----------+----------+---------+
104  * |  16GB   | 0x3FFFF  |  0xFFFF  | 0x3FFF  |
105  * +---------+----------+----------+---------+
106  * |  64GB   | 0xFFFFF  | 0x3FFFF  | 0xFFFF  |
107  * +---------+----------+----------+---------+
108  * |  512GB  | 0x7FFFFF | 0x1FFFFF | 0x7FFFF |
109  * +---------+----------+----------+---------+
110  */
111 static uint64_t gpt_l1_index_mask;
112 
113 /* Number of 128-bit L1 entries in 2MB, 32MB and 512MB */
114 #define L1_QWORDS_2MB	(gpt_l1_cnt_2mb / 2U)
115 #define L1_QWORDS_32MB	(L1_QWORDS_2MB * 16U)
116 #define L1_QWORDS_512MB	(L1_QWORDS_32MB * 16U)
117 
118 /* Size in bytes of L1 entries in 2MB, 32MB */
119 #define L1_BYTES_2MB	(gpt_l1_cnt_2mb * sizeof(uint64_t))
120 #define L1_BYTES_32MB	(L1_BYTES_2MB * 16U)
121 
122 /* Get the index into the L1 table from a physical address */
123 #define GPT_L1_INDEX(_pa)	\
124 	(((_pa) >> (unsigned int)GPT_L1_IDX_SHIFT(gpt_config.p)) & gpt_l1_index_mask)
125 
126 /* These variables are used during initialization of the L1 tables */
127 static uintptr_t gpt_l1_tbl;
128 
129 /* These variable is used during runtime */
130 #if (RME_GPT_BITLOCK_BLOCK == 0)
131 /*
132  * The GPTs are protected by a global spinlock to ensure
133  * that multiple CPUs do not attempt to change the descriptors at once.
134  */
135 static spinlock_t gpt_lock;
136 #else
137 
138 /* Bitlocks base address */
139 static bitlock_t *gpt_bitlock_base;
140 #endif
141 
142 /* Lock/unlock macros for GPT entries */
143 #if (RME_GPT_BITLOCK_BLOCK == 0)
144 /*
145  * Access to GPT is controlled by a global lock to ensure
146  * that no more than one CPU is allowed to make changes at any
147  * given time.
148  */
149 #define GPT_LOCK	spin_lock(&gpt_lock)
150 #define GPT_UNLOCK	spin_unlock(&gpt_lock)
151 #else
152 /*
153  * Access to a block of memory is controlled by a bitlock.
154  * Size of block = RME_GPT_BITLOCK_BLOCK * 512MB.
155  */
156 #define GPT_LOCK	bit_lock(gpi_info.lock, gpi_info.mask)
157 #define GPT_UNLOCK	bit_unlock(gpi_info.lock, gpi_info.mask)
158 #endif
159 
tlbi_page_dsbosh(uintptr_t base)160 static void tlbi_page_dsbosh(uintptr_t base)
161 {
162 	/* Look-up table for invalidation TLBs for 4KB, 16KB and 64KB pages */
163 	static const gpt_tlbi_lookup_t tlbi_page_lookup[] = {
164 		{ tlbirpalos_4k, ~(SZ_4K - 1UL) },
165 		{ tlbirpalos_64k, ~(SZ_64K - 1UL) },
166 		{ tlbirpalos_16k, ~(SZ_16K - 1UL) }
167 	};
168 
169 	tlbi_page_lookup[gpt_config.pgs].function(
170 			base & tlbi_page_lookup[gpt_config.pgs].mask);
171 	dsbosh();
172 }
173 
174 /*
175  * Helper function to fill out GPI entries in a single L1 table
176  * with Granules or Contiguous descriptor.
177  *
178  * Parameters
179  *   l1			Pointer to 2MB, 32MB or 512MB aligned L1 table entry to fill out
180  *   l1_desc		GPT Granules or Contiguous descriptor set this range to
181  *   cnt		Number of double 128-bit L1 entries to fill
182  *
183  */
fill_desc(uint64_t * l1,uint64_t l1_desc,unsigned int cnt)184 static void fill_desc(uint64_t *l1, uint64_t l1_desc, unsigned int cnt)
185 {
186 	uint128_t *l1_quad = (uint128_t *)l1;
187 	uint128_t l1_quad_desc = (uint128_t)l1_desc | ((uint128_t)l1_desc << 64);
188 
189 	VERBOSE("GPT: %s(%p 0x%"PRIx64" %u)\n", __func__, l1, l1_desc, cnt);
190 
191 	for (unsigned int i = 0U; i < cnt; i++) {
192 		*l1_quad++ = l1_quad_desc;
193 	}
194 }
195 
shatter_2mb(uintptr_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)196 static void shatter_2mb(uintptr_t base, const gpi_info_t *gpi_info,
197 				uint64_t l1_desc)
198 {
199 	unsigned long idx = GPT_L1_INDEX(ALIGN_2MB(base));
200 
201 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
202 				__func__, base, l1_desc);
203 
204 	/* Convert 2MB Contiguous block to Granules */
205 	fill_desc(&gpi_info->gpt_l1_addr[idx], l1_desc, L1_QWORDS_2MB);
206 }
207 
shatter_32mb(uintptr_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)208 static void shatter_32mb(uintptr_t base, const gpi_info_t *gpi_info,
209 				uint64_t l1_desc)
210 {
211 	unsigned long idx = GPT_L1_INDEX(ALIGN_2MB(base));
212 	const uint64_t *l1_gran = &gpi_info->gpt_l1_addr[idx];
213 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
214 	uint64_t *l1;
215 
216 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
217 				__func__, base, l1_desc);
218 
219 	/* Get index corresponding to 32MB aligned address */
220 	idx = GPT_L1_INDEX(ALIGN_32MB(base));
221 	l1 = &gpi_info->gpt_l1_addr[idx];
222 
223 	/* 16 x 2MB blocks in 32MB */
224 	for (unsigned int i = 0U; i < 16U; i++) {
225 		/* Fill with Granules or Contiguous descriptors */
226 		fill_desc(l1, (l1 == l1_gran) ? l1_desc : l1_cont_desc,
227 							L1_QWORDS_2MB);
228 		l1 = (uint64_t *)((uintptr_t)l1 + L1_BYTES_2MB);
229 	}
230 }
231 
shatter_512mb(uintptr_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)232 static void shatter_512mb(uintptr_t base, const gpi_info_t *gpi_info,
233 				uint64_t l1_desc)
234 {
235 	unsigned long idx = GPT_L1_INDEX(ALIGN_32MB(base));
236 	const uint64_t *l1_32mb = &gpi_info->gpt_l1_addr[idx];
237 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
238 	uint64_t *l1;
239 
240 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
241 				__func__, base, l1_desc);
242 
243 	/* Get index corresponding to 512MB aligned address */
244 	idx = GPT_L1_INDEX(ALIGN_512MB(base));
245 	l1 = &gpi_info->gpt_l1_addr[idx];
246 
247 	/* 16 x 32MB blocks in 512MB */
248 	for (unsigned int i = 0U; i < 16U; i++) {
249 		if (l1 == l1_32mb) {
250 			/* Shatter this 32MB block */
251 			shatter_32mb(base, gpi_info, l1_desc);
252 		} else {
253 			/* Fill 32MB with Contiguous descriptors */
254 			fill_desc(l1, l1_cont_desc, L1_QWORDS_32MB);
255 		}
256 
257 		l1 = (uint64_t *)((uintptr_t)l1 + L1_BYTES_32MB);
258 	}
259 }
260 
261 /*
262  * This function checks to see if a GPI value is valid.
263  *
264  * These are valid GPI values.
265  *   GPT_GPI_NO_ACCESS   U(0x0)
266  *   GPT_GPI_SECURE      U(0x8)
267  *   GPT_GPI_NS          U(0x9)
268  *   GPT_GPI_ROOT        U(0xA)
269  *   GPT_GPI_REALM       U(0xB)
270  *   GPT_GPI_ANY         U(0xF)
271  *
272  * Parameters
273  *   gpi		GPI to check for validity.
274  *
275  * Return
276  *   true for a valid GPI, false for an invalid one.
277  */
is_gpi_valid(unsigned int gpi)278 static bool is_gpi_valid(unsigned int gpi)
279 {
280 	if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
281 	    ((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
282 		return true;
283 	}
284 	return false;
285 }
286 
287 /*
288  * This function checks to see if two PAS regions overlap.
289  *
290  * Parameters
291  *   base_1: base address of first PAS
292  *   size_1: size of first PAS
293  *   base_2: base address of second PAS
294  *   size_2: size of second PAS
295  *
296  * Return
297  *   True if PAS regions overlap, false if they do not.
298  */
check_pas_overlap(uintptr_t base_1,size_t size_1,uintptr_t base_2,size_t size_2)299 static bool check_pas_overlap(uintptr_t base_1, size_t size_1,
300 			      uintptr_t base_2, size_t size_2)
301 {
302 	if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
303 		return true;
304 	}
305 	return false;
306 }
307 
308 /*
309  * This helper function checks to see if a PAS region from index 0 to
310  * (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
311  *
312  * Parameters
313  *   l0_idx:      Index of the L0 entry to check
314  *   pas_regions: PAS region array
315  *   pas_idx:     Upper bound of the PAS array index.
