1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 #ifdef HAVE_CONFIG_H
13 #include "src/webp/config.h"
14 #endif
15
16 #include <string.h>
17
18 #include "src/dsp/lossless.h"
19 #include "src/dsp/lossless_common.h"
20 #include "src/enc/backward_references_enc.h"
21 #include "src/enc/histogram_enc.h"
22 #include "src/enc/vp8i_enc.h"
23 #include "src/utils/utils.h"
24
25 // Number of partitions for the three dominant (literal, red and blue) symbol
26 // costs.
27 #define NUM_PARTITIONS 4
28 // The size of the bin-hash corresponding to the three dominant costs.
29 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
30 // Maximum number of histograms allowed in greedy combining algorithm.
31 #define MAX_HISTO_GREEDY 100
32
33 // Return the size of the histogram for a given cache_bits.
GetHistogramSize(int cache_bits)34 static int GetHistogramSize(int cache_bits) {
35 const int literal_size = VP8LHistogramNumCodes(cache_bits);
36 const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
37 assert(total_size <= (size_t)0x7fffffff);
38 return (int)total_size;
39 }
40
HistogramClear(VP8LHistogram * const p)41 static void HistogramClear(VP8LHistogram* const p) {
42 uint32_t* const literal = p->literal_;
43 const int cache_bits = p->palette_code_bits_;
44 const int histo_size = GetHistogramSize(cache_bits);
45 memset(p, 0, histo_size);
46 p->palette_code_bits_ = cache_bits;
47 p->literal_ = literal;
48 }
49
50 // Swap two histogram pointers.
HistogramSwap(VP8LHistogram ** const A,VP8LHistogram ** const B)51 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
52 VP8LHistogram* const tmp = *A;
53 *A = *B;
54 *B = tmp;
55 }
56
HistogramCopy(const VP8LHistogram * const src,VP8LHistogram * const dst)57 static void HistogramCopy(const VP8LHistogram* const src,
58 VP8LHistogram* const dst) {
59 uint32_t* const dst_literal = dst->literal_;
60 const int dst_cache_bits = dst->palette_code_bits_;
61 const int literal_size = VP8LHistogramNumCodes(dst_cache_bits);
62 const int histo_size = GetHistogramSize(dst_cache_bits);
63 assert(src->palette_code_bits_ == dst_cache_bits);
64 memcpy(dst, src, histo_size);
65 dst->literal_ = dst_literal;
66 memcpy(dst->literal_, src->literal_, literal_size * sizeof(*dst->literal_));
67 }
68
VP8LFreeHistogram(VP8LHistogram * const histo)69 void VP8LFreeHistogram(VP8LHistogram* const histo) {
70 WebPSafeFree(histo);
71 }
72
VP8LFreeHistogramSet(VP8LHistogramSet * const histo)73 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
74 WebPSafeFree(histo);
75 }
76
VP8LHistogramStoreRefs(const VP8LBackwardRefs * const refs,VP8LHistogram * const histo)77 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
78 VP8LHistogram* const histo) {
79 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
80 while (VP8LRefsCursorOk(&c)) {
81 VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos, NULL, 0);
82 VP8LRefsCursorNext(&c);
83 }
84 }
85
VP8LHistogramCreate(VP8LHistogram * const p,const VP8LBackwardRefs * const refs,int palette_code_bits)86 void VP8LHistogramCreate(VP8LHistogram* const p,
87 const VP8LBackwardRefs* const refs,
88 int palette_code_bits) {
89 if (palette_code_bits >= 0) {
90 p->palette_code_bits_ = palette_code_bits;
91 }
92 HistogramClear(p);
93 VP8LHistogramStoreRefs(refs, p);
94 }
95
VP8LHistogramInit(VP8LHistogram * const p,int palette_code_bits,int init_arrays)96 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits,
97 int init_arrays) {
98 p->palette_code_bits_ = palette_code_bits;
99 if (init_arrays) {
100 HistogramClear(p);
101 } else {
102 p->trivial_symbol_ = 0;
103 p->bit_cost_ = 0;
104 p->literal_cost_ = 0;
105 p->red_cost_ = 0;
106 p->blue_cost_ = 0;
107 memset(p->is_used_, 0, sizeof(p->is_used_));
108 }
109 }
110
VP8LAllocateHistogram(int cache_bits)111 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
112 VP8LHistogram* histo = NULL;
113 const int total_size = GetHistogramSize(cache_bits);
114 uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
115 if (memory == NULL) return NULL;
116 histo = (VP8LHistogram*)memory;
117 // literal_ won't necessary be aligned.
118 histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
119 VP8LHistogramInit(histo, cache_bits, /*init_arrays=*/ 0);
120 return histo;
121 }
122
123 // Resets the pointers of the histograms to point to the bit buffer in the set.
HistogramSetResetPointers(VP8LHistogramSet * const set,int cache_bits)124 static void HistogramSetResetPointers(VP8LHistogramSet* const set,
125 int cache_bits) {
126 int i;
127 const int histo_size = GetHistogramSize(cache_bits);
128 uint8_t* memory = (uint8_t*) (set->histograms);
129 memory += set->max_size * sizeof(*set->histograms);
130 for (i = 0; i < set->max_size; ++i) {
131 memory = (uint8_t*) WEBP_ALIGN(memory);
132 set->histograms[i] = (VP8LHistogram*) memory;
133 // literal_ won't necessary be aligned.
134 set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
135 memory += histo_size;
136 }
137 }
138
139 // Returns the total size of the VP8LHistogramSet.
HistogramSetTotalSize(int size,int cache_bits)140 static size_t HistogramSetTotalSize(int size, int cache_bits) {
141 const int histo_size = GetHistogramSize(cache_bits);
142 return (sizeof(VP8LHistogramSet) + size * (sizeof(VP8LHistogram*) +
143 histo_size + WEBP_ALIGN_CST));
144 }
145
VP8LAllocateHistogramSet(int size,int cache_bits)146 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
147 int i;
148 VP8LHistogramSet* set;
149 const size_t total_size = HistogramSetTotalSize(size, cache_bits);
150 uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
151 if (memory == NULL) return NULL;
152
153 set = (VP8LHistogramSet*)memory;
154 memory += sizeof(*set);
155 set->histograms = (VP8LHistogram**)memory;
156 set->max_size = size;
157 set->size = size;
158 HistogramSetResetPointers(set, cache_bits);
159 for (i = 0; i < size; ++i) {
160 VP8LHistogramInit(set->histograms[i], cache_bits, /*init_arrays=*/ 0);
161 }
162 return set;
163 }
164
VP8LHistogramSetClear(VP8LHistogramSet * const set)165 void VP8LHistogramSetClear(VP8LHistogramSet* const set) {
166 int i;
167 const int cache_bits = set->histograms[0]->palette_code_bits_;
168 const int size = set->max_size;
169 const size_t total_size = HistogramSetTotalSize(size, cache_bits);
170 uint8_t* memory = (uint8_t*)set;
171
172 memset(memory, 0, total_size);
173 memory += sizeof(*set);
174 set->histograms = (VP8LHistogram**)memory;
175 set->max_size = size;
176 set->size = size;
177 HistogramSetResetPointers(set, cache_bits);
178 for (i = 0; i < size; ++i) {
179 set->histograms[i]->palette_code_bits_ = cache_bits;
180 }
181 }
182
183 // Removes the histogram 'i' from 'set' by setting it to NULL.
