1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE4 version of some encoding functions.
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include "src/dsp/dsp.h"
15
16 #if defined(WEBP_USE_SSE41)
17 #include <smmintrin.h>
18 #include <stdlib.h> // for abs()
19
20 #include "src/dsp/common_sse2.h"
21 #include "src/enc/vp8i_enc.h"
22
23 //------------------------------------------------------------------------------
24 // Compute susceptibility based on DCT-coeff histograms.
25
CollectHistogram_SSE41(const uint8_t * WEBP_RESTRICT ref,const uint8_t * WEBP_RESTRICT pred,int start_block,int end_block,VP8Histogram * WEBP_RESTRICT const histo)26 static void CollectHistogram_SSE41(const uint8_t* WEBP_RESTRICT ref,
27 const uint8_t* WEBP_RESTRICT pred,
28 int start_block, int end_block,
29 VP8Histogram* WEBP_RESTRICT const histo) {
30 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
31 int j;
32 int distribution[MAX_COEFF_THRESH + 1] = { 0 };
33 for (j = start_block; j < end_block; ++j) {
34 int16_t out[16];
35 int k;
36
37 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
38
39 // Convert coefficients to bin (within out[]).
40 {
41 // Load.
42 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
43 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
44 // v = abs(out) >> 3
45 const __m128i abs0 = _mm_abs_epi16(out0);
46 const __m128i abs1 = _mm_abs_epi16(out1);
47 const __m128i v0 = _mm_srai_epi16(abs0, 3);
48 const __m128i v1 = _mm_srai_epi16(abs1, 3);
49 // bin = min(v, MAX_COEFF_THRESH)
50 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
51 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
52 // Store.
53 _mm_storeu_si128((__m128i*)&out[0], bin0);
54 _mm_storeu_si128((__m128i*)&out[8], bin1);
55 }
56
57 // Convert coefficients to bin.
58 for (k = 0; k < 16; ++k) {
59 ++distribution[out[k]];
60 }
61 }
62 VP8SetHistogramData(distribution, histo);
63 }
64
65 //------------------------------------------------------------------------------
66 // Texture distortion
67 //
68 // We try to match the spectral content (weighted) between source and
69 // reconstructed samples.
70
71 // Hadamard transform
72 // Returns the weighted sum of the absolute value of transformed coefficients.
73 // w[] contains a row-major 4 by 4 symmetric matrix.
TTransform_SSE41(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)74 static int TTransform_SSE41(const uint8_t* inA, const uint8_t* inB,
75 const uint16_t* const w) {
76 int32_t sum[4];
77 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
78
79 // Load and combine inputs.
80 {
81 const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]);
82 const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]);
83 const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]);
84 // In SSE4.1, with gcc 4.8 at least (maybe other versions),
85 // _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump
86 // of inA and inB, _mm_loadl_epi64 is still used not to have an out of
87 // bound read.
88 const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
89 const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]);
90 const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]);
91 const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]);
92 const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
93
94 // Combine inA and inB (we'll do two transforms in parallel).
95 const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0);
96 const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1);
97 const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2);
98 const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3);
99 tmp_0 = _mm_cvtepu8_epi16(inAB_0);
100 tmp_1 = _mm_cvtepu8_epi16(inAB_1);
101 tmp_2 = _mm_cvtepu8_epi16(inAB_2);
102 tmp_3 = _mm_cvtepu8_epi16(inAB_3);
103 // a00 a01 a02 a03 b00 b01 b02 b03
104 // a10 a11 a12 a13 b10 b11 b12 b13
105 // a20 a21 a22 a23 b20 b21 b22 b23
106 // a30 a31 a32 a33 b30 b31 b32 b33
107 }
108
109 // Vertical pass first to avoid a transpose (vertical and horizontal passes
110 // are commutative because w/kWeightY is symmetric) and subsequent transpose.
111 {
112 // Calculate a and b (two 4x4 at once).
113 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
114 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
115 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
116 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
117 const __m128i b0 = _mm_add_epi16(a0, a1);
118 const __m128i b1 = _mm_add_epi16(a3, a2);
119 const __m128i b2 = _mm_sub_epi16(a3, a2);
120 const __m128i b3 = _mm_sub_epi16(a0, a1);
121 // a00 a01 a02 a03 b00 b01 b02 b03
122 // a10 a11 a12 a13 b10 b11 b12 b13
123 // a20 a21 a22 a23 b20 b21 b22 b23
124 // a30 a31 a32 a33 b30 b31 b32 b33
125
126 // Transpose the two 4x4.