316  *
317  * Return
318  *   True if a PAS region occupies the L0 region in question, false if not.
319  */
does_previous_pas_exist_here(unsigned int l0_idx,pas_region_t * pas_regions,unsigned int pas_idx)320 static bool does_previous_pas_exist_here(unsigned int l0_idx,
321 					 pas_region_t *pas_regions,
322 					 unsigned int pas_idx)
323 {
324 	/* Iterate over PAS regions up to pas_idx */
325 	for (unsigned int i = 0U; i < pas_idx; i++) {
326 		if (check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
327 		    GPT_L0GPTSZ_ACTUAL_SIZE,
328 		    pas_regions[i].base_pa, pas_regions[i].size)) {
329 			return true;
330 		}
331 	}
332 	return false;
333 }
334 
335 /*
336  * This function iterates over all of the PAS regions and checks them to ensure
337  * proper alignment of base and size, that the GPI is valid, and that no regions
338  * overlap. As a part of the overlap checks, this function checks existing L0
339  * mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
340  * is called multiple times to place L1 tables in different areas of memory. It
341  * also counts the number of L1 tables needed and returns it on success.
342  *
343  * Parameters
344  *   *pas_regions	Pointer to array of PAS region structures.
345  *   pas_region_cnt	Total number of PAS regions in the array.
346  *
347  * Return
348  *   Negative Linux error code in the event of a failure, number of L1 regions
349  *   required when successful.
350  */
validate_pas_mappings(pas_region_t * pas_regions,unsigned int pas_region_cnt)351 static int validate_pas_mappings(pas_region_t *pas_regions,
352 				 unsigned int pas_region_cnt)
353 {
354 	unsigned int idx;
355 	unsigned int l1_cnt = 0U;
356 	unsigned int pas_l1_cnt;
357 	uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;
358 
359 	assert(pas_regions != NULL);
360 	assert(pas_region_cnt != 0U);
361 
362 	for (idx = 0U; idx < pas_region_cnt; idx++) {
363 		/* Check for arithmetic overflow in region */
364 		if ((ULONG_MAX - pas_regions[idx].base_pa) <
365 		    pas_regions[idx].size) {
366 			ERROR("GPT: Address overflow in PAS[%u]!\n", idx);
367 			return -EOVERFLOW;
368 		}
369 
370 		/* Initial checks for PAS validity */
371 		if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
372 		    GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
373 		    !is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
374 			ERROR("GPT: PAS[%u] is invalid!\n", idx);
375 			return -EFAULT;
376 		}
377 
378 		/*
379 		 * Make sure this PAS does not overlap with another one. We
380 		 * start from idx + 1 instead of 0 since prior PAS mappings will
381 		 * have already checked themselves against this one.
382 		 */
383 		for (unsigned int i = idx + 1U; i < pas_region_cnt; i++) {
384 			if (check_pas_overlap(pas_regions[idx].base_pa,
385 			    pas_regions[idx].size,
386 			    pas_regions[i].base_pa,
387 			    pas_regions[i].size)) {
388 				ERROR("GPT: PAS[%u] overlaps with PAS[%u]\n",
389 					i, idx);
390 				return -EFAULT;
391 			}
392 		}
393 
394 		/*
395 		 * Since this function can be called multiple times with
396 		 * separate L1 tables we need to check the existing L0 mapping
397 		 * to see if this PAS would fall into one that has already been
398 		 * initialized.
399 		 */
400 		for (unsigned int i =
401 			(unsigned int)GPT_L0_IDX(pas_regions[idx].base_pa);
402 			i <= GPT_L0_IDX(pas_regions[idx].base_pa +
403 					pas_regions[idx].size - 1UL);
404 			i++) {
405 			if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
406 			    (GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
407 				/* This descriptor is unused so continue */
408 				continue;
409 			}
410 
411 			/*
412 			 * This descriptor has been initialized in a previous
413 			 * call to this function so cannot be initialized again.
414 			 */
415 			ERROR("GPT: PAS[%u] overlaps with previous L0[%u]!\n",
416 			      idx, i);
417 			return -EFAULT;
418 		}
419 
420 		/* Check for block mapping (L0) type */
421 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
422 		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
423 			/* Make sure base and size are block-aligned */
424 			if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
425 			    !GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
426 				ERROR("GPT: PAS[%u] is not block-aligned!\n",
427 				      idx);
428 				return -EFAULT;
429 			}
430 
431 			continue;
432 		}
433 
434 		/* Check for granule mapping (L1) type */
435 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
436 		    GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
437 			/* Make sure base and size are granule-aligned */
438 			if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
439 			    !GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
440 				ERROR("GPT: PAS[%u] is not granule-aligned!\n",
441 				      idx);
442 				return -EFAULT;
443 			}
444 
445 			/* Find how many L1 tables this PAS occupies */
446 			pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
447 				     pas_regions[idx].size - 1UL) -
448 				     GPT_L0_IDX(pas_regions[idx].base_pa) + 1U);
449 
450 			/*
451 			 * This creates a situation where, if multiple PAS
452 			 * regions occupy the same table descriptor, we can get
453 			 * an artificially high total L1 table count. The way we
454 			 * handle this is by checking each PAS against those
455 			 * before it in the array, and if they both occupy the
456 			 * same PAS we subtract from pas_l1_cnt and only the
457 			 * first PAS in the array gets to count it.
458 			 */
459 
460 			/*
461 			 * If L1 count is greater than 1 we know the start and
462 			 * end PAs are in different L0 regions so we must check
463 			 * both for overlap against other PAS.
464 			 */
465 			if (pas_l1_cnt > 1) {
466 				if (does_previous_pas_exist_here(
467 				    GPT_L0_IDX(pas_regions[idx].base_pa +
468 				    pas_regions[idx].size - 1UL),
469 				    pas_regions, idx)) {
470 					pas_l1_cnt--;
471 				}
472 			}
473 
474 			if (does_previous_pas_exist_here(
475 			    GPT_L0_IDX(pas_regions[idx].base_pa),
476 			    pas_regions, idx)) {
477 				pas_l1_cnt--;
478 			}
479 
480 			l1_cnt += pas_l1_cnt;
481 			continue;
482 		}
483 
484 		/* If execution reaches this point, mapping type is invalid */
485 		ERROR("GPT: PAS[%u] has invalid mapping type 0x%x.\n", idx,
486 		      GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
487 		return -EINVAL;
488 	}
489 
490 	return l1_cnt;
491 }
492 
493 /*
494  * This function validates L0 initialization parameters.
495  *
496  * Parameters
497  *   l0_mem_base	Base address of memory used for L0 tables.
498  *   l0_mem_size	Size of memory available for L0 tables.
499  *
500  * Return
501  *   Negative Linux error code in the event of a failure, 0 for success.
502  */
validate_l0_params(gpccr_pps_e pps,uintptr_t l0_mem_base,size_t l0_mem_size)503 static int validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
504 				size_t l0_mem_size)
505 {
506 	size_t l0_alignment, locks_size = 0;
507 
508 	/*
509 	 * Make sure PPS is valid and then store it since macros need this value
510 	 * to work.
511 	 */
512 	if (pps > GPT_PPS_MAX) {
513 		ERROR("GPT: Invalid PPS: 0x%x\n", pps);
514 		return -EINVAL;
515 	}
516 	gpt_config.pps = pps;
517 	gpt_config.t = gpt_t_lookup[pps];
518 
519 	/* Alignment must be the greater of 4KB or l0 table size */
520 	l0_alignment = PAGE_SIZE_4KB;
521 	if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
522 		l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
523 	}
524 
525 	/* Check base address */
526 	if ((l0_mem_base == 0UL) ||
527 	   ((l0_mem_base & (l0_alignment - 1UL)) != 0UL)) {
528 		ERROR("GPT: Invalid L0 base address: 0x%lx\n", l0_mem_base);
529 		return -EFAULT;
530 	}
531 
532 #if (RME_GPT_BITLOCK_BLOCK != 0)
533 	/*
534 	 * Size of bitlocks in bytes for the protected address space
535 	 * with RME_GPT_BITLOCK_BLOCK * 512MB per bitlock.
536 	 */
537 	locks_size = GPT_PPS_ACTUAL_SIZE(gpt_config.t) /
538 			(RME_GPT_BITLOCK_BLOCK * SZ_512M * 8U);
539 
540 	/*
541 	 * If protected space size is less than the size covered
542 	 * by 'bitlock' structure, check for a single bitlock.
543 	 */
544 	if (locks_size < LOCK_SIZE) {
545 		locks_size = LOCK_SIZE;
546 	}
547 #endif
548 	/* Check size for L0 tables and bitlocks */
549 	if (l0_mem_size < (GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size)) {
550 		ERROR("GPT: Inadequate L0 memory\n");
551 		ERROR("      Expected 0x%lx bytes, got 0x%lx bytes\n",
552 			GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size,
553 			l0_mem_size);
554 		return -ENOMEM;
555 	}
556 
557 	return 0;
558 }
559 
560 /*
561  * In the event that L1 tables are needed, this function validates
562  * the L1 table generation parameters.
563  *
564  * Parameters
565  *   l1_mem_base	Base address of memory used for L1 table allocation.
566  *   l1_mem_size	Total size of memory available for L1 tables.
567  *   l1_gpt_cnt		Number of L1 tables needed.
568  *
569  * Return
570  *   Negative Linux error code in the event of a failure, 0 for success.