HistogramSetRemoveHistogram(VP8LHistogramSet * const set,int i,int * const num_used)184 static void HistogramSetRemoveHistogram(VP8LHistogramSet* const set, int i,
185 int* const num_used) {
186 assert(set->histograms[i] != NULL);
187 set->histograms[i] = NULL;
188 --*num_used;
189 // If we remove the last valid one, shrink until the next valid one.
190 if (i == set->size - 1) {
191 while (set->size >= 1 && set->histograms[set->size - 1] == NULL) {
192 --set->size;
193 }
194 }
195 }
196
197 // -----------------------------------------------------------------------------
198
VP8LHistogramAddSinglePixOrCopy(VP8LHistogram * const histo,const PixOrCopy * const v,int (* const distance_modifier)(int,int),int distance_modifier_arg0)199 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
200 const PixOrCopy* const v,
201 int (*const distance_modifier)(int, int),
202 int distance_modifier_arg0) {
203 if (PixOrCopyIsLiteral(v)) {
204 ++histo->alpha_[PixOrCopyLiteral(v, 3)];
205 ++histo->red_[PixOrCopyLiteral(v, 2)];
206 ++histo->literal_[PixOrCopyLiteral(v, 1)];
207 ++histo->blue_[PixOrCopyLiteral(v, 0)];
208 } else if (PixOrCopyIsCacheIdx(v)) {
209 const int literal_ix =
210 NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
211 assert(histo->palette_code_bits_ != 0);
212 ++histo->literal_[literal_ix];
213 } else {
214 int code, extra_bits;
215 VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
216 ++histo->literal_[NUM_LITERAL_CODES + code];
217 if (distance_modifier == NULL) {
218 VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
219 } else {
220 VP8LPrefixEncodeBits(
221 distance_modifier(distance_modifier_arg0, PixOrCopyDistance(v)),
222 &code, &extra_bits);
223 }
224 ++histo->distance_[code];
225 }
226 }
227
228 // -----------------------------------------------------------------------------
229 // Entropy-related functions.
230
BitsEntropyRefine(const VP8LBitEntropy * entropy)231 static WEBP_INLINE uint64_t BitsEntropyRefine(const VP8LBitEntropy* entropy) {
232 uint64_t mix;
233 if (entropy->nonzeros < 5) {
234 if (entropy->nonzeros <= 1) {
235 return 0;
236 }
237 // Two symbols, they will be 0 and 1 in a Huffman code.
238 // Let's mix in a bit of entropy to favor good clustering when
239 // distributions of these are combined.
240 if (entropy->nonzeros == 2) {
241 return DivRound(99 * ((uint64_t)entropy->sum << LOG_2_PRECISION_BITS) +
242 entropy->entropy,
243 100);
244 }
245 // No matter what the entropy says, we cannot be better than min_limit
246 // with Huffman coding. I am mixing a bit of entropy into the
247 // min_limit since it produces much better (~0.5 %) compression results
248 // perhaps because of better entropy clustering.
249 if (entropy->nonzeros == 3) {
250 mix = 950;
251 } else {
252 mix = 700; // nonzeros == 4.
253 }
254 } else {
255 mix = 627;
256 }
257
258 {
259 uint64_t min_limit = (uint64_t)(2 * entropy->sum - entropy->max_val)
260 << LOG_2_PRECISION_BITS;
261 min_limit =
262 DivRound(mix * min_limit + (1000 - mix) * entropy->entropy, 1000);
263 return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
264 }
265 }
266
VP8LBitsEntropy(const uint32_t * const array,int n)267 uint64_t VP8LBitsEntropy(const uint32_t* const array, int n) {
268 VP8LBitEntropy entropy;
269 VP8LBitsEntropyUnrefined(array, n, &entropy);
270
271 return BitsEntropyRefine(&entropy);
272 }
273
InitialHuffmanCost(void)274 static uint64_t InitialHuffmanCost(void) {
275 // Small bias because Huffman code length is typically not stored in
276 // full length.
277 static const uint64_t kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
278 // Subtract a bias of 9.1.
279 return (kHuffmanCodeOfHuffmanCodeSize << LOG_2_PRECISION_BITS) -
280 DivRound(91ll << LOG_2_PRECISION_BITS, 10);
281 }
282
283 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
FinalHuffmanCost(const VP8LStreaks * const stats)284 static uint64_t FinalHuffmanCost(const VP8LStreaks* const stats) {
285 // The constants in this function are empirical and got rounded from
286 // their original values in 1/8 when switched to 1/1024.
287 uint64_t retval = InitialHuffmanCost();
288 // Second coefficient: Many zeros in the histogram are covered efficiently
289 // by a run-length encode. Originally 2/8.
290 uint32_t retval_extra = stats->counts[0] * 1600 + 240 * stats->streaks[0][1];
291 // Second coefficient: Constant values are encoded less efficiently, but still
292 // RLE'ed. Originally 6/8.
293 retval_extra += stats->counts[1] * 2640 + 720 * stats->streaks[1][1];
294 // 0s are usually encoded more efficiently than non-0s.
295 // Originally 15/8.
296 retval_extra += 1840 * stats->streaks[0][0];
297 // Originally 26/8.
298 retval_extra += 3360 * stats->streaks[1][0];
299 return retval + ((uint64_t)retval_extra << (LOG_2_PRECISION_BITS - 10));
300 }
301
302 // Get the symbol entropy for the distribution 'population'.
303 // Set 'trivial_sym', if there's only one symbol present in the distribution.
PopulationCost(const uint32_t * const population,int length,uint32_t * const trivial_sym,uint8_t * const is_used)304 static uint64_t PopulationCost(const uint32_t* const population, int length,
305 uint32_t* const trivial_sym,
306 uint8_t* const is_used) {
307 VP8LBitEntropy bit_entropy;
308 VP8LStreaks stats;
309 VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
310 if (trivial_sym != NULL) {
311 *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
312 : VP8L_NON_TRIVIAL_SYM;
313 }
314 // The histogram is used if there is at least one non-zero streak.
315 *is_used = (stats.streaks[1][0] != 0 || stats.streaks[1][1] != 0);
316
317 return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
318 }
319
320 // trivial_at_end is 1 if the two histograms only have one element that is
321 // non-zero: both the zero-th one, or both the last one.
GetCombinedEntropy(const uint32_t * const X,const uint32_t * const Y,int length,int is_X_used,int is_Y_used,int trivial_at_end)322 static WEBP_INLINE uint64_t GetCombinedEntropy(const uint32_t* const X,
323 const uint32_t* const Y,
324 int length, int is_X_used,
325 int is_Y_used,
326 int trivial_at_end) {
327 VP8LStreaks stats;
328 if (trivial_at_end) {
329 // This configuration is due to palettization that transforms an indexed
330 // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
331 // BitsEntropyRefine is 0 for histograms with only one non-zero value.