127 VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3);
128 }
129
130 // Horizontal pass and difference of weighted sums.
131 {
132 // Load all inputs.
133 const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
134 const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
135
136 // Calculate a and b (two 4x4 at once).
137 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
138 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
139 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
140 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
141 const __m128i b0 = _mm_add_epi16(a0, a1);
142 const __m128i b1 = _mm_add_epi16(a3, a2);
143 const __m128i b2 = _mm_sub_epi16(a3, a2);
144 const __m128i b3 = _mm_sub_epi16(a0, a1);
145
146 // Separate the transforms of inA and inB.
147 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
148 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
149 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
150 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
151
152 A_b0 = _mm_abs_epi16(A_b0);
153 A_b2 = _mm_abs_epi16(A_b2);
154 B_b0 = _mm_abs_epi16(B_b0);
155 B_b2 = _mm_abs_epi16(B_b2);
156
157 // weighted sums
158 A_b0 = _mm_madd_epi16(A_b0, w_0);
159 A_b2 = _mm_madd_epi16(A_b2, w_8);
160 B_b0 = _mm_madd_epi16(B_b0, w_0);
161 B_b2 = _mm_madd_epi16(B_b2, w_8);
162 A_b0 = _mm_add_epi32(A_b0, A_b2);
163 B_b0 = _mm_add_epi32(B_b0, B_b2);
164
165 // difference of weighted sums
166 A_b2 = _mm_sub_epi32(A_b0, B_b0);
167 _mm_storeu_si128((__m128i*)&sum[0], A_b2);
168 }
169 return sum[0] + sum[1] + sum[2] + sum[3];
170 }
171
Disto4x4_SSE41(const uint8_t * WEBP_RESTRICT const a,const uint8_t * WEBP_RESTRICT const b,const uint16_t * WEBP_RESTRICT const w)172 static int Disto4x4_SSE41(const uint8_t* WEBP_RESTRICT const a,
173 const uint8_t* WEBP_RESTRICT const b,
174 const uint16_t* WEBP_RESTRICT const w) {
175 const int diff_sum = TTransform_SSE41(a, b, w);
176 return abs(diff_sum) >> 5;
177 }
178
Disto16x16_SSE41(const uint8_t * WEBP_RESTRICT const a,const uint8_t * WEBP_RESTRICT const b,const uint16_t * WEBP_RESTRICT const w)179 static int Disto16x16_SSE41(const uint8_t* WEBP_RESTRICT const a,
180 const uint8_t* WEBP_RESTRICT const b,
181 const uint16_t* WEBP_RESTRICT const w) {
182 int D = 0;
183 int x, y;
184 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
185 for (x = 0; x < 16; x += 4) {
186 D += Disto4x4_SSE41(a + x + y, b + x + y, w);
187 }
188 }
189 return D;
190 }
191
192 //------------------------------------------------------------------------------
193 // Quantization
194 //
195
196 // Generates a pshufb constant for shuffling 16b words.
197 #define PSHUFB_CST(A,B,C,D,E,F,G,H) \
198 _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \
199 2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \
200 2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \
201 2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0)
202
DoQuantizeBlock_SSE41(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)203 static WEBP_INLINE int DoQuantizeBlock_SSE41(int16_t in[16], int16_t out[16],
204 const uint16_t* const sharpen,
205 const VP8Matrix* const mtx) {
206 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
207 const __m128i zero = _mm_setzero_si128();
208 __m128i out0, out8;
209 __m128i packed_out;
210
211 // Load all inputs.