571  */
validate_l1_params(uintptr_t l1_mem_base,size_t l1_mem_size,unsigned int l1_gpt_cnt)572 static int validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
573 				unsigned int l1_gpt_cnt)
574 {
575 	size_t l1_gpt_mem_sz;
576 
577 	/* Check if the granularity is supported */
578 	if (!xlat_arch_is_granule_size_supported(
579 	    GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
580 		return -EPERM;
581 	}
582 
583 	/* Make sure L1 tables are aligned to their size */
584 	if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1UL)) != 0UL) {
585 		ERROR("GPT: Unaligned L1 GPT base address: 0x%"PRIxPTR"\n",
586 		      l1_mem_base);
587 		return -EFAULT;
588 	}
589 
590 	/* Get total memory needed for L1 tables */
591 	l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);
592 
593 	/* Check for overflow */
594 	if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
595 		ERROR("GPT: Overflow calculating L1 memory size\n");
596 		return -ENOMEM;
597 	}
598 
599 	/* Make sure enough space was supplied */
600 	if (l1_mem_size < l1_gpt_mem_sz) {
601 		ERROR("%sL1 GPTs%s", (const char *)"GPT: Inadequate ",
602 			(const char *)" memory\n");
603 		ERROR("      Expected 0x%lx bytes, got 0x%lx bytes\n",
604 			l1_gpt_mem_sz, l1_mem_size);
605 		return -ENOMEM;
606 	}
607 
608 	VERBOSE("GPT: Requested 0x%lx bytes for L1 GPTs\n", l1_gpt_mem_sz);
609 	return 0;
610 }
611 
612 /*
613  * This function initializes L0 block descriptors (regions that cannot be
614  * transitioned at the granule level) according to the provided PAS.
615  *
616  * Parameters
617  *   *pas		Pointer to the structure defining the PAS region to
618  *			initialize.
619  */
generate_l0_blk_desc(pas_region_t * pas)620 static void generate_l0_blk_desc(pas_region_t *pas)
621 {
622 	uint64_t gpt_desc;
623 	unsigned long idx, end_idx;
624 	uint64_t *l0_gpt_arr;
625 
626 	assert(gpt_config.plat_gpt_l0_base != 0U);
627 	assert(pas != NULL);
628 
629 	/*
630 	 * Checking of PAS parameters has already been done in
631 	 * validate_pas_mappings so no need to check the same things again.
632 	 */
633 
634 	l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;
635 
636 	/* Create the GPT Block descriptor for this PAS region */
637 	gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));
638 
639 	/* Start index of this region in L0 GPTs */
640 	idx = GPT_L0_IDX(pas->base_pa);
641 
642 	/*
643 	 * Determine number of L0 GPT descriptors covered by
644 	 * this PAS region and use the count to populate these
645 	 * descriptors.
646 	 */
647 	end_idx = GPT_L0_IDX(pas->base_pa + pas->size);
648 
649 	/* Generate the needed block descriptors */
650 	for (; idx < end_idx; idx++) {
651 		l0_gpt_arr[idx] = gpt_desc;
652 		VERBOSE("GPT: L0 entry (BLOCK) index %lu [%p]: GPI = 0x%"PRIx64" (0x%"PRIx64")\n",
653 			idx, &l0_gpt_arr[idx],
654 			(gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
655 			GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
656 	}
657 }
658 
659 /*
660  * Helper function to determine if the end physical address lies in the same L0
661  * region as the current physical address. If true, the end physical address is
662  * returned else, the start address of the next region is returned.
663  *
664  * Parameters
665  *   cur_pa		Physical address of the current PA in the loop through
666  *			the range.
667  *   end_pa		Physical address of the end PA in a PAS range.
668  *
669  * Return
670  *   The PA of the end of the current range.
671  */
get_l1_end_pa(uintptr_t cur_pa,uintptr_t end_pa)672 static uintptr_t get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
673 {
674 	uintptr_t cur_idx;
675 	uintptr_t end_idx;
676 
677 	cur_idx = GPT_L0_IDX(cur_pa);
678 	end_idx = GPT_L0_IDX(end_pa);
679 
680 	assert(cur_idx <= end_idx);
681 
682 	if (cur_idx == end_idx) {
683 		return end_pa;
684 	}
685 
686 	return (cur_idx + 1UL) << GPT_L0_IDX_SHIFT;
687 }
688 
689 /*
690  * Helper function to fill out GPI entries from 'first' granule address of
691  * the specified 'length' in a single L1 table with 'l1_desc' Contiguous
692  * descriptor.
693  *
694  * Parameters
695  *   l1			Pointer to L1 table to fill out
696  *   first		Address of first granule in range
697  *   length		Length of the range in bytes
698  *   gpi		GPI set this range to
699  *
700  * Return
701  *   Address of next granule in range.
702  */
fill_l1_cont_desc(uint64_t * l1,uintptr_t first,size_t length,unsigned int gpi)703 __unused static uintptr_t fill_l1_cont_desc(uint64_t *l1, uintptr_t first,
704 					    size_t length, unsigned int gpi)
705 {
706 	/*
707 	 * Look up table for contiguous blocks and descriptors.
708 	 * Entries should be defined in descending block sizes:
709 	 * 512MB, 32MB and 2MB.
710 	 */
711 	static const gpt_fill_lookup_t gpt_fill_lookup[] = {
712 #if (RME_GPT_MAX_BLOCK == 512)
713 		{ SZ_512M, GPT_L1_CONT_DESC_512MB },
714 #endif
715 #if (RME_GPT_MAX_BLOCK >= 32)
716 		{ SZ_32M, GPT_L1_CONT_DESC_32MB },
717 #endif
718 #if (RME_GPT_MAX_BLOCK != 0)
719 		{ SZ_2M, GPT_L1_CONT_DESC_2MB }
720 #endif
721 	};
722 
723 	/*
724 	 * Iterate through all block sizes (512MB, 32MB and 2MB)
725 	 * starting with maximum supported.
726 	 */
727 	for (unsigned long i = 0UL; i < ARRAY_SIZE(gpt_fill_lookup); i++) {
728 		/* Calculate index */
729 		unsigned long idx = GPT_L1_INDEX(first);
730 
731 		/* Contiguous block size */
732 		size_t cont_size = gpt_fill_lookup[i].size;
733 
734 		if (GPT_REGION_IS_CONT(length, first, cont_size)) {
735 
736 			/* Generate Contiguous descriptor */
737 			uint64_t l1_desc = GPT_L1_GPI_CONT_DESC(gpi,
738 						gpt_fill_lookup[i].desc);
739 
740 			/* Number of 128-bit L1 entries in block */
741 			unsigned int cnt;
742 
743 			switch (cont_size) {
744 			case SZ_512M:
745 				cnt = L1_QWORDS_512MB;
746 				break;
747 			case SZ_32M:
748 				cnt = L1_QWORDS_32MB;
749 				break;
750 			default:			/* SZ_2MB */
751 				cnt = L1_QWORDS_2MB;
752 			}
753 
754 			VERBOSE("GPT: Contiguous descriptor 0x%"PRIxPTR" %luMB\n",
755 				first, cont_size / SZ_1M);
756 
757 			/* Fill Contiguous descriptors */
758 			fill_desc(&l1[idx], l1_desc, cnt);
759 			first += cont_size;
760 			length -= cont_size;
761 
762 			if (length == 0UL) {
763 				break;
764 			}
765 		}
766 	}
767 
768 	return first;
769 }
770 
771 /* Build Granules descriptor with the same 'gpi' for every GPI entry */
build_l1_desc(unsigned int gpi)772 static uint64_t build_l1_desc(unsigned int gpi)
773 {
774 	uint64_t l1_desc = (uint64_t)gpi | ((uint64_t)gpi << 4);
775 
776 	l1_desc |= (l1_desc << 8);
777 	l1_desc |= (l1_desc << 16);
778 	return (l1_desc | (l1_desc << 32));
779 }
780 
781 /*
782  * Helper function to fill out GPI entries from 'first' to 'last' granule
783  * address in a single L1 table with 'l1_desc' Granules descriptor.
784  *
785  * Parameters
786  *   l1			Pointer to L1 table to fill out
787  *   first		Address of first granule in range
788  *   last		Address of last granule in range (inclusive)
789  *   gpi		GPI set this range to
790  *
791  * Return
792  *   Address of next granule in range.
793  */
fill_l1_gran_desc(uint64_t * l1,uintptr_t first,uintptr_t last,unsigned int gpi)794 static uintptr_t fill_l1_gran_desc(uint64_t *l1, uintptr_t first,
795 				   uintptr_t last, unsigned int gpi)
796 {
797 	uint64_t gpi_mask;
798 	unsigned long i;
799 
800 	/* Generate Granules descriptor */
801 	uint64_t l1_desc = build_l1_desc(gpi);
802 
803 	/* Shift the mask if we're starting in the middle of an L1 entry */
804 	gpi_mask = ULONG_MAX << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);
805 
806 	/* Fill out each L1 entry for this region */
807 	for (i = GPT_L1_INDEX(first); i <= GPT_L1_INDEX(last); i++) {
808 
809 		/* Account for stopping in the middle of an L1 entry */
810 		if (i == GPT_L1_INDEX(last)) {
811 			gpi_mask &= (gpi_mask >> ((15U -
812 				    GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
813 		}
814 
815 		assert((l1[i] & gpi_mask) == (GPT_L1_ANY_DESC & gpi_mask));
816 
817 		/* Write GPI values */
818 		l1[i] = (l1[i] & ~gpi_mask) | (l1_desc & gpi_mask);
819 
820 		/* Reset mask */
821 		gpi_mask = ULONG_MAX;
822 	}
823 
824 	return last + GPT_PGS_ACTUAL_SIZE(gpt_config.p);
825 }
826 
827 /*
828  * Helper function to fill out GPI entries in a single L1 table.