332 // Only FinalHuffmanCost needs to be evaluated.
333 memset(&stats, 0, sizeof(stats));
334 // Deal with the non-zero value at index 0 or length-1.
335 stats.streaks[1][0] = 1;
336 // Deal with the following/previous zero streak.
337 stats.counts[0] = 1;
338 stats.streaks[0][1] = length - 1;
339 return FinalHuffmanCost(&stats);
340 } else {
341 VP8LBitEntropy bit_entropy;
342 if (is_X_used) {
343 if (is_Y_used) {
344 VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
345 } else {
346 VP8LGetEntropyUnrefined(X, length, &bit_entropy, &stats);
347 }
348 } else {
349 if (is_Y_used) {
350 VP8LGetEntropyUnrefined(Y, length, &bit_entropy, &stats);
351 } else {
352 memset(&stats, 0, sizeof(stats));
353 stats.counts[0] = 1;
354 stats.streaks[0][length > 3] = length;
355 VP8LBitEntropyInit(&bit_entropy);
356 }
357 }
358
359 return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
360 }
361 }
362
363 // Estimates the Entropy + Huffman + other block overhead size cost.
VP8LHistogramEstimateBits(VP8LHistogram * const p)364 uint64_t VP8LHistogramEstimateBits(VP8LHistogram* const p) {
365 return PopulationCost(p->literal_,
366 VP8LHistogramNumCodes(p->palette_code_bits_), NULL,
367 &p->is_used_[0]) +
368 PopulationCost(p->red_, NUM_LITERAL_CODES, NULL, &p->is_used_[1]) +
369 PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL, &p->is_used_[2]) +
370 PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL, &p->is_used_[3]) +
371 PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL,
372 &p->is_used_[4]) +
373 ((uint64_t)(VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES,
374 NUM_LENGTH_CODES) +
375 VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES))
376 << LOG_2_PRECISION_BITS);
377 }
378
379 // -----------------------------------------------------------------------------
380 // Various histogram combine/cost-eval functions
381
382 // Set a + b in b, saturating at WEBP_INT64_MAX.
SaturateAdd(uint64_t a,int64_t * b)383 static WEBP_INLINE void SaturateAdd(uint64_t a, int64_t* b) {
384 if (*b < 0 || (int64_t)a <= WEBP_INT64_MAX - *b) {
385 *b += (int64_t)a;
386 } else {
387 *b = WEBP_INT64_MAX;
388 }
389 }
390
391 // Returns 1 if the cost of the combined histogram is less than the threshold.
392 // Otherwise returns 0 and the cost is invalid due to early bail-out.
GetCombinedHistogramEntropy(const VP8LHistogram * const a,const VP8LHistogram * const b,int64_t cost_threshold_in,uint64_t * cost)393 WEBP_NODISCARD static int GetCombinedHistogramEntropy(
394 const VP8LHistogram* const a, const VP8LHistogram* const b,
395 int64_t cost_threshold_in, uint64_t* cost) {
396 const int palette_code_bits = a->palette_code_bits_;
397 int trivial_at_end = 0;
398 const uint64_t cost_threshold = (uint64_t)cost_threshold_in;
399 assert(a->palette_code_bits_ == b->palette_code_bits_);
400 if (cost_threshold_in <= 0) return 0;
401 *cost = GetCombinedEntropy(a->literal_, b->literal_,
402 VP8LHistogramNumCodes(palette_code_bits),
403 a->is_used_[0], b->is_used_[0], 0);
404 *cost += (uint64_t)VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
405 b->literal_ + NUM_LITERAL_CODES,
406 NUM_LENGTH_CODES)
407 << LOG_2_PRECISION_BITS;
408 if (*cost >= cost_threshold) return 0;
409
410 if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
411 a->trivial_symbol_ == b->trivial_symbol_) {
412 // A, R and B are all 0 or 0xff.
413 const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
414 const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
415 const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
416 if ((color_a == 0 || color_a == 0xff) &&
417 (color_r == 0 || color_r == 0xff) &&
418 (color_b == 0 || color_b == 0xff)) {
419 trivial_at_end = 1;
420 }
421 }
422
423 *cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES,
424 a->is_used_[1], b->is_used_[1], trivial_at_end);
425 if (*cost >= cost_threshold) return 0;
426
427 *cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES,
428 a->is_used_[2], b->is_used_[2], trivial_at_end);
429 if (*cost >= cost_threshold) return 0;
430
431 *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
432 a->is_used_[3], b->is_used_[3], trivial_at_end);
433 if (*cost >= cost_threshold) return 0;
434
435 *cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES,
436 a->is_used_[4], b->is_used_[4], 0);
437 *cost += (uint64_t)VP8LExtraCostCombined(a->distance_, b->distance_,
438 NUM_DISTANCE_CODES)
439 << LOG_2_PRECISION_BITS;
440 if (*cost >= cost_threshold) return 0;
441
442 return 1;
443 }
444
HistogramAdd(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)445 static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
446 const VP8LHistogram* const b,
447 VP8LHistogram* const out) {
448 VP8LHistogramAdd(a, b, out);
449 out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
450 ? a->trivial_symbol_
451 : VP8L_NON_TRIVIAL_SYM;
452 }
453
454 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
455 // to the threshold value 'cost_threshold'. The score returned is
456 // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
457 // Since the previous score passed is 'cost_threshold', we only need to compare
458 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
459 // early.
460 // Returns 1 if the cost is less than the threshold.
461 // Otherwise returns 0 and the cost is invalid due to early bail-out.
HistogramAddEval(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out,int64_t cost_threshold)462 WEBP_NODISCARD static int HistogramAddEval(const VP8LHistogram* const a,
463 const VP8LHistogram* const b,
464 VP8LHistogram* const out,
465 int64_t cost_threshold) {
466 uint64_t cost;
467 const uint64_t sum_cost = a->bit_cost_ + b->bit_cost_;
468 SaturateAdd(sum_cost, &cost_threshold);
469 if (!GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) return 0;
470
471 HistogramAdd(a, b, out);
472 out->bit_cost_ = cost;
473 out->palette_code_bits_ = a->palette_code_bits_;
474 return 1;
475 }
476
477 // Same as HistogramAddEval(), except that the resulting histogram
478 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
479 // the term C(b) which is constant over all the evaluations.
480 // Returns 1 if the cost is less than the threshold.
481 // Otherwise returns 0 and the cost is invalid due to early bail-out.
HistogramAddThresh(const VP8LHistogram * const a,const VP8LHistogram * const b,int64_t cost_threshold,int64_t * cost_out)482 WEBP_NODISCARD static int HistogramAddThresh(const VP8LHistogram* const a,
483 const VP8LHistogram* const b,
484 int64_t cost_threshold,
485 int64_t* cost_out) {
486 uint64_t cost;
487 assert(a != NULL && b != NULL);
488 SaturateAdd(a->bit_cost_, &cost_threshold);
489 if (!GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) return 0;
490
491 *cost_out = (int64_t)cost - (int64_t)a->bit_cost_;
492 return 1;
493 }
494
495 // -----------------------------------------------------------------------------
496
497 // The structure to keep track of cost range for the three dominant entropy
498 // symbols.
