1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Image transform methods for lossless encoder.
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 // Jyrki Alakuijala (jyrki@google.com)
14 // Urvang Joshi (urvang@google.com)
15 // Vincent Rabaud (vrabaud@google.com)
16
17 #include <assert.h>
18 #include <stdlib.h>
19 #include <string.h>
20
21 #include "src/dsp/lossless.h"
22 #include "src/dsp/lossless_common.h"
23 #include "src/enc/vp8i_enc.h"
24 #include "src/enc/vp8li_enc.h"
25 #include "src/utils/utils.h"
26 #include "src/webp/encode.h"
27 #include "src/webp/format_constants.h"
28 #include "src/webp/types.h"
29
30 #define HISTO_SIZE (4 * 256)
31 static const int64_t kSpatialPredictorBias = 15ll << LOG_2_PRECISION_BITS;
32 static const int kPredLowEffort = 11;
33 static const uint32_t kMaskAlpha = 0xff000000;
34 static const int kNumPredModes = 14;
35
36 // Mostly used to reduce code size + readability
GetMin(int a,int b)37 static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
GetMax(int a,int b)38 static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
39
40 //------------------------------------------------------------------------------
41 // Methods to calculate Entropy (Shannon).
42
43 // Compute a bias for prediction entropy using a global heuristic to favor
44 // values closer to 0. Hence the final negative sign.
45 // 'exp_val' has a scaling factor of 1/100.
PredictionCostBias(const uint32_t counts[256],uint64_t weight_0,uint64_t exp_val)46 static int64_t PredictionCostBias(const uint32_t counts[256], uint64_t weight_0,
47 uint64_t exp_val) {
48 const int significant_symbols = 256 >> 4;
49 const uint64_t exp_decay_factor = 6; // has a scaling factor of 1/10
50 uint64_t bits = (weight_0 * counts[0]) << LOG_2_PRECISION_BITS;
51 int i;
52 exp_val <<= LOG_2_PRECISION_BITS;
53 for (i = 1; i < significant_symbols; ++i) {
54 bits += DivRound(exp_val * (counts[i] + counts[256 - i]), 100);
55 exp_val = DivRound(exp_decay_factor * exp_val, 10);
56 }
57 return -DivRound((int64_t)bits, 10);
58 }
59
PredictionCostSpatialHistogram(const uint32_t accumulated[HISTO_SIZE],const uint32_t tile[HISTO_SIZE],int mode,int left_mode,int above_mode)60 static int64_t PredictionCostSpatialHistogram(
61 const uint32_t accumulated[HISTO_SIZE], const uint32_t tile[HISTO_SIZE],
62 int mode, int left_mode, int above_mode) {
63 int i;
64 int64_t retval = 0;
65 for (i = 0; i < 4; ++i) {
66 const uint64_t kExpValue = 94;
67 retval += PredictionCostBias(&tile[i * 256], 1, kExpValue);
68 // Compute the new cost if 'tile' is added to 'accumulate' but also add the
69 // cost of the current histogram to guide the spatial predictor selection.
70 // Basically, favor low entropy, locally and globally.
71 retval += (int64_t)VP8LCombinedShannonEntropy(&tile[i * 256],
72 &accumulated[i * 256]);
73 }
74 // Favor keeping the areas locally similar.
75 if (mode == left_mode) retval -= kSpatialPredictorBias;
76 if (mode == above_mode) retval -= kSpatialPredictorBias;
77 return retval;
78 }
79
UpdateHisto(uint32_t histo_argb[HISTO_SIZE],uint32_t argb)80 static WEBP_INLINE void UpdateHisto(uint32_t histo_argb[HISTO_SIZE],
81 uint32_t argb) {
82 ++histo_argb[0 * 256 + (argb >> 24)];
83 ++histo_argb[1 * 256 + ((argb >> 16) & 0xff)];
84 ++histo_argb[2 * 256 + ((argb >> 8) & 0xff)];
85 ++histo_argb[3 * 256 + (argb & 0xff)];
86 }
87
88 //------------------------------------------------------------------------------
89 // Spatial transform functions.
90
PredictBatch(int mode,int x_start,int y,int num_pixels,const uint32_t * current,const uint32_t * upper,uint32_t * out)91 static WEBP_INLINE void PredictBatch(int mode, int x_start, int y,
92 int num_pixels, const uint32_t* current,
93 const uint32_t* upper, uint32_t* out) {
94 if (x_start == 0) {
95 if (y == 0) {
96 // ARGB_BLACK.
97 VP8LPredictorsSub[0](current, NULL, 1, out);
98 } else {
99 // Top one.
100 VP8LPredictorsSub[2](current, upper, 1, out);
101 }
102 ++x_start;
103 ++out;
104 --num_pixels;
105 }
106 if (y == 0) {
107 // Left one.