829  * This function fills out an entire L1 table with either Granules or Contiguous
830  * (RME_GPT_MAX_BLOCK != 0) descriptors depending on region length and alignment.
831  * Note. If RME_GPT_MAX_BLOCK == 0, then the L1 tables are filled with regular
832  * Granules descriptors.
833  *
834  * Parameters
835  *   l1			Pointer to L1 table to fill out
836  *   first		Address of first granule in range
837  *   last		Address of last granule in range (inclusive)
838  *   gpi		GPI set this range to
839  */
fill_l1_tbl(uint64_t * l1,uintptr_t first,uintptr_t last,unsigned int gpi)840 static void fill_l1_tbl(uint64_t *l1, uintptr_t first, uintptr_t last,
841 			unsigned int gpi)
842 {
843 	assert(l1 != NULL);
844 	assert(first <= last);
845 	assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) == 0UL);
846 	assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) == 0UL);
847 	assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
848 
849 #if (RME_GPT_MAX_BLOCK != 0)
850 	while (first <= last) {
851 		/* Region length */
852 		size_t length = last - first + GPT_PGS_ACTUAL_SIZE(gpt_config.p);
853 
854 		if (length < SZ_2M) {
855 			/*
856 			 * Fill with Granule descriptors in case of
857 			 * region length < 2MB.
858 			 */
859 			first = fill_l1_gran_desc(l1, first, last, gpi);
860 
861 		} else if ((first & (SZ_2M - UL(1))) == UL(0)) {
862 			/*
863 			 * For region length >= 2MB and at least 2MB aligned
864 			 * call to fill_l1_cont_desc will iterate through
865 			 * all block sizes (512MB, 32MB and 2MB) supported and
866 			 * fill corresponding Contiguous descriptors.
867 			 */
868 			first = fill_l1_cont_desc(l1, first, length, gpi);
869 		} else {
870 			/*
871 			 * For not aligned region >= 2MB fill with Granules
872 			 * descriptors up to the next 2MB aligned address.
873 			 */
874 			uintptr_t new_last = ALIGN_2MB(first + SZ_2M) -
875 					GPT_PGS_ACTUAL_SIZE(gpt_config.p);
876 
877 			first = fill_l1_gran_desc(l1, first, new_last, gpi);
878 		}
879 	}
880 #else
881 	/* Fill with Granule descriptors */
882 	first = fill_l1_gran_desc(l1, first, last, gpi);
883 #endif
884 	assert(first == (last + GPT_PGS_ACTUAL_SIZE(gpt_config.p)));
885 }
886 
887 /*
888  * This function finds the next available unused L1 table and initializes all
889  * granules descriptor entries to GPI_ANY. This ensures that there are no chunks
890  * of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
891  * event that a PAS region stops midway through an L1 table, thus guaranteeing
892  * that all memory not explicitly assigned is GPI_ANY. This function does not
893  * check for overflow conditions, that should be done by the caller.
894  *
895  * Return
896  *   Pointer to the next available L1 table.
897  */
get_new_l1_tbl(void)898 static uint64_t *get_new_l1_tbl(void)
899 {
900 	/* Retrieve the next L1 table */
901 	uint64_t *l1 = (uint64_t *)gpt_l1_tbl;
902 
903 	/* Increment L1 GPT address */
904 	gpt_l1_tbl += GPT_L1_TABLE_SIZE(gpt_config.p);
905 
906 	/* Initialize all GPIs to GPT_GPI_ANY */
907 	for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
908 		l1[i] = GPT_L1_ANY_DESC;
909 	}
910 
911 	return l1;
912 }
913 
914 /*
915  * When L1 tables are needed, this function creates the necessary L0 table
916  * descriptors and fills out the L1 table entries according to the supplied
917  * PAS range.
918  *
919  * Parameters
920  *   *pas		Pointer to the structure defining the PAS region.
921  */
generate_l0_tbl_desc(pas_region_t * pas)922 static void generate_l0_tbl_desc(pas_region_t *pas)
923 {
924 	uintptr_t end_pa;
925 	uintptr_t cur_pa;
926 	uintptr_t last_gran_pa;
927 	uint64_t *l0_gpt_base;
928 	uint64_t *l1_gpt_arr;
929 	unsigned int l0_idx, gpi;
930 
931 	assert(gpt_config.plat_gpt_l0_base != 0U);
932 	assert(pas != NULL);
933 
934 	/*
935 	 * Checking of PAS parameters has already been done in
936 	 * validate_pas_mappings so no need to check the same things again.
937 	 */
938 	end_pa = pas->base_pa + pas->size;
939 	l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
940 
941 	/* We start working from the granule at base PA */
942 	cur_pa = pas->base_pa;
943 
944 	/* Get GPI */
945 	gpi = GPT_PAS_ATTR_GPI(pas->attrs);
946 
947 	/* Iterate over each L0 region in this memory range */
948 	for (l0_idx = (unsigned int)GPT_L0_IDX(pas->base_pa);
949 	     l0_idx <= (unsigned int)GPT_L0_IDX(end_pa - 1UL);
950 	     l0_idx++) {
951 		/*
952 		 * See if the L0 entry is already a table descriptor or if we
953 		 * need to create one.
954 		 */
955 		if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
956 			/* Get the L1 array from the L0 entry */
957 			l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
958 		} else {
959 			/* Get a new L1 table from the L1 memory space */
960 			l1_gpt_arr = get_new_l1_tbl();
961 
962 			/* Fill out the L0 descriptor and flush it */
963 			l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
964 		}
965 
966 		VERBOSE("GPT: L0 entry (TABLE) index %u [%p] ==> L1 Addr %p (0x%"PRIx64")\n",
967 			l0_idx, &l0_gpt_base[l0_idx], l1_gpt_arr, l0_gpt_base[l0_idx]);
968 
969 		/*
970 		 * Determine the PA of the last granule in this L0 descriptor.
971 		 */
972 		last_gran_pa = get_l1_end_pa(cur_pa, end_pa) -
973 			       GPT_PGS_ACTUAL_SIZE(gpt_config.p);
974 
975 		/*
976 		 * Fill up L1 GPT entries between these two addresses. This
977 		 * function needs the addresses of the first granule and last
978 		 * granule in the range.
979 		 */
980 		fill_l1_tbl(l1_gpt_arr, cur_pa, last_gran_pa, gpi);
981 
982 		/* Advance cur_pa to first granule in next L0 region */
983 		cur_pa = get_l1_end_pa(cur_pa, end_pa);
984 	}
985 }
986 
987 /*
988  * This function flushes a range of L0 descriptors used by a given PAS region
989  * array. There is a chance that some unmodified L0 descriptors would be flushed
990  * in the case that there are "holes" in an array of PAS regions but overall
991  * this should be faster than individually flushing each modified L0 descriptor
992  * as they are created.
993  *
994  * Parameters
995  *   *pas		Pointer to an array of PAS regions.
996  *   pas_count		Number of entries in the PAS array.
997  */
flush_l0_for_pas_array(pas_region_t * pas,unsigned int pas_count)998 static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
999 {
1000 	unsigned long idx;
1001 	unsigned long start_idx;
1002 	unsigned long end_idx;
1003 	uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;
1004 
1005 	assert(pas != NULL);
1006 	assert(pas_count != 0U);
1007 
1008 	/* Initial start and end values */
1009 	start_idx = GPT_L0_IDX(pas[0].base_pa);
1010 	end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1UL);
1011 
1012 	/* Find lowest and highest L0 indices used in this PAS array */
1013 	for (idx = 1UL; idx < pas_count; idx++) {
1014 		if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
1015 			start_idx = GPT_L0_IDX(pas[idx].base_pa);
1016 		}
1017 		if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1UL) > end_idx) {
1018 			end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1UL);
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * Flush all covered L0 descriptors, add 1 because we need to include
1024 	 * the end index value.
1025 	 */
1026 	flush_dcache_range((uintptr_t)&l0[start_idx],
1027 			   ((end_idx + 1UL) - start_idx) * sizeof(uint64_t));
1028 }
1029 
1030 /*
1031  * Public API to enable granule protection checks once the tables have all been
1032  * initialized. This function is called at first initialization and then again
1033  * later during warm boots of CPU cores.
1034  *
1035  * Return
1036  *   Negative Linux error code in the event of a failure, 0 for success.
1037  */
gpt_enable(void)1038 int gpt_enable(void)
1039 {
1040 	u_register_t gpccr_el3;
1041 
1042 	/*
1043 	 * Granule tables must be initialised before enabling
1044 	 * granule protection.