212 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
213 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
214 const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
215 const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
216 const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
217 const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
218
219 // coeff = abs(in)
220 __m128i coeff0 = _mm_abs_epi16(in0);
221 __m128i coeff8 = _mm_abs_epi16(in8);
222
223 // coeff = abs(in) + sharpen
224 if (sharpen != NULL) {
225 const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
226 const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
227 coeff0 = _mm_add_epi16(coeff0, sharpen0);
228 coeff8 = _mm_add_epi16(coeff8, sharpen8);
229 }
230
231 // out = (coeff * iQ + B) >> QFIX
232 {
233 // doing calculations with 32b precision (QFIX=17)
234 // out = (coeff * iQ)
235 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
236 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
237 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
238 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
239 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
240 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
241 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
242 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
243 // out = (coeff * iQ + B)
244 const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
245 const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
246 const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
247 const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
248 out_00 = _mm_add_epi32(out_00, bias_00);
249 out_04 = _mm_add_epi32(out_04, bias_04);
250 out_08 = _mm_add_epi32(out_08, bias_08);
251 out_12 = _mm_add_epi32(out_12, bias_12);
252 // out = QUANTDIV(coeff, iQ, B, QFIX)
253 out_00 = _mm_srai_epi32(out_00, QFIX);
254 out_04 = _mm_srai_epi32(out_04, QFIX);
255 out_08 = _mm_srai_epi32(out_08, QFIX);
256 out_12 = _mm_srai_epi32(out_12, QFIX);
257
258 // pack result as 16b
259 out0 = _mm_packs_epi32(out_00, out_04);
260 out8 = _mm_packs_epi32(out_08, out_12);
261
262 // if (coeff > 2047) coeff = 2047
263 out0 = _mm_min_epi16(out0, max_coeff_2047);
264 out8 = _mm_min_epi16(out8, max_coeff_2047);
265 }
266
267 // put sign back
268 out0 = _mm_sign_epi16(out0, in0);
269 out8 = _mm_sign_epi16(out8, in8);
270
271 // in = out * Q
272 in0 = _mm_mullo_epi16(out0, q0);
273 in8 = _mm_mullo_epi16(out8, q8);
274
275 _mm_storeu_si128((__m128i*)&in[0], in0);
276 _mm_storeu_si128((__m128i*)&in[8], in8);
277
278 // zigzag the output before storing it. The re-ordering is:
279 // 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15
280 // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15
281 // There's only two misplaced entries ([8] and [7]) that are crossing the
282 // reg's boundaries.
283 // We use pshufb instead of pshuflo/pshufhi.
284 {
285 const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6);
286 const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1);
287 const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo);
288 const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7
289 const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7);
290 const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1);
291 const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi);
292 const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8
293 const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8);
294 const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7);
295 _mm_storeu_si128((__m128i*)&out[0], out_z0);
296 _mm_storeu_si128((__m128i*)&out[8], out_z8);
297 packed_out = _mm_packs_epi16(out_z0, out_z8);
298 }
299
300 // detect if all 'out' values are zeroes or not
301 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
302 }
303
304 #undef PSHUFB_CST
305
QuantizeBlock_SSE41(int16_t in[16],int16_t out[16],const VP8Matrix * WEBP_RESTRICT const mtx)306 static int QuantizeBlock_SSE41(int16_t in[16], int16_t out[16],
307 const VP8Matrix* WEBP_RESTRICT const mtx) {
308 return DoQuantizeBlock_SSE41(in, out, &mtx->sharpen_[0], mtx);
309 }
310
QuantizeBlockWHT_SSE41(int16_t in[16],int16_t out[16],const VP8Matrix * WEBP_RESTRICT const mtx)311 static int QuantizeBlockWHT_SSE41(int16_t in[16], int16_t out[16],
312 const VP8Matrix* WEBP_RESTRICT const mtx) {
313 return DoQuantizeBlock_SSE41(in, out, NULL, mtx);
314 }
315
Quantize2Blocks_SSE41(int16_t in[32],int16_t out[32],const VP8Matrix * WEBP_RESTRICT const mtx)316 static int Quantize2Blocks_SSE41(int16_t in[32], int16_t out[32],
317 const VP8Matrix* WEBP_RESTRICT const mtx) {
318 int nz;
319 const uint16_t* const sharpen = &mtx->sharpen_[0];
320 nz = DoQuantizeBlock_SSE41(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
321 nz |= DoQuantizeBlock_SSE41(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
322 return nz;
323 }
324
325 //------------------------------------------------------------------------------
326 // Entry point
327
328 extern void VP8EncDspInitSSE41(void);
VP8EncDspInitSSE41(void)329 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) {
330 VP8CollectHistogram = CollectHistogram_SSE41;
331 VP8EncQuantizeBlock = QuantizeBlock_SSE41;
332 VP8EncQuantize2Blocks = Quantize2Blocks_SSE41;
333 VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE41;
334 VP8TDisto4x4 = Disto4x4_SSE41;
335 VP8TDisto16x16 = Disto16x16_SSE41;
336 }
337
338 #else // !WEBP_USE_SSE41
339
340 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41)
341
342 #endif // WEBP_USE_SSE41
343