108 VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out);
109 } else {
110 VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels,
111 out);
112 }
113 }
114
115 #if (WEBP_NEAR_LOSSLESS == 1)
MaxDiffBetweenPixels(uint32_t p1,uint32_t p2)116 static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
117 const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
118 const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
119 const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
120 const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
121 return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
122 }
123
MaxDiffAroundPixel(uint32_t current,uint32_t up,uint32_t down,uint32_t left,uint32_t right)124 static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
125 uint32_t left, uint32_t right) {
126 const int diff_up = MaxDiffBetweenPixels(current, up);
127 const int diff_down = MaxDiffBetweenPixels(current, down);
128 const int diff_left = MaxDiffBetweenPixels(current, left);
129 const int diff_right = MaxDiffBetweenPixels(current, right);
130 return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
131 }
132
AddGreenToBlueAndRed(uint32_t argb)133 static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
134 const uint32_t green = (argb >> 8) & 0xff;
135 uint32_t red_blue = argb & 0x00ff00ffu;
136 red_blue += (green << 16) | green;
137 red_blue &= 0x00ff00ffu;
138 return (argb & 0xff00ff00u) | red_blue;
139 }
140
MaxDiffsForRow(int width,int stride,const uint32_t * const argb,uint8_t * const max_diffs,int used_subtract_green)141 static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
142 uint8_t* const max_diffs, int used_subtract_green) {
143 uint32_t current, up, down, left, right;
144 int x;
145 if (width <= 2) return;
146 current = argb[0];
147 right = argb[1];
148 if (used_subtract_green) {
149 current = AddGreenToBlueAndRed(current);
150 right = AddGreenToBlueAndRed(right);
151 }
152 // max_diffs[0] and max_diffs[width - 1] are never used.
153 for (x = 1; x < width - 1; ++x) {
154 up = argb[-stride + x];
155 down = argb[stride + x];
156 left = current;
157 current = right;
158 right = argb[x + 1];
159 if (used_subtract_green) {
160 up = AddGreenToBlueAndRed(up);
161 down = AddGreenToBlueAndRed(down);
162 right = AddGreenToBlueAndRed(right);
163 }
164 max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
165 }
166 }
167
168 // Quantize the difference between the actual component value and its prediction
169 // to a multiple of quantization, working modulo 256, taking care not to cross
170 // a boundary (inclusive upper limit).
NearLosslessComponent(uint8_t value,uint8_t predict,uint8_t boundary,int quantization)171 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
172 uint8_t boundary, int quantization) {
173 const int residual = (value - predict) & 0xff;
174 const int boundary_residual = (boundary - predict) & 0xff;
175 const int lower = residual & ~(quantization - 1);
176 const int upper = lower + quantization;
177 // Resolve ties towards a value closer to the prediction (i.e. towards lower
178 // if value comes after prediction and towards upper otherwise).
179 const int bias = ((boundary - value) & 0xff) < boundary_residual;
180 if (residual - lower < upper - residual + bias) {
181 // lower is closer to residual than upper.
182 if (residual > boundary_residual && lower <= boundary_residual) {
183 // Halve quantization step to avoid crossing boundary. This midpoint is
184 // on the same side of boundary as residual because midpoint >= residual
185 // (since lower is closer than upper) and residual is above the boundary.
186 return lower + (quantization >> 1);
187 }
188 return lower;
189 } else {
190 // upper is closer to residual than lower.
191 if (residual <= boundary_residual && upper > boundary_residual) {
192 // Halve quantization step to avoid crossing boundary. This midpoint is
193 // on the same side of boundary as residual because midpoint <= residual
194 // (since upper is closer than lower) and residual is below the boundary.
195 return lower + (quantization >> 1);
196 }
197 return upper & 0xff;
198 }
199 }
200
NearLosslessDiff(uint8_t a,uint8_t b)201 static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) {
202 return (uint8_t)((((int)(a) - (int)(b))) & 0xff);
203 }
204
205 // Quantize every component of the difference between the actual pixel value and
206 // its prediction to a multiple of a quantization (a power of 2, not larger than
207 // max_quantization which is a power of 2, smaller than max_diff). Take care if
208 // value and predict have undergone subtract green, which means that red and
209 // blue are represented as offsets from green.
NearLossless(uint32_t value,uint32_t predict,int max_quantization,int max_diff,int used_subtract_green)210 static uint32_t NearLossless(uint32_t value, uint32_t predict,
211 int max_quantization, int max_diff,
212 int used_subtract_green) {
213 int quantization;
214 uint8_t new_green = 0;
215 uint8_t green_diff = 0;
216 uint8_t a, r, g, b;
217 if (max_diff <= 2) {
218 return VP8LSubPixels(value, predict);
219 }
220 quantization = max_quantization;
221 while (quantization >= max_diff) {
222 quantization >>= 1;
223 }
224 if ((value >> 24) == 0 || (value >> 24) == 0xff) {
225 // Preserve transparency of fully transparent or fully opaque pixels.