499 typedef struct {
500 uint64_t literal_max_;
501 uint64_t literal_min_;
502 uint64_t red_max_;
503 uint64_t red_min_;
504 uint64_t blue_max_;
505 uint64_t blue_min_;
506 } DominantCostRange;
507
DominantCostRangeInit(DominantCostRange * const c)508 static void DominantCostRangeInit(DominantCostRange* const c) {
509 c->literal_max_ = 0;
510 c->literal_min_ = WEBP_UINT64_MAX;
511 c->red_max_ = 0;
512 c->red_min_ = WEBP_UINT64_MAX;
513 c->blue_max_ = 0;
514 c->blue_min_ = WEBP_UINT64_MAX;
515 }
516
UpdateDominantCostRange(const VP8LHistogram * const h,DominantCostRange * const c)517 static void UpdateDominantCostRange(
518 const VP8LHistogram* const h, DominantCostRange* const c) {
519 if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
520 if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
521 if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
522 if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
523 if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
524 if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
525 }
526
UpdateHistogramCost(VP8LHistogram * const h)527 static void UpdateHistogramCost(VP8LHistogram* const h) {
528 uint32_t alpha_sym, red_sym, blue_sym;
529 const uint64_t alpha_cost =
530 PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym, &h->is_used_[3]);
531 const uint64_t distance_cost =
532 PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL, &h->is_used_[4]) +
533 ((uint64_t)VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES)
534 << LOG_2_PRECISION_BITS);
535 const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
536 h->literal_cost_ =
537 PopulationCost(h->literal_, num_codes, NULL, &h->is_used_[0]) +
538 ((uint64_t)VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
539 NUM_LENGTH_CODES)
540 << LOG_2_PRECISION_BITS);
541 h->red_cost_ =
542 PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym, &h->is_used_[1]);
543 h->blue_cost_ =
544 PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym, &h->is_used_[2]);
545 h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
546 alpha_cost + distance_cost;
547 if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
548 h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
549 } else {
550 h->trivial_symbol_ =
551 ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
552 }
553 }
554
GetBinIdForEntropy(uint64_t min,uint64_t max,uint64_t val)555 static int GetBinIdForEntropy(uint64_t min, uint64_t max, uint64_t val) {
556 const uint64_t range = max - min;
557 if (range > 0) {
558 const uint64_t delta = val - min;
559 return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
560 } else {
561 return 0;
562 }
563 }
564
GetHistoBinIndex(const VP8LHistogram * const h,const DominantCostRange * const c,int low_effort)565 static int GetHistoBinIndex(const VP8LHistogram* const h,
566 const DominantCostRange* const c, int low_effort) {
567 int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
568 h->literal_cost_);
569 assert(bin_id < NUM_PARTITIONS);
570 if (!low_effort) {
571 bin_id = bin_id * NUM_PARTITIONS
572 + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
573 bin_id = bin_id * NUM_PARTITIONS
574 + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
575 assert(bin_id < BIN_SIZE);
576 }
577 return bin_id;
578 }
579
580 // Construct the histograms from backward references.
HistogramBuild(int xsize,int histo_bits,const VP8LBackwardRefs * const backward_refs,VP8LHistogramSet * const image_histo)581 static void HistogramBuild(
582 int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
583 VP8LHistogramSet* const image_histo) {
584 int x = 0, y = 0;
585 const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
586 VP8LHistogram** const histograms = image_histo->histograms;
587 VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
588 assert(histo_bits > 0);
589 VP8LHistogramSetClear(image_histo);
590 while (VP8LRefsCursorOk(&c)) {
591 const PixOrCopy* const v = c.cur_pos;
592 const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
593 VP8LHistogramAddSinglePixOrCopy(histograms[ix], v, NULL, 0);
594 x += PixOrCopyLength(v);
595 while (x >= xsize) {
596 x -= xsize;
597 ++y;
598 }
599 VP8LRefsCursorNext(&c);
600 }
601 }
602
603 // Copies the histograms and computes its bit_cost.
604 static const uint32_t kInvalidHistogramSymbol = (uint32_t)(-1);
HistogramCopyAndAnalyze(VP8LHistogramSet * const orig_histo,VP8LHistogramSet * const image_histo,int * const num_used,uint32_t * const histogram_symbols)605 static void HistogramCopyAndAnalyze(VP8LHistogramSet* const orig_histo,
606 VP8LHistogramSet* const image_histo,
607 int* const num_used,
608 uint32_t* const histogram_symbols) {
609 int i, cluster_id;
610 int num_used_orig = *num_used;
611 VP8LHistogram** const orig_histograms = orig_histo->histograms;
612 VP8LHistogram** const histograms = image_histo->histograms;
613 assert(image_histo->max_size == orig_histo->max_size);
614 for (cluster_id = 0, i = 0; i < orig_histo->max_size; ++i) {
615 VP8LHistogram* const histo = orig_histograms[i];
616 UpdateHistogramCost(histo);
617
618 // Skip the histogram if it is completely empty, which can happen for tiles
619 // with no information (when they are skipped because of LZ77).
620 if (!histo->is_used_[0] && !histo->is_used_[1] && !histo->is_used_[2]
621 && !histo->is_used_[3] && !histo->is_used_[4]) {
622 // The first histogram is always used. If an histogram is empty, we set
623 // its id to be the same as the previous one: this will improve
624 // compressibility for later LZ77.
625 assert(i > 0);
626 HistogramSetRemoveHistogram(image_histo, i, num_used);
627 HistogramSetRemoveHistogram(orig_histo, i, &num_used_orig);
628 histogram_symbols[i] = kInvalidHistogramSymbol;
629 } else {
630 // Copy histograms from orig_histo[] to image_histo[].
631 HistogramCopy(histo, histograms[i]);
632 histogram_symbols[i] = cluster_id++;
633 assert(cluster_id <= image_histo->max_size);
634 }
635 }
636 }
637
638 // Partition histograms to different entropy bins for three dominant (literal,
639 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
HistogramAnalyzeEntropyBin(VP8LHistogramSet * const image_histo,uint16_t * const bin_map,int low_effort)640 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
641 uint16_t* const bin_map,
642 int low_effort) {
643 int i;
644 VP8LHistogram** const histograms = image_histo->histograms;
645 const int histo_size = image_histo->size;
646 DominantCostRange cost_range;
647 DominantCostRangeInit(&cost_range);
648
649 // Analyze the dominant (literal, red and blue) entropy costs.
650 for (i = 0; i < histo_size; ++i) {
651 if (histograms[i] == NULL) continue;
652 UpdateDominantCostRange(histograms[i], &cost_range);
653 }
654
655 // bin-hash histograms on three of the dominant (literal, red and blue)
656 // symbol costs and store the resulting bin_id for each histogram.