1045 	 */
1046 	if (gpt_config.plat_gpt_l0_base == 0UL) {
1047 		ERROR("GPT: Tables have not been initialized!\n");
1048 		return -EPERM;
1049 	}
1050 
1051 	/* Write the base address of the L0 tables into GPTBR */
1052 	write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
1053 			>> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);
1054 
1055 	/* GPCCR_EL3.PPS */
1056 	gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);
1057 
1058 	/* GPCCR_EL3.PGS */
1059 	gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);
1060 
1061 	/*
1062 	 * Since EL3 maps the L1 region as Inner shareable, use the same
1063 	 * shareability attribute for GPC as well so that
1064 	 * GPC fetches are visible to PEs
1065 	 */
1066 	gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS);
1067 
1068 	/* Outer and Inner cacheability set to Normal memory, WB, RA, WA */
1069 	gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
1070 	gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
1071 
1072 	/* Prepopulate GPCCR_EL3 but don't enable GPC yet */
1073 	write_gpccr_el3(gpccr_el3);
1074 	isb();
1075 
1076 	/* Invalidate any stale TLB entries and any cached register fields */
1077 	tlbipaallos();
1078 	dsb();
1079 	isb();
1080 
1081 	/* Enable GPT */
1082 	gpccr_el3 |= GPCCR_GPC_BIT;
1083 
1084 	/* TODO: Configure GPCCR_EL3_GPCP for Fault control */
1085 	write_gpccr_el3(gpccr_el3);
1086 	isb();
1087 	tlbipaallos();
1088 	dsb();
1089 	isb();
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * Public API to disable granule protection checks.
1096  */
gpt_disable(void)1097 void gpt_disable(void)
1098 {
1099 	u_register_t gpccr_el3 = read_gpccr_el3();
1100 
1101 	write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
1102 	dsbsy();
1103 	isb();
1104 }
1105 
1106 /*
1107  * Public API that initializes the entire protected space to GPT_GPI_ANY using
1108  * the L0 tables (block descriptors). Ideally, this function is invoked prior
1109  * to DDR discovery and initialization. The MMU must be initialized before
1110  * calling this function.
1111  *
1112  * Parameters
1113  *   pps		PPS value to use for table generation
1114  *   l0_mem_base	Base address of L0 tables in memory.
1115  *   l0_mem_size	Total size of memory available for L0 tables.
1116  *
1117  * Return
1118  *   Negative Linux error code in the event of a failure, 0 for success.
1119  */
gpt_init_l0_tables(gpccr_pps_e pps,uintptr_t l0_mem_base,size_t l0_mem_size)1120 int gpt_init_l0_tables(gpccr_pps_e pps, uintptr_t l0_mem_base,
1121 		       size_t l0_mem_size)
1122 {
1123 	uint64_t gpt_desc;
1124 	size_t locks_size = 0;
1125 	__unused bitlock_t *bit_locks;
1126 	int ret;
1127 
1128 	/* Ensure that MMU and Data caches are enabled */
1129 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1130 
1131 	/* Validate other parameters */
1132 	ret = validate_l0_params(pps, l0_mem_base, l0_mem_size);
1133 	if (ret != 0) {
1134 		return ret;
1135 	}
1136 
1137 	/* Create the descriptor to initialize L0 entries with */
1138 	gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);
1139 
1140 	/* Iterate through all L0 entries */
1141 	for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
1142 		((uint64_t *)l0_mem_base)[i] = gpt_desc;
1143 	}
1144 
1145 #if (RME_GPT_BITLOCK_BLOCK != 0)
1146 	/* Initialise bitlocks at the end of L0 table */
1147 	bit_locks = (bitlock_t *)(l0_mem_base +
1148 					GPT_L0_TABLE_SIZE(gpt_config.t));
1149 
1150 	/* Size of bitlocks in bytes */
1151 	locks_size = GPT_PPS_ACTUAL_SIZE(gpt_config.t) /
1152 					(RME_GPT_BITLOCK_BLOCK * SZ_512M * 8U);
1153 
1154 	/*
1155 	 * If protected space size is less than the size covered
1156 	 * by 'bitlock' structure, initialise a single bitlock.
1157 	 */
1158 	if (locks_size < LOCK_SIZE) {
1159 		locks_size = LOCK_SIZE;
1160 	}
1161 
1162 	for (size_t i = 0UL; i < (locks_size/LOCK_SIZE); i++) {
1163 		bit_locks[i].lock = 0U;
1164 	}
1165 #endif
1166 
1167 	/* Flush updated L0 tables and bitlocks to memory */
1168 	flush_dcache_range((uintptr_t)l0_mem_base,
1169 				GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size);
1170 
1171 	/* Stash the L0 base address once initial setup is complete */
1172 	gpt_config.plat_gpt_l0_base = l0_mem_base;
1173 
1174 	return 0;
1175 }
1176 
1177 /*
1178  * Public API that carves out PAS regions from the L0 tables and builds any L1
1179  * tables that are needed. This function ideally is run after DDR discovery and
1180  * initialization. The L0 tables must have already been initialized to GPI_ANY
1181  * when this function is called.
1182  *
1183  * This function can be called multiple times with different L1 memory ranges
1184  * and PAS regions if it is desirable to place L1 tables in different locations
1185  * in memory. (ex: you have multiple DDR banks and want to place the L1 tables
1186  * in the DDR bank that they control).
1187  *
1188  * Parameters
1189  *   pgs		PGS value to use for table generation.
1190  *   l1_mem_base	Base address of memory used for L1 tables.
1191  *   l1_mem_size	Total size of memory available for L1 tables.
1192  *   *pas_regions	Pointer to PAS regions structure array.
1193  *   pas_count		Total number of PAS regions.
1194  *
1195  * Return
1196  *   Negative Linux error code in the event of a failure, 0 for success.
1197  */
gpt_init_pas_l1_tables(gpccr_pgs_e pgs,uintptr_t l1_mem_base,size_t l1_mem_size,pas_region_t * pas_regions,unsigned int pas_count)1198 int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
1199 			   size_t l1_mem_size, pas_region_t *pas_regions,
1200 			   unsigned int pas_count)
1201 {
1202 	int l1_gpt_cnt, ret;
1203 
1204 	/* Ensure that MMU and Data caches are enabled */
1205 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1206 
1207 	/* PGS is needed for validate_pas_mappings so check it now */
1208 	if (pgs > GPT_PGS_MAX) {
1209 		ERROR("GPT: Invalid PGS: 0x%x\n", pgs);
1210 		return -EINVAL;
1211 	}
1212 	gpt_config.pgs = pgs;
1213 	gpt_config.p = gpt_p_lookup[pgs];
1214 
1215 	/* Make sure L0 tables have been initialized */
1216 	if (gpt_config.plat_gpt_l0_base == 0U) {
1217 		ERROR("GPT: L0 tables must be initialized first!\n");
1218 		return -EPERM;
1219 	}
1220 
1221 	/* Check if L1 GPTs are required and how many */
1222 	l1_gpt_cnt = validate_pas_mappings(pas_regions, pas_count);
1223 	if (l1_gpt_cnt < 0) {
1224 		return l1_gpt_cnt;
1225 	}
1226 
1227 	VERBOSE("GPT: %i L1 GPTs requested\n", l1_gpt_cnt);
1228 
1229 	/* If L1 tables are needed then validate the L1 parameters */
1230 	if (l1_gpt_cnt > 0) {
1231 		ret = validate_l1_params(l1_mem_base, l1_mem_size,
1232 					(unsigned int)l1_gpt_cnt);
1233 		if (ret != 0) {
1234 			return ret;
1235 		}
1236 
1237 		/* Set up parameters for L1 table generation */
1238 		gpt_l1_tbl = l1_mem_base;
1239 	}
1240 
1241 	/* Number of L1 entries in 2MB depends on GPCCR_EL3.PGS value */
1242 	gpt_l1_cnt_2mb = (unsigned int)GPT_L1_ENTRY_COUNT_2MB(gpt_config.p);
1243 
1244 	/* Mask for the L1 index field */
1245 	gpt_l1_index_mask = GPT_L1_IDX_MASK(gpt_config.p);
1246 
1247 	INFO("GPT: Boot Configuration\n");
1248 	INFO("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
1249 	INFO("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
1250 	INFO("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
1251 	INFO("  PAS count: %u\n", pas_count);
1252 	INFO("  L0 base:   0x%"PRIxPTR"\n", gpt_config.plat_gpt_l0_base);
1253 
1254 	/* Generate the tables in memory */
1255 	for (unsigned int idx = 0U; idx < pas_count; idx++) {
1256 		VERBOSE("GPT: PAS[%u]: base 0x%"PRIxPTR"\tsize 0x%lx\tGPI 0x%x\ttype 0x%x\n",
1257 			idx, pas_regions[idx].base_pa, pas_regions[idx].size,
1258 			GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
1259 			GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
1260 
1261 		/* Check if a block or table descriptor is required */
1262 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
1263 		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
1264 			generate_l0_blk_desc(&pas_regions[idx]);
1265 
1266 		} else {
1267 			generate_l0_tbl_desc(&pas_regions[idx]);
1268 		}
1269 	}
1270 
1271 	/* Flush modified L0 tables */
1272 	flush_l0_for_pas_array(pas_regions, pas_count);
1273 
1274 	/* Flush L1 tables if needed */
1275 	if (l1_gpt_cnt > 0) {
1276 		flush_dcache_range(l1_mem_base,
1277 				   GPT_L1_TABLE_SIZE(gpt_config.p) *
1278 				   (size_t)l1_gpt_cnt);
1279 	}
1280 
1281 	/* Make sure that all the entries are written to the memory */
1282 	dsbishst();
1283 	tlbipaallos();
1284 	dsb();
1285 	isb();
1286 
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Public API to initialize the runtime gpt_config structure based on the values
1292  * present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
1293  * typically happens in a bootloader stage prior to setting up the EL3 runtime
1294  * environment for the granule transition service so this function detects the
1295  * initialization from a previous stage. Granule protection checks must be
1296  * enabled already or this function will return an error.