226 a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff);
227 } else {
228 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
229 }
230 g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
231 quantization);
232 if (used_subtract_green) {
233 // The green offset will be added to red and blue components during decoding
234 // to obtain the actual red and blue values.
235 new_green = ((predict >> 8) + g) & 0xff;
236 // The amount by which green has been adjusted during quantization. It is
237 // subtracted from red and blue for compensation, to avoid accumulating two
238 // quantization errors in them.
239 green_diff = NearLosslessDiff(new_green, (value >> 8) & 0xff);
240 }
241 r = NearLosslessComponent(NearLosslessDiff((value >> 16) & 0xff, green_diff),
242 (predict >> 16) & 0xff, 0xff - new_green,
243 quantization);
244 b = NearLosslessComponent(NearLosslessDiff(value & 0xff, green_diff),
245 predict & 0xff, 0xff - new_green, quantization);
246 return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
247 }
248 #endif // (WEBP_NEAR_LOSSLESS == 1)
249
250 // Stores the difference between the pixel and its prediction in "out".
251 // In case of a lossy encoding, updates the source image to avoid propagating
252 // the deviation further to pixels which depend on the current pixel for their
253 // predictions.
GetResidual(int width,int height,uint32_t * const upper_row,uint32_t * const current_row,const uint8_t * const max_diffs,int mode,int x_start,int x_end,int y,int max_quantization,int exact,int used_subtract_green,uint32_t * const out)254 static WEBP_INLINE void GetResidual(
255 int width, int height, uint32_t* const upper_row,
256 uint32_t* const current_row, const uint8_t* const max_diffs, int mode,
257 int x_start, int x_end, int y, int max_quantization, int exact,
258 int used_subtract_green, uint32_t* const out) {
259 if (exact) {
260 PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row,
261 out);
262 } else {
263 const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
264 int x;
265 for (x = x_start; x < x_end; ++x) {
266 uint32_t predict;
267 uint32_t residual;
268 if (y == 0) {
269 predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
270 } else if (x == 0) {
271 predict = upper_row[x]; // Top.
272 } else {
273 predict = pred_func(¤t_row[x - 1], upper_row + x);
274 }
275 #if (WEBP_NEAR_LOSSLESS == 1)
276 if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
277 x == 0 || x == width - 1) {
278 residual = VP8LSubPixels(current_row[x], predict);
279 } else {
280 residual = NearLossless(current_row[x], predict, max_quantization,
281 max_diffs[x], used_subtract_green);
282 // Update the source image.
283 current_row[x] = VP8LAddPixels(predict, residual);
284 // x is never 0 here so we do not need to update upper_row like below.
285 }
286 #else
287 (void)max_diffs;
288 (void)height;
289 (void)max_quantization;
290 (void)used_subtract_green;
291 residual = VP8LSubPixels(current_row[x], predict);
292 #endif
293 if ((current_row[x] & kMaskAlpha) == 0) {
294 // If alpha is 0, cleanup RGB. We can choose the RGB values of the
295 // residual for best compression. The prediction of alpha itself can be
296 // non-zero and must be kept though. We choose RGB of the residual to be
297 // 0.
298 residual &= kMaskAlpha;
299 // Update the source image.
300 current_row[x] = predict & ~kMaskAlpha;
301 // The prediction for the rightmost pixel in a row uses the leftmost
302 // pixel
303 // in that row as its top-right context pixel. Hence if we change the
304 // leftmost pixel of current_row, the corresponding change must be
305 // applied
306 // to upper_row as well where top-right context is being read from.
307 if (x == 0 && y != 0) upper_row[width] = current_row[0];
308 }
309 out[x - x_start] = residual;
310 }
311 }
312 }
313
314 // Accessors to residual histograms.
GetHistoArgb(uint32_t * const all_histos,int subsampling_index,int mode)315 static WEBP_INLINE uint32_t* GetHistoArgb(uint32_t* const all_histos,
316 int subsampling_index, int mode) {
317 return &all_histos[(subsampling_index * kNumPredModes + mode) * HISTO_SIZE];
318 }
319
GetHistoArgbConst(const uint32_t * const all_histos,int subsampling_index,int mode)320 static WEBP_INLINE const uint32_t* GetHistoArgbConst(
321 const uint32_t* const all_histos, int subsampling_index, int mode) {
322 return &all_histos[subsampling_index * kNumPredModes * HISTO_SIZE +
323 mode * HISTO_SIZE];
324 }
325
326 // Accessors to accumulated residual histogram.