657 for (i = 0; i < histo_size; ++i) {
658 // bin_map[i] is not set to a special value as its use will later be guarded
659 // by another (histograms[i] == NULL).
660 if (histograms[i] == NULL) continue;
661 bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
662 }
663 }
664
665 // Merges some histograms with same bin_id together if it's advantageous.
666 // Sets the remaining histograms to NULL.
667 // 'combine_cost_factor' has to be divided by 100.
HistogramCombineEntropyBin(VP8LHistogramSet * const image_histo,int * num_used,const uint32_t * const clusters,uint16_t * const cluster_mappings,VP8LHistogram * cur_combo,const uint16_t * const bin_map,int num_bins,int32_t combine_cost_factor,int low_effort)668 static void HistogramCombineEntropyBin(
669 VP8LHistogramSet* const image_histo, int* num_used,
670 const uint32_t* const clusters, uint16_t* const cluster_mappings,
671 VP8LHistogram* cur_combo, const uint16_t* const bin_map, int num_bins,
672 int32_t combine_cost_factor, int low_effort) {
673 VP8LHistogram** const histograms = image_histo->histograms;
674 int idx;
675 struct {
676 int16_t first; // position of the histogram that accumulates all
677 // histograms with the same bin_id
678 uint16_t num_combine_failures; // number of combine failures per bin_id
679 } bin_info[BIN_SIZE];
680
681 assert(num_bins <= BIN_SIZE);
682 for (idx = 0; idx < num_bins; ++idx) {
683 bin_info[idx].first = -1;
684 bin_info[idx].num_combine_failures = 0;
685 }
686
687 // By default, a cluster matches itself.
688 for (idx = 0; idx < *num_used; ++idx) cluster_mappings[idx] = idx;
689 for (idx = 0; idx < image_histo->size; ++idx) {
690 int bin_id, first;
691 if (histograms[idx] == NULL) continue;
692 bin_id = bin_map[idx];
693 first = bin_info[bin_id].first;
694 if (first == -1) {
695 bin_info[bin_id].first = idx;
696 } else if (low_effort) {
697 HistogramAdd(histograms[idx], histograms[first], histograms[first]);
698 HistogramSetRemoveHistogram(image_histo, idx, num_used);
699 cluster_mappings[clusters[idx]] = clusters[first];
700 } else {
701 // try to merge #idx into #first (both share the same bin_id)
702 const uint64_t bit_cost = histograms[idx]->bit_cost_;
703 const int64_t bit_cost_thresh =
704 -DivRound((int64_t)bit_cost * combine_cost_factor, 100);
705 if (HistogramAddEval(histograms[first], histograms[idx], cur_combo,
706 bit_cost_thresh)) {
707 // Try to merge two histograms only if the combo is a trivial one or
708 // the two candidate histograms are already non-trivial.
709 // For some images, 'try_combine' turns out to be false for a lot of
710 // histogram pairs. In that case, we fallback to combining
711 // histograms as usual to avoid increasing the header size.
712 const int try_combine =
713 (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
714 ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
715 (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
716 const int max_combine_failures = 32;
717 if (try_combine ||
718 bin_info[bin_id].num_combine_failures >= max_combine_failures) {
719 // move the (better) merged histogram to its final slot
720 HistogramSwap(&cur_combo, &histograms[first]);
721 HistogramSetRemoveHistogram(image_histo, idx, num_used);
722 cluster_mappings[clusters[idx]] = clusters[first];
723 } else {
724 ++bin_info[bin_id].num_combine_failures;
725 }
726 }
727 }
728 }
729 if (low_effort) {
730 // for low_effort case, update the final cost when everything is merged
731 for (idx = 0; idx < image_histo->size; ++idx) {
732 if (histograms[idx] == NULL) continue;
733 UpdateHistogramCost(histograms[idx]);
734 }
735 }
736 }
737
738 // Implement a Lehmer random number generator with a multiplicative constant of
739 // 48271 and a modulo constant of 2^31 - 1.
MyRand(uint32_t * const seed)740 static uint32_t MyRand(uint32_t* const seed) {
741 *seed = (uint32_t)(((uint64_t)(*seed) * 48271u) % 2147483647u);
742 assert(*seed > 0);
743 return *seed;
744 }
745
746 // -----------------------------------------------------------------------------
747 // Histogram pairs priority queue
748
749 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
750 typedef struct {
751 int idx1;
752 int idx2;
753 int64_t cost_diff;
754 uint64_t cost_combo;
755 } HistogramPair;
756
757 typedef struct {
758 HistogramPair* queue;
759 int size;
760 int max_size;
761 } HistoQueue;
762
HistoQueueInit(HistoQueue * const histo_queue,const int max_size)763 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_size) {
764 histo_queue->size = 0;
765 histo_queue->max_size = max_size;
766 // We allocate max_size + 1 because the last element at index "size" is
767 // used as temporary data (and it could be up to max_size).
768 histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
769 histo_queue->max_size + 1, sizeof(*histo_queue->queue));
770 return histo_queue->queue != NULL;
771 }
772
HistoQueueClear(HistoQueue * const histo_queue)773 static void HistoQueueClear(HistoQueue* const histo_queue) {
774 assert(histo_queue != NULL);
775 WebPSafeFree(histo_queue->queue);
776 histo_queue->size = 0;
777 histo_queue->max_size = 0;
778 }
779
780 // Pop a specific pair in the queue by replacing it with the last one
781 // and shrinking the queue.
HistoQueuePopPair(HistoQueue * const histo_queue,HistogramPair * const pair)782 static void HistoQueuePopPair(HistoQueue* const histo_queue,
783 HistogramPair* const pair) {
784 assert(pair >= histo_queue->queue &&
785 pair < (histo_queue->queue + histo_queue->size));
786 assert(histo_queue->size > 0);
787 *pair = histo_queue->queue[histo_queue->size - 1];
788 --histo_queue->size;
789 }
790
791 // Check whether a pair in the queue should be updated as head or not.
HistoQueueUpdateHead(HistoQueue * const histo_queue,HistogramPair * const pair)792 static void HistoQueueUpdateHead(HistoQueue* const histo_queue,
793 HistogramPair* const pair) {
794 assert(pair->cost_diff < 0);
795 assert(pair >= histo_queue->queue &&
796 pair < (histo_queue->queue + histo_queue->size));
797 assert(histo_queue->size > 0);
798 if (pair->cost_diff < histo_queue->queue[0].cost_diff) {
799 // Replace the best pair.
800 const HistogramPair tmp = histo_queue->queue[0];
801 histo_queue->queue[0] = *pair;
802 *pair = tmp;
803 }
804 }
805
806 // Update the cost diff and combo of a pair of histograms. This needs to be
807 // called when the histograms have been merged with a third one.
808 // Returns 1 if the cost diff is less than the threshold.
809 // Otherwise returns 0 and the cost is invalid due to early bail-out.