1297  *
1298  * Return
1299  *   Negative Linux error code in the event of a failure, 0 for success.
1300  */
gpt_runtime_init(void)1301 int gpt_runtime_init(void)
1302 {
1303 	u_register_t reg;
1304 
1305 	/* Ensure that MMU and Data caches are enabled */
1306 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1307 
1308 	/* Ensure GPC are already enabled */
1309 	if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
1310 		ERROR("GPT: Granule protection checks are not enabled!\n");
1311 		return -EPERM;
1312 	}
1313 
1314 	/*
1315 	 * Read the L0 table address from GPTBR, we don't need the L1 base
1316 	 * address since those are included in the L0 tables as needed.
1317 	 */
1318 	reg = read_gptbr_el3();
1319 	gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
1320 				      GPTBR_BADDR_MASK) <<
1321 				      GPTBR_BADDR_VAL_SHIFT;
1322 
1323 	/* Read GPCCR to get PGS and PPS values */
1324 	reg = read_gpccr_el3();
1325 	gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
1326 	gpt_config.t = gpt_t_lookup[gpt_config.pps];
1327 	gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
1328 	gpt_config.p = gpt_p_lookup[gpt_config.pgs];
1329 
1330 	/* Number of L1 entries in 2MB depends on GPCCR_EL3.PGS value */
1331 	gpt_l1_cnt_2mb = (unsigned int)GPT_L1_ENTRY_COUNT_2MB(gpt_config.p);
1332 
1333 	/* Mask for the L1 index field */
1334 	gpt_l1_index_mask = GPT_L1_IDX_MASK(gpt_config.p);
1335 
1336 #if (RME_GPT_BITLOCK_BLOCK != 0)
1337 	/* Bitlocks at the end of L0 table */
1338 	gpt_bitlock_base = (bitlock_t *)(gpt_config.plat_gpt_l0_base +
1339 					GPT_L0_TABLE_SIZE(gpt_config.t));
1340 #endif
1341 	VERBOSE("GPT: Runtime Configuration\n");
1342 	VERBOSE("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
1343 	VERBOSE("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
1344 	VERBOSE("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
1345 	VERBOSE("  L0 base:   0x%"PRIxPTR"\n", gpt_config.plat_gpt_l0_base);
1346 #if (RME_GPT_BITLOCK_BLOCK != 0)
1347 	VERBOSE("  Bitlocks:  0x%"PRIxPTR"\n", (uintptr_t)gpt_bitlock_base);
1348 #endif
1349 	return 0;
1350 }
1351 
1352 /*
1353  * A helper to write the value (target_pas << gpi_shift) to the index of
1354  * the gpt_l1_addr.
1355  */
write_gpt(uint64_t * gpt_l1_desc,uint64_t * gpt_l1_addr,unsigned int gpi_shift,unsigned int idx,unsigned int target_pas)1356 static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr,
1357 			     unsigned int gpi_shift, unsigned int idx,
1358 			     unsigned int target_pas)
1359 {
1360 	*gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
1361 	*gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
1362 	gpt_l1_addr[idx] = *gpt_l1_desc;
1363 
1364 	dsboshst();
1365 }
1366 
1367 /*
1368  * Helper to retrieve the gpt_l1_* information from the base address
1369  * returned in gpi_info.
1370  */
get_gpi_params(uint64_t base,gpi_info_t * gpi_info)1371 static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info)
1372 {
1373 	uint64_t gpt_l0_desc, *gpt_l0_base;
1374 	__unused unsigned int block_idx;
1375 
1376 	gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
1377 	gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
1378 	if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
1379 		VERBOSE("GPT: Granule is not covered by a table descriptor!\n");
1380 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1381 		return -EINVAL;
1382 	}
1383 
1384 	/* Get the table index and GPI shift from PA */
1385 	gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
1386 	gpi_info->idx = (unsigned int)GPT_L1_INDEX(base);
1387 	gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;
1388 
1389 #if (RME_GPT_BITLOCK_BLOCK != 0)
1390 	/* Block index */
1391 	block_idx = (unsigned int)(base / (RME_GPT_BITLOCK_BLOCK * SZ_512M));
1392 
1393 	/* Bitlock address and mask */
1394 	gpi_info->lock = &gpt_bitlock_base[block_idx / LOCK_BITS];
1395 	gpi_info->mask = 1U << (block_idx & (LOCK_BITS - 1U));
1396 #endif
1397 	return 0;
1398 }
1399 
1400 /*
1401  * Helper to retrieve the gpt_l1_desc and GPI information from gpi_info.
1402  * This function is called with bitlock or spinlock acquired.
1403  */
read_gpi(gpi_info_t * gpi_info)1404 static void read_gpi(gpi_info_t *gpi_info)
1405 {
1406 	gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx];
1407 
1408 	if ((gpi_info->gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
1409 				 GPT_L1_TYPE_CONT_DESC) {
1410 		/* Read GPI from Contiguous descriptor */
1411 		gpi_info->gpi = (unsigned int)GPT_L1_CONT_GPI(gpi_info->gpt_l1_desc);
1412 	} else {
1413 		/* Read GPI from Granules descriptor */
1414 		gpi_info->gpi = (unsigned int)((gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) &
1415 						GPT_L1_GRAN_DESC_GPI_MASK);
1416 	}
1417 }
1418 
flush_page_to_popa(uintptr_t addr)1419 static void flush_page_to_popa(uintptr_t addr)
1420 {
1421 	size_t size = GPT_PGS_ACTUAL_SIZE(gpt_config.p);
1422 
1423 	if (is_feat_mte2_supported()) {
1424 		flush_dcache_to_popa_range_mte2(addr, size);
1425 	} else {
1426 		flush_dcache_to_popa_range(addr, size);
1427 	}
1428 }
1429 
1430 /*
1431  * Helper function to check if all L1 entries in 2MB block have
1432  * the same Granules descriptor value.
1433  *
1434  * Parameters
1435  *   base		Base address of the region to be checked
1436  *   gpi_info		Pointer to 'gpt_config_t' structure
1437  *   l1_desc		GPT Granules descriptor with all entries
1438  *			set to the same GPI.
1439  *
1440  * Return
1441  *   true if L1 all entries have the same descriptor value, false otherwise.
1442  */
check_fuse_2mb(uint64_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)1443 __unused static bool check_fuse_2mb(uint64_t base, const gpi_info_t *gpi_info,
1444 					uint64_t l1_desc)
1445 {
1446 	/* Last L1 entry index in 2MB block */
1447 	unsigned int long idx = GPT_L1_INDEX(ALIGN_2MB(base)) +
1448 						gpt_l1_cnt_2mb - 1UL;
1449 
1450 	/* Number of L1 entries in 2MB block */
1451 	unsigned int cnt = gpt_l1_cnt_2mb;
1452 
1453 	/*
1454 	 * Start check from the last L1 entry and continue until the first
1455 	 * non-matching to the passed Granules descriptor value is found.
1456 	 */
1457 	while (cnt-- != 0U) {
1458 		if (gpi_info->gpt_l1_addr[idx--] != l1_desc) {
1459 			/* Non-matching L1 entry found */
1460 			return false;
1461 		}
1462 	}
1463 
1464 	return true;
1465 }
1466 
fuse_2mb(uint64_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)1467 __unused static void fuse_2mb(uint64_t base, const gpi_info_t *gpi_info,
1468 				uint64_t l1_desc)
1469 {
1470 	/* L1 entry index of the start of 2MB block */
1471 	unsigned long idx_2 = GPT_L1_INDEX(ALIGN_2MB(base));
1472 
1473 	/* 2MB Contiguous descriptor */
1474 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
1475 
1476 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
1477 
1478 	fill_desc(&gpi_info->gpt_l1_addr[idx_2], l1_cont_desc, L1_QWORDS_2MB);
1479 }
1480 
1481 /*
1482  * Helper function to check if all 1st L1 entries of 2MB blocks
1483  * in 32MB have the same 2MB Contiguous descriptor value.
1484  *
1485  * Parameters
1486  *   base		Base address of the region to be checked
1487  *   gpi_info		Pointer to 'gpt_config_t' structure
1488  *   l1_desc		GPT Granules descriptor.
1489  *
1490  * Return
1491  *   true if all L1 entries have the same descriptor value, false otherwise.
1492  */
check_fuse_32mb(uint64_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)1493 __unused static bool check_fuse_32mb(uint64_t base, const gpi_info_t *gpi_info,
1494 					uint64_t l1_desc)
1495 {
1496 	/* The 1st L1 entry index of the last 2MB block in 32MB */
1497 	unsigned long idx = GPT_L1_INDEX(ALIGN_32MB(base)) +
1498 					(15UL * gpt_l1_cnt_2mb);
1499 
1500 	/* 2MB Contiguous descriptor */
1501 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
1502 
1503 	/* Number of 2MB blocks in 32MB */
1504 	unsigned int cnt = 16U;
1505 
1506 	/* Set the first L1 entry to 2MB Contiguous descriptor */
1507 	gpi_info->gpt_l1_addr[GPT_L1_INDEX(ALIGN_2MB(base))] = l1_cont_desc;
1508 
1509 	/*
1510 	 * Start check from the 1st L1 entry of the last 2MB block and
1511 	 * continue until the first non-matching to 2MB Contiguous descriptor
1512 	 * value is found.