HistoQueueUpdatePair(const VP8LHistogram * const h1,const VP8LHistogram * const h2,int64_t cost_threshold,HistogramPair * const pair)810 WEBP_NODISCARD static int HistoQueueUpdatePair(const VP8LHistogram* const h1,
811 const VP8LHistogram* const h2,
812 int64_t cost_threshold,
813 HistogramPair* const pair) {
814 const int64_t sum_cost = h1->bit_cost_ + h2->bit_cost_;
815 SaturateAdd(sum_cost, &cost_threshold);
816 if (!GetCombinedHistogramEntropy(h1, h2, cost_threshold, &pair->cost_combo)) {
817 return 0;
818 }
819 pair->cost_diff = (int64_t)pair->cost_combo - sum_cost;
820 return 1;
821 }
822
823 // Create a pair from indices "idx1" and "idx2" provided its cost
824 // is inferior to "threshold", a negative entropy.
825 // It returns the cost of the pair, or 0 if it superior to threshold.
HistoQueuePush(HistoQueue * const histo_queue,VP8LHistogram ** const histograms,int idx1,int idx2,int64_t threshold)826 static int64_t HistoQueuePush(HistoQueue* const histo_queue,
827 VP8LHistogram** const histograms, int idx1,
828 int idx2, int64_t threshold) {
829 const VP8LHistogram* h1;
830 const VP8LHistogram* h2;
831 HistogramPair pair;
832
833 // Stop here if the queue is full.
834 if (histo_queue->size == histo_queue->max_size) return 0;
835 assert(threshold <= 0);
836 if (idx1 > idx2) {
837 const int tmp = idx2;
838 idx2 = idx1;
839 idx1 = tmp;
840 }
841 pair.idx1 = idx1;
842 pair.idx2 = idx2;
843 h1 = histograms[idx1];
844 h2 = histograms[idx2];
845
846 // Do not even consider the pair if it does not improve the entropy.
847 if (!HistoQueueUpdatePair(h1, h2, threshold, &pair)) return 0;
848
849 histo_queue->queue[histo_queue->size++] = pair;
850 HistoQueueUpdateHead(histo_queue, &histo_queue->queue[histo_queue->size - 1]);
851
852 return pair.cost_diff;
853 }
854
855 // -----------------------------------------------------------------------------
856
857 // Combines histograms by continuously choosing the one with the highest cost
858 // reduction.
HistogramCombineGreedy(VP8LHistogramSet * const image_histo,int * const num_used)859 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo,
860 int* const num_used) {
861 int ok = 0;
862 const int image_histo_size = image_histo->size;
863 int i, j;
864 VP8LHistogram** const histograms = image_histo->histograms;
865 // Priority queue of histogram pairs.
866 HistoQueue histo_queue;
867
868 // image_histo_size^2 for the queue size is safe. If you look at
869 // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
870 // data to the queue, you insert at most:
871 // - image_histo_size*(image_histo_size-1)/2 (the first two for loops)
872 // - image_histo_size - 1 in the last for loop at the first iteration of
873 // the while loop, image_histo_size - 2 at the second iteration ...
874 // therefore image_histo_size*(image_histo_size-1)/2 overall too
875 if (!HistoQueueInit(&histo_queue, image_histo_size * image_histo_size)) {
876 goto End;
877 }
878
879 for (i = 0; i < image_histo_size; ++i) {
880 if (image_histo->histograms[i] == NULL) continue;
881 for (j = i + 1; j < image_histo_size; ++j) {
882 // Initialize queue.
883 if (image_histo->histograms[j] == NULL) continue;
884 HistoQueuePush(&histo_queue, histograms, i, j, 0);
885 }
886 }
887
888 while (histo_queue.size > 0) {
889 const int idx1 = histo_queue.queue[0].idx1;
890 const int idx2 = histo_queue.queue[0].idx2;
891 HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
892 histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
893
894 // Remove merged histogram.
895 HistogramSetRemoveHistogram(image_histo, idx2, num_used);
896
897 // Remove pairs intersecting the just combined best pair.
898 for (i = 0; i < histo_queue.size;) {
899 HistogramPair* const p = histo_queue.queue + i;
900 if (p->idx1 == idx1 || p->idx2 == idx1 ||
901 p->idx1 == idx2 || p->idx2 == idx2) {
902 HistoQueuePopPair(&histo_queue, p);
903 } else {
904 HistoQueueUpdateHead(&histo_queue, p);
905 ++i;
906 }
907 }
908
909 // Push new pairs formed with combined histogram to the queue.
910 for (i = 0; i < image_histo->size; ++i) {
911 if (i == idx1 || image_histo->histograms[i] == NULL) continue;
912 HistoQueuePush(&histo_queue, image_histo->histograms, idx1, i, 0);
913 }
914 }
915
916 ok = 1;
917
918 End:
919 HistoQueueClear(&histo_queue);
920 return ok;
921 }
922
923 // Perform histogram aggregation using a stochastic approach.
924 // 'do_greedy' is set to 1 if a greedy approach needs to be performed
925 // afterwards, 0 otherwise.
PairComparison(const void * idx1,const void * idx2)926 static int PairComparison(const void* idx1, const void* idx2) {
927 // To be used with bsearch: <0 when *idx1<*idx2, >0 if >, 0 when ==.
928 return (*(int*) idx1 - *(int*) idx2);
929 }
HistogramCombineStochastic(VP8LHistogramSet * const image_histo,int * const num_used,int min_cluster_size,int * const do_greedy)930 static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
931 int* const num_used, int min_cluster_size,
932 int* const do_greedy) {
933 int j, iter;
934 uint32_t seed = 1;
935 int tries_with_no_success = 0;
936 const int outer_iters = *num_used;
937 const int num_tries_no_success = outer_iters / 2;
938 VP8LHistogram** const histograms = image_histo->histograms;
939 // Priority queue of histogram pairs. Its size of 'kHistoQueueSize'
940 // impacts the quality of the compression and the speed: the smaller the
941 // faster but the worse for the compression.
942 HistoQueue histo_queue;
943 const int kHistoQueueSize = 9;
944 int ok = 0;
945 // mapping from an index in image_histo with no NULL histogram to the full
946 // blown image_histo.
947 int* mappings;
948
949 if (*num_used < min_cluster_size) {
950 *do_greedy = 1;
951 return 1;
952 }
953
954 mappings = (int*) WebPSafeMalloc(*num_used, sizeof(*mappings));
955 if (mappings == NULL) return 0;
956 if (!HistoQueueInit(&histo_queue, kHistoQueueSize)) goto End;
957 // Fill the initial mapping.
958 for (j = 0, iter = 0; iter < image_histo->size; ++iter) {
959 if (histograms[iter] == NULL) continue;
960 mappings[j++] = iter;
961 }
962 assert(j == *num_used);
963
964 // Collapse similar histograms in 'image_histo'.
965 for (iter = 0;
966 iter < outer_iters && *num_used >= min_cluster_size &&
967 ++tries_with_no_success < num_tries_no_success;
968 ++iter) {
969 int* mapping_index;
970 int64_t best_cost =
971 (histo_queue.size == 0) ? 0 : histo_queue.queue[0].cost_diff;
972 int best_idx1 = -1, best_idx2 = 1;
973 const uint32_t rand_range = (*num_used - 1) * (*num_used);
974 // (*num_used) / 2 was chosen empirically. Less means faster but worse
975 // compression.
976 const int num_tries = (*num_used) / 2;
977
978 // Pick random samples.
979 for (j = 0; *num_used >= 2 && j < num_tries; ++j) {
980 int64_t curr_cost;
981 // Choose two different histograms at random and try to combine them.
982 const uint32_t tmp = MyRand(&seed) % rand_range;
983 uint32_t idx1 = tmp / (*num_used - 1);
984 uint32_t idx2 = tmp % (*num_used - 1);
985 if (idx2 >= idx1) ++idx2;
986 idx1 = mappings[idx1];
987 idx2 = mappings[idx2];
988
989 // Calculate cost reduction on combination.
990 curr_cost =
991 HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost);
992 if (curr_cost < 0) { // found a better pair?
993 best_cost = curr_cost;
994 // Empty the queue if we reached full capacity.
995 if (histo_queue.size == histo_queue.max_size) break;
996 }
997 }
998 if (histo_queue.size == 0) continue;
999
1000 // Get the best histograms.
1001 best_idx1 = histo_queue.queue[0].idx1;
1002 best_idx2 = histo_queue.queue[0].idx2;
1003 assert(best_idx1 < best_idx2);
1004 // Pop best_idx2 from mappings.
1005 mapping_index = (int*) bsearch(&best_idx2, mappings, *num_used,
1006 sizeof(best_idx2), &PairComparison);
1007 assert(mapping_index != NULL);
1008 memmove(mapping_index, mapping_index + 1, sizeof(*mapping_index) *
1009 ((*num_used) - (mapping_index - mappings) - 1));
1010 // Merge the histograms and remove best_idx2 from the queue.
1011 HistogramAdd(histograms[best_idx2], histograms[best_idx1],
1012 histograms[best_idx1]);
1013 histograms[best_idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
1014 HistogramSetRemoveHistogram(image_histo, best_idx2, num_used);
1015 // Parse the queue and update each pair that deals with best_idx1,
1016 // best_idx2 or image_histo_size.
1017 for (j = 0; j < histo_queue.size;) {
1018 HistogramPair* const p = histo_queue.queue + j;
1019 const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2;
1020 const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2;
1021 int do_eval = 0;
1022 // The front pair could have been duplicated by a random pick so
1023 // check for it all the time nevertheless.
1024 if (is_idx1_best && is_idx2_best) {
1025 HistoQueuePopPair(&histo_queue, p);
1026 continue;
1027 }
1028 // Any pair containing one of the two best indices should only refer to
1029 // best_idx1. Its cost should also be updated.
1030 if (is_idx1_best) {
1031 p->idx1 = best_idx1;
1032 do_eval = 1;
1033 } else if (is_idx2_best) {
1034 p->idx2 = best_idx1;
1035 do_eval = 1;
1036 }
1037 // Make sure the index order is respected.
1038 if (p->idx1 > p->idx2) {
1039 const int tmp = p->idx2;
1040 p->idx2 = p->idx1;
1041 p->idx1 = tmp;
1042 }
1043 if (do_eval) {
1044 // Re-evaluate the cost of an updated pair.
1045 if (!HistoQueueUpdatePair(histograms[p->idx1], histograms[p->idx2], 0,
1046 p)) {
1047 HistoQueuePopPair(&histo_queue, p);
1048 continue;
1049 }
1050 }
1051 HistoQueueUpdateHead(&histo_queue, p);
1052 ++j;
1053 }
1054 tries_with_no_success = 0;
1055 }
1056 *do_greedy = (*num_used <= min_cluster_size);
1057 ok = 1;
1058
1059 End:
1060 HistoQueueClear(&histo_queue);
1061 WebPSafeFree(mappings);
1062 return ok;
1063 }
1064
1065 // -----------------------------------------------------------------------------
1066 // Histogram refinement
1067
1068 // Find the best 'out' histogram for each of the 'in' histograms.
1069 // At call-time, 'out' contains the histograms of the clusters.
1070 // Note: we assume that out[]->bit_cost_ is already up-to-date.
HistogramRemap(const VP8LHistogramSet * const in,VP8LHistogramSet * const out,uint32_t * const symbols)1071 static void HistogramRemap(const VP8LHistogramSet* const in,
1072 VP8LHistogramSet* const out,
1073 uint32_t* const symbols) {
1074 int i;
1075 VP8LHistogram** const in_histo = in->histograms;
1076 VP8LHistogram** const out_histo = out->histograms;
1077 const int in_size = out->max_size;
1078 const int out_size = out->size;
1079 if (out_size > 1) {
1080 for (i = 0; i < in_size; ++i) {
1081 int best_out = 0;
1082 int64_t best_bits = WEBP_INT64_MAX;
1083 int k;
1084 if (in_histo[i] == NULL) {
1085 // Arbitrarily set to the previous value if unused to help future LZ77.
1086 symbols[i] = symbols[i - 1];
1087 continue;
1088 }
1089 for (k = 0; k < out_size; ++k) {
1090 int64_t cur_bits;
1091 if (HistogramAddThresh(out_histo[k], in_histo[i], best_bits,
1092 &cur_bits)) {
1093 best_bits = cur_bits;
1094 best_out = k;
1095 }
1096 }
1097 symbols[i] = best_out;
1098 }
1099 } else {
1100 assert(out_size == 1);
1101 for (i = 0; i < in_size; ++i) {
1102 symbols[i] = 0;
1103 }
1104 }
1105
1106 // Recompute each out based on raw and symbols.
1107 VP8LHistogramSetClear(out);
1108 out->size = out_size;
1109
1110 for (i = 0; i < in_size; ++i) {
1111 int idx;
1112 if (in_histo[i] == NULL) continue;
1113 idx = symbols[i];
1114 HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
1115 }
1116 }
1117
GetCombineCostFactor(int histo_size,int quality)1118 static int32_t GetCombineCostFactor(int histo_size, int quality) {
1119 int32_t combine_cost_factor = 16;
1120 if (quality < 90) {
1121 if (histo_size > 256) combine_cost_factor /= 2;
1122 if (histo_size > 512) combine_cost_factor /= 2;
1123 if (histo_size > 1024) combine_cost_factor /= 2;
1124 if (quality <= 50) combine_cost_factor /= 2;
1125 }
1126 return combine_cost_factor;
1127 }
1128
1129 // Given a HistogramSet 'set', the mapping of clusters 'cluster_mapping' and the
1130 // current assignment of the cells in 'symbols', merge the clusters and
1131 // assign the smallest possible clusters values.