1513 	 */
1514 	while (cnt-- != 0U) {
1515 		if (gpi_info->gpt_l1_addr[idx] != l1_cont_desc) {
1516 			/* Non-matching L1 entry found */
1517 			return false;
1518 		}
1519 		idx -= gpt_l1_cnt_2mb;
1520 	}
1521 
1522 	return true;
1523 }
1524 
fuse_32mb(uint64_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)1525 __unused static void fuse_32mb(uint64_t base, const gpi_info_t *gpi_info,
1526 				uint64_t l1_desc)
1527 {
1528 	/* L1 entry index of the start of 32MB block */
1529 	unsigned long idx_32 = GPT_L1_INDEX(ALIGN_32MB(base));
1530 
1531 	/* 32MB Contiguous descriptor */
1532 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
1533 
1534 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
1535 
1536 	fill_desc(&gpi_info->gpt_l1_addr[idx_32], l1_cont_desc, L1_QWORDS_32MB);
1537 }
1538 
1539 /*
1540  * Helper function to check if all 1st L1 entries of 32MB blocks
1541  * in 512MB have the same 32MB Contiguous descriptor value.
1542  *
1543  * Parameters
1544  *   base		Base address of the region to be checked
1545  *   gpi_info		Pointer to 'gpt_config_t' structure
1546  *   l1_desc		GPT Granules descriptor.
1547  *
1548  * Return
1549  *   true if all L1 entries have the same descriptor value, false otherwise.
1550  */
check_fuse_512mb(uint64_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)1551 __unused static bool check_fuse_512mb(uint64_t base, const gpi_info_t *gpi_info,
1552 					uint64_t l1_desc)
1553 {
1554 	/* The 1st L1 entry index of the last 32MB block in 512MB */
1555 	unsigned long idx = GPT_L1_INDEX(ALIGN_512MB(base)) +
1556 					(15UL * 16UL * gpt_l1_cnt_2mb);
1557 
1558 	/* 32MB Contiguous descriptor */
1559 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
1560 
1561 	/* Number of 32MB blocks in 512MB */
1562 	unsigned int cnt = 16U;
1563 
1564 	/* Set the first L1 entry to 2MB Contiguous descriptor */
1565 	gpi_info->gpt_l1_addr[GPT_L1_INDEX(ALIGN_32MB(base))] = l1_cont_desc;
1566 
1567 	/*
1568 	 * Start check from the 1st L1 entry of the last 32MB block and
1569 	 * continue until the first non-matching to 32MB Contiguous descriptor
1570 	 * value is found.
1571 	 */
1572 	while (cnt-- != 0U) {
1573 		if (gpi_info->gpt_l1_addr[idx] != l1_cont_desc) {
1574 			/* Non-matching L1 entry found */
1575 			return false;
1576 		}
1577 		idx -= 16UL * gpt_l1_cnt_2mb;
1578 	}
1579 
1580 	return true;
1581 }
1582 
fuse_512mb(uint64_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)1583 __unused static void fuse_512mb(uint64_t base, const gpi_info_t *gpi_info,
1584 				uint64_t l1_desc)
1585 {
1586 	/* L1 entry index of the start of 512MB block */
1587 	unsigned long idx_512 = GPT_L1_INDEX(ALIGN_512MB(base));
1588 
1589 	/* 512MB Contiguous descriptor */
1590 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 512MB);
1591 
1592 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
1593 
1594 	fill_desc(&gpi_info->gpt_l1_addr[idx_512], l1_cont_desc, L1_QWORDS_512MB);
1595 }
1596 
1597 /*
1598  * Helper function to convert GPI entries in a single L1 table
1599  * from Granules to Contiguous descriptor.
1600  *
1601  * Parameters
1602  *   base		Base address of the region to be written
1603  *   gpi_info		Pointer to 'gpt_config_t' structure
1604  *   l1_desc		GPT Granules descriptor with all entries
1605  *			set to the same GPI.
1606  */
fuse_block(uint64_t base,const gpi_info_t * gpi_info,uint64_t l1_desc)1607 __unused static void fuse_block(uint64_t base, const gpi_info_t *gpi_info,
1608 				uint64_t l1_desc)
1609 {
1610 	/* Start with check for 2MB block */
1611 	if (!check_fuse_2mb(base, gpi_info, l1_desc)) {
1612 		/* Check for 2MB fusing failed */
1613 		return;
1614 	}
1615 
1616 #if (RME_GPT_MAX_BLOCK == 2)
1617 	fuse_2mb(base, gpi_info, l1_desc);
1618 #else
1619 	/* Check for 32MB block */
1620 	if (!check_fuse_32mb(base, gpi_info, l1_desc)) {
1621 		/* Check for 32MB fusing failed, fuse to 2MB */
1622 		fuse_2mb(base, gpi_info, l1_desc);
1623 		return;
1624 	}
1625 
1626 #if (RME_GPT_MAX_BLOCK == 32)
1627 	fuse_32mb(base, gpi_info, l1_desc);
1628 #else
1629 	/* Check for 512MB block */
1630 	if (!check_fuse_512mb(base, gpi_info, l1_desc)) {
1631 		/* Check for 512MB fusing failed, fuse to 32MB */
1632 		fuse_32mb(base, gpi_info, l1_desc);
1633 		return;
1634 	}
1635 
1636 	/* Fuse to 512MB */
1637 	fuse_512mb(base, gpi_info, l1_desc);
1638 
1639 #endif	/* RME_GPT_MAX_BLOCK == 32 */
1640 #endif	/* RME_GPT_MAX_BLOCK == 2 */
1641 }
1642 
1643 /*
1644  * Helper function to convert GPI entries in a single L1 table
1645  * from Contiguous to Granules descriptor. This function updates
1646  * descriptor to Granules in passed 'gpt_config_t' structure as
1647  * the result of shuttering.
1648  *
1649  * Parameters
1650  *   base		Base address of the region to be written
1651  *   gpi_info		Pointer to 'gpt_config_t' structure
1652  *   l1_desc		GPT Granules descriptor set this range to.
1653  */
shatter_block(uint64_t base,gpi_info_t * gpi_info,uint64_t l1_desc)1654 __unused static void shatter_block(uint64_t base, gpi_info_t *gpi_info,
1655 				   uint64_t l1_desc)
1656 {
1657 	/* Look-up table for 2MB, 32MB and 512MB locks shattering */
1658 	static const gpt_shatter_func gpt_shatter_lookup[] = {
1659 		shatter_2mb,
1660 		shatter_32mb,
1661 		shatter_512mb
1662 	};
1663 
1664 	/* Look-up table for invalidation TLBs for 2MB, 32MB and 512MB blocks */
1665 	static const gpt_tlbi_lookup_t tlbi_lookup[] = {
1666 		{ tlbirpalos_2m, ~(SZ_2M - 1UL) },
1667 		{ tlbirpalos_32m, ~(SZ_32M - 1UL) },
1668 		{ tlbirpalos_512m, ~(SZ_512M - 1UL) }
1669 	};
1670 
1671 	/* Get shattering level from Contig field of Contiguous descriptor */
1672 	unsigned long level = GPT_L1_CONT_CONTIG(gpi_info->gpt_l1_desc) - 1UL;
1673 
1674 	/* Shatter contiguous block */
1675 	gpt_shatter_lookup[level](base, gpi_info, l1_desc);
1676 
1677 	tlbi_lookup[level].function(base & tlbi_lookup[level].mask);
1678 	dsbosh();
1679 
1680 	/*
1681 	 * Update 'gpt_config_t' structure's descriptor to Granules to reflect
1682 	 * the shattered GPI back to caller.
1683 	 */
1684 	gpi_info->gpt_l1_desc = l1_desc;
1685 }
1686 
1687 /*
1688  * This function is the granule transition delegate service. When a granule
1689  * transition request occurs it is routed to this function to have the request,
1690  * if valid, fulfilled following A1.1.1 Delegate of RME supplement.
1691  *
1692  * TODO: implement support for transitioning multiple granules at once.
1693  *
1694  * Parameters
1695  *   base		Base address of the region to transition, must be
1696  *			aligned to granule size.
1697  *   size		Size of region to transition, must be aligned to granule
1698  *			size.
1699  *   src_sec_state	Security state of the caller.
1700  *
1701  * Return
1702  *   Negative Linux error code in the event of a failure, 0 for success.