OptimizeHistogramSymbols(const VP8LHistogramSet * const set,uint16_t * const cluster_mappings,uint32_t num_clusters,uint16_t * const cluster_mappings_tmp,uint32_t * const symbols)1132 static void OptimizeHistogramSymbols(const VP8LHistogramSet* const set,
1133 uint16_t* const cluster_mappings,
1134 uint32_t num_clusters,
1135 uint16_t* const cluster_mappings_tmp,
1136 uint32_t* const symbols) {
1137 uint32_t i, cluster_max;
1138 int do_continue = 1;
1139 // First, assign the lowest cluster to each pixel.
1140 while (do_continue) {
1141 do_continue = 0;
1142 for (i = 0; i < num_clusters; ++i) {
1143 int k;
1144 k = cluster_mappings[i];
1145 while (k != cluster_mappings[k]) {
1146 cluster_mappings[k] = cluster_mappings[cluster_mappings[k]];
1147 k = cluster_mappings[k];
1148 }
1149 if (k != cluster_mappings[i]) {
1150 do_continue = 1;
1151 cluster_mappings[i] = k;
1152 }
1153 }
1154 }
1155 // Create a mapping from a cluster id to its minimal version.
1156 cluster_max = 0;
1157 memset(cluster_mappings_tmp, 0,
1158 set->max_size * sizeof(*cluster_mappings_tmp));
1159 assert(cluster_mappings[0] == 0);
1160 // Re-map the ids.
1161 for (i = 0; i < (uint32_t)set->max_size; ++i) {
1162 int cluster;
1163 if (symbols[i] == kInvalidHistogramSymbol) continue;
1164 cluster = cluster_mappings[symbols[i]];
1165 assert(symbols[i] < num_clusters);
1166 if (cluster > 0 && cluster_mappings_tmp[cluster] == 0) {
1167 ++cluster_max;
1168 cluster_mappings_tmp[cluster] = cluster_max;
1169 }
1170 symbols[i] = cluster_mappings_tmp[cluster];
1171 }
1172
1173 // Make sure all cluster values are used.
1174 cluster_max = 0;
1175 for (i = 0; i < (uint32_t)set->max_size; ++i) {
1176 if (symbols[i] == kInvalidHistogramSymbol) continue;
1177 if (symbols[i] <= cluster_max) continue;
1178 ++cluster_max;
1179 assert(symbols[i] == cluster_max);
1180 }
1181 }
1182
RemoveEmptyHistograms(VP8LHistogramSet * const image_histo)1183 static void RemoveEmptyHistograms(VP8LHistogramSet* const image_histo) {
1184 uint32_t size;
1185 int i;
1186 for (i = 0, size = 0; i < image_histo->size; ++i) {
1187 if (image_histo->histograms[i] == NULL) continue;
1188 image_histo->histograms[size++] = image_histo->histograms[i];
1189 }
1190 image_histo->size = size;
1191 }
1192
VP8LGetHistoImageSymbols(int xsize,int ysize,const VP8LBackwardRefs * const refs,int quality,int low_effort,int histogram_bits,int cache_bits,VP8LHistogramSet * const image_histo,VP8LHistogram * const tmp_histo,uint32_t * const histogram_symbols,const WebPPicture * const pic,int percent_range,int * const percent)1193 int VP8LGetHistoImageSymbols(int xsize, int ysize,
1194 const VP8LBackwardRefs* const refs, int quality,
1195 int low_effort, int histogram_bits, int cache_bits,
1196 VP8LHistogramSet* const image_histo,
1197 VP8LHistogram* const tmp_histo,
1198 uint32_t* const histogram_symbols,
1199 const WebPPicture* const pic, int percent_range,
1200 int* const percent) {
1201 const int histo_xsize =
1202 histogram_bits ? VP8LSubSampleSize(xsize, histogram_bits) : 1;
1203 const int histo_ysize =
1204 histogram_bits ? VP8LSubSampleSize(ysize, histogram_bits) : 1;
1205 const int image_histo_raw_size = histo_xsize * histo_ysize;
1206 VP8LHistogramSet* const orig_histo =
1207 VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
1208 // Don't attempt linear bin-partition heuristic for
1209 // histograms of small sizes (as bin_map will be very sparse) and
1210 // maximum quality q==100 (to preserve the compression gains at that level).
1211 const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
1212 int entropy_combine;
1213 uint16_t* const map_tmp =
1214 (uint16_t*)WebPSafeMalloc(2 * image_histo_raw_size, sizeof(*map_tmp));
1215 uint16_t* const cluster_mappings = map_tmp + image_histo_raw_size;
1216 int num_used = image_histo_raw_size;
1217 if (orig_histo == NULL || map_tmp == NULL) {
1218 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1219 goto Error;
1220 }
1221
1222 // Construct the histograms from backward references.
1223 HistogramBuild(xsize, histogram_bits, refs, orig_histo);
1224 // Copies the histograms and computes its bit_cost.
1225 // histogram_symbols is optimized
1226 HistogramCopyAndAnalyze(orig_histo, image_histo, &num_used,
1227 histogram_symbols);
1228
1229 entropy_combine =
1230 (num_used > entropy_combine_num_bins * 2) && (quality < 100);
1231
1232 if (entropy_combine) {
1233 uint16_t* const bin_map = map_tmp;
1234 const int32_t combine_cost_factor =
1235 GetCombineCostFactor(image_histo_raw_size, quality);
1236 const uint32_t num_clusters = num_used;
1237
1238 HistogramAnalyzeEntropyBin(image_histo, bin_map, low_effort);
1239 // Collapse histograms with similar entropy.
1240 HistogramCombineEntropyBin(
1241 image_histo, &num_used, histogram_symbols, cluster_mappings, tmp_histo,
1242 bin_map, entropy_combine_num_bins, combine_cost_factor, low_effort);
1243 OptimizeHistogramSymbols(image_histo, cluster_mappings, num_clusters,
1244 map_tmp, histogram_symbols);
1245 }
1246
1247 // Don't combine the histograms using stochastic and greedy heuristics for
1248 // low-effort compression mode.
1249 if (!low_effort || !entropy_combine) {
1250 // cubic ramp between 1 and MAX_HISTO_GREEDY:
1251 const int threshold_size =
1252 (int)(1 + DivRound(quality * quality * quality * (MAX_HISTO_GREEDY - 1),
1253 100 * 100 * 100));
1254 int do_greedy;
1255 if (!HistogramCombineStochastic(image_histo, &num_used, threshold_size,
1256 &do_greedy)) {
1257 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1258 goto Error;
1259 }
1260 if (do_greedy) {
1261 RemoveEmptyHistograms(image_histo);
1262 if (!HistogramCombineGreedy(image_histo, &num_used)) {
1263 WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1264 goto Error;
1265 }
1266 }
1267 }
1268
1269 // Find the optimal map from original histograms to the final ones.
1270 RemoveEmptyHistograms(image_histo);
1271 HistogramRemap(orig_histo, image_histo, histogram_symbols);
1272
1273 if (!WebPReportProgress(pic, *percent + percent_range, percent)) {
1274 goto Error;
1275 }
1276
1277 Error:
1278 VP8LFreeHistogramSet(orig_histo);
1279 WebPSafeFree(map_tmp);
1280 return (pic->error_code == VP8_ENC_OK);
1281 }
1282