1703  */
gpt_delegate_pas(uint64_t base,size_t size,unsigned int src_sec_state)1704 int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
1705 {
1706 	gpi_info_t gpi_info;
1707 	uint64_t nse, __unused l1_desc;
1708 	unsigned int target_pas;
1709 	int res;
1710 
1711 	/* Ensure that the tables have been set up before taking requests */
1712 	assert(gpt_config.plat_gpt_l0_base != 0UL);
1713 
1714 	/* Ensure that caches are enabled */
1715 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
1716 
1717 	/* See if this is a single or a range of granule transition */
1718 	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
1719 		return -EINVAL;
1720 	}
1721 
1722 	/* Check that base and size are valid */
1723 	if ((ULONG_MAX - base) < size) {
1724 		VERBOSE("GPT: Transition request address overflow!\n");
1725 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1726 		VERBOSE("      Size=0x%lx\n", size);
1727 		return -EINVAL;
1728 	}
1729 
1730 	/* Make sure base and size are valid */
1731 	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1732 	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1733 	    (size == 0UL) ||
1734 	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
1735 		VERBOSE("GPT: Invalid granule transition address range!\n");
1736 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1737 		VERBOSE("      Size=0x%lx\n", size);
1738 		return -EINVAL;
1739 	}
1740 
1741 	/* Delegate request can only come from REALM or SECURE */
1742 	if ((src_sec_state != SMC_FROM_REALM) &&
1743 	    (src_sec_state != SMC_FROM_SECURE)) {
1744 		VERBOSE("GPT: Invalid caller security state 0x%x\n",
1745 							src_sec_state);
1746 		return -EINVAL;
1747 	}
1748 
1749 	if (src_sec_state == SMC_FROM_REALM) {
1750 		target_pas = GPT_GPI_REALM;
1751 		nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
1752 		l1_desc = GPT_L1_REALM_DESC;
1753 	} else {
1754 		target_pas = GPT_GPI_SECURE;
1755 		nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
1756 		l1_desc = GPT_L1_SECURE_DESC;
1757 	}
1758 
1759 	res = get_gpi_params(base, &gpi_info);
1760 	if (res != 0) {
1761 		return res;
1762 	}
1763 
1764 	/*
1765 	 * Access to GPT is controlled by a lock to ensure that no more
1766 	 * than one CPU is allowed to make changes at any given time.
1767 	 */
1768 	GPT_LOCK;
1769 	read_gpi(&gpi_info);
1770 
1771 	/* Check that the current address is in NS state */
1772 	if (gpi_info.gpi != GPT_GPI_NS) {
1773 		VERBOSE("GPT: Only Granule in NS state can be delegated.\n");
1774 		VERBOSE("      Caller: %u, Current GPI: %u\n", src_sec_state,
1775 			gpi_info.gpi);
1776 		GPT_UNLOCK;
1777 		return -EPERM;
1778 	}
1779 
1780 #if (RME_GPT_MAX_BLOCK != 0)
1781 	/* Check for Contiguous descriptor */
1782 	if ((gpi_info.gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
1783 					GPT_L1_TYPE_CONT_DESC) {
1784 		shatter_block(base, &gpi_info, GPT_L1_NS_DESC);
1785 	}
1786 #endif
1787 	/*
1788 	 * In order to maintain mutual distrust between Realm and Secure
1789 	 * states, remove any data speculatively fetched into the target
1790 	 * physical address space.
1791 	 * Issue DC CIPAPA or DC_CIGDPAPA on implementations with FEAT_MTE2.
1792 	 */
1793 	flush_page_to_popa(base | nse);
1794 
1795 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1796 		  gpi_info.gpi_shift, gpi_info.idx, target_pas);
1797 
1798 	/* Ensure that all agents observe the new configuration */
1799 	tlbi_page_dsbosh(base);
1800 
1801 	nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
1802 
1803 	/* Ensure that the scrubbed data have made it past the PoPA */
1804 	flush_page_to_popa(base | nse);
1805 
1806 #if (RME_GPT_MAX_BLOCK != 0)
1807 	if (gpi_info.gpt_l1_desc == l1_desc) {
1808 		/* Try to fuse */
1809 		fuse_block(base, &gpi_info, l1_desc);
1810 	}
1811 #endif
1812 
1813 	/* Unlock the lock to GPT */
1814 	GPT_UNLOCK;
1815 
1816 	/*
1817 	 * The isb() will be done as part of context
1818 	 * synchronization when returning to lower EL.
1819 	 */
1820 	VERBOSE("GPT: Granule 0x%"PRIx64" GPI 0x%x->0x%x\n",
1821 		base, gpi_info.gpi, target_pas);
1822 
1823 	return 0;
1824 }
1825 
1826 /*
1827  * This function is the granule transition undelegate service. When a granule
1828  * transition request occurs it is routed to this function where the request is
1829  * validated then fulfilled if possible.
1830  *
1831  * TODO: implement support for transitioning multiple granules at once.
1832  *
1833  * Parameters
1834  *   base		Base address of the region to transition, must be
1835  *			aligned to granule size.
1836  *   size		Size of region to transition, must be aligned to granule
1837  *			size.
1838  *   src_sec_state	Security state of the caller.
1839  *
1840  * Return
1841  *    Negative Linux error code in the event of a failure, 0 for success.
1842  */
gpt_undelegate_pas(uint64_t base,size_t size,unsigned int src_sec_state)1843 int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
1844 {
1845 	gpi_info_t gpi_info;
1846 	uint64_t nse, __unused l1_desc;
1847 	int res;
1848 
1849 	/* Ensure that the tables have been set up before taking requests */
1850 	assert(gpt_config.plat_gpt_l0_base != 0UL);
1851 
1852 	/* Ensure that MMU and caches are enabled */
1853 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
1854 
1855 	/* See if this is a single or a range of granule transition */
1856 	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
1857 		return -EINVAL;
1858 	}
1859 
1860 	/* Check that base and size are valid */
1861 	if ((ULONG_MAX - base) < size) {
1862 		VERBOSE("GPT: Transition request address overflow!\n");
1863 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1864 		VERBOSE("      Size=0x%lx\n", size);
1865 		return -EINVAL;
1866 	}
1867 
1868 	/* Make sure base and size are valid */
1869 	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1870 	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1871 	    (size == 0UL) ||
1872 	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
1873 		VERBOSE("GPT: Invalid granule transition address range!\n");
1874 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1875 		VERBOSE("      Size=0x%lx\n", size);
1876 		return -EINVAL;
1877 	}
1878 
1879 	res = get_gpi_params(base, &gpi_info);
1880 	if (res != 0) {
1881 		return res;
1882 	}
1883 
1884 	/*
1885 	 * Access to GPT is controlled by a lock to ensure that no more
1886 	 * than one CPU is allowed to make changes at any given time.
1887 	 */
1888 	GPT_LOCK;
1889 	read_gpi(&gpi_info);
1890 
1891 	/* Check that the current address is in the delegated state */
1892 	if ((src_sec_state == SMC_FROM_REALM) &&
1893 		(gpi_info.gpi == GPT_GPI_REALM)) {
1894 		l1_desc = GPT_L1_REALM_DESC;
1895 		nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
1896 	} else if ((src_sec_state == SMC_FROM_SECURE) &&
1897 		(gpi_info.gpi == GPT_GPI_SECURE)) {
1898 		l1_desc = GPT_L1_SECURE_DESC;
1899 		nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
1900 	} else {
1901 		VERBOSE("GPT: Only Granule in REALM or SECURE state can be undelegated\n");
1902 		VERBOSE("      Caller: %u Current GPI: %u\n", src_sec_state,
1903 			gpi_info.gpi);
1904 		GPT_UNLOCK;
1905 		return -EPERM;
1906 	}
1907 
1908 #if (RME_GPT_MAX_BLOCK != 0)
1909 	/* Check for Contiguous descriptor */
1910 	if ((gpi_info.gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
1911 					GPT_L1_TYPE_CONT_DESC) {
1912 		shatter_block(base, &gpi_info, l1_desc);
1913 	}
1914 #endif
1915 	/*
1916 	 * In order to maintain mutual distrust between Realm and Secure
1917 	 * states, remove access now, in order to guarantee that writes
1918 	 * to the currently-accessible physical address space will not
1919 	 * later become observable.
1920 	 */
1921 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1922 		  gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS);
1923 
1924 	/* Ensure that all agents observe the new NO_ACCESS configuration */
1925 	tlbi_page_dsbosh(base);
1926 
1927 	/* Ensure that the scrubbed data have made it past the PoPA */
1928 	flush_page_to_popa(base | nse);
1929 
1930 	/*
1931 	 * Remove any data loaded speculatively in NS space from before
1932 	 * the scrubbing.
1933 	 */
1934 	nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
1935 
1936 	flush_page_to_popa(base | nse);
1937 
1938 	/* Clear existing GPI encoding and transition granule */
1939 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1940 		  gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS);
1941 
1942 	/* Ensure that all agents observe the new NS configuration */
1943 	tlbi_page_dsbosh(base);
1944 
1945 #if (RME_GPT_MAX_BLOCK != 0)
1946 	if (gpi_info.gpt_l1_desc == GPT_L1_NS_DESC) {
1947 		/* Try to fuse */
1948 		fuse_block(base, &gpi_info, GPT_L1_NS_DESC);
1949 	}
1950 #endif
1951 	/* Unlock the lock to GPT */
1952 	GPT_UNLOCK;
1953 
1954 	/*
1955 	 * The isb() will be done as part of context
1956 	 * synchronization when returning to lower EL.
1957 	 */
1958 	VERBOSE("GPT: Granule 0x%"PRIx64" GPI 0x%x->0x%x\n",
1959 		base, gpi_info.gpi, GPT_GPI_NS);
1960 
1961 	return 0;
1962 }
1963