GetAccumulatedHisto(uint32_t * all_accumulated,int subsampling_index)327 static WEBP_INLINE uint32_t* GetAccumulatedHisto(uint32_t* all_accumulated,
328 int subsampling_index) {
329 return &all_accumulated[subsampling_index * HISTO_SIZE];
330 }
331
332 // Find and store the best predictor for a tile at subsampling
333 // 'subsampling_index'.
GetBestPredictorForTile(const uint32_t * const all_argb,int subsampling_index,int tile_x,int tile_y,int tiles_per_row,uint32_t * all_accumulated_argb,uint32_t ** const all_modes,uint32_t * const all_pred_histos)334 static void GetBestPredictorForTile(const uint32_t* const all_argb,
335 int subsampling_index, int tile_x,
336 int tile_y, int tiles_per_row,
337 uint32_t* all_accumulated_argb,
338 uint32_t** const all_modes,
339 uint32_t* const all_pred_histos) {
340 uint32_t* const accumulated_argb =
341 GetAccumulatedHisto(all_accumulated_argb, subsampling_index);
342 uint32_t* const modes = all_modes[subsampling_index];
343 uint32_t* const pred_histos =
344 &all_pred_histos[subsampling_index * kNumPredModes];
345 // Prediction modes of the left and above neighbor tiles.
346 const int left_mode =
347 (tile_x > 0) ? (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff
348 : 0xff;
349 const int above_mode =
350 (tile_y > 0) ? (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff
351 : 0xff;
352 int mode;
353 int64_t best_diff = WEBP_INT64_MAX;
354 uint32_t best_mode = 0;
355 const uint32_t* best_histo =
356 GetHistoArgbConst(all_argb, /*subsampling_index=*/0, best_mode);
357 for (mode = 0; mode < kNumPredModes; ++mode) {
358 const uint32_t* const histo_argb =
359 GetHistoArgbConst(all_argb, subsampling_index, mode);
360 const int64_t cur_diff = PredictionCostSpatialHistogram(
361 accumulated_argb, histo_argb, mode, left_mode, above_mode);
362
363 if (cur_diff < best_diff) {
364 best_histo = histo_argb;
365 best_diff = cur_diff;
366 best_mode = mode;
367 }
368 }
369 // Update the accumulated histogram.
370 VP8LAddVectorEq(best_histo, accumulated_argb, HISTO_SIZE);
371 modes[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (best_mode << 8);
372 ++pred_histos[best_mode];
373 }
374
375 // Computes the residuals for the different predictors.
376 // If max_quantization > 1, assumes that near lossless processing will be
377 // applied, quantizing residuals to multiples of quantization levels up to
378 // max_quantization (the actual quantization level depends on smoothness near
379 // the given pixel).
ComputeResidualsForTile(int width,int height,int tile_x,int tile_y,int min_bits,uint32_t update_up_to_index,uint32_t * const all_argb,uint32_t * const argb_scratch,const uint32_t * const argb,int max_quantization,int exact,int used_subtract_green)380 static void ComputeResidualsForTile(
381 int width, int height, int tile_x, int tile_y, int min_bits,
382 uint32_t update_up_to_index, uint32_t* const all_argb,
383 uint32_t* const argb_scratch, const uint32_t* const argb,
384 int max_quantization, int exact, int used_subtract_green) {
385 const int start_x = tile_x << min_bits;
386 const int start_y = tile_y << min_bits;
387 const int tile_size = 1 << min_bits;
388 const int max_y = GetMin(tile_size, height - start_y);
389 const int max_x = GetMin(tile_size, width - start_x);
390 // Whether there exist columns just outside the tile.
391 const int have_left = (start_x > 0);
392 // Position and size of the strip covering the tile and adjacent columns if
393 // they exist.
394 const int context_start_x = start_x - have_left;
395 #if (WEBP_NEAR_LOSSLESS == 1)
396 const int context_width = max_x + have_left + (max_x < width - start_x);
397 #endif
398 // The width of upper_row and current_row is one pixel larger than image width
399 // to allow the top right pixel to point to the leftmost pixel of the next row
400 // when at the right edge.
401 uint32_t* upper_row = argb_scratch;
402 uint32_t* current_row = upper_row + width + 1;
403 uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
404 int mode;
405 // Need pointers to be able to swap arrays.
406 uint32_t residuals[1 << MAX_TRANSFORM_BITS];
407 assert(max_x <= (1 << MAX_TRANSFORM_BITS));
408 for (mode = 0; mode < kNumPredModes; ++mode) {
409 int relative_y;
410 uint32_t* const histo_argb =
411 GetHistoArgb(all_argb, /*subsampling_index=*/0, mode);
412 if (start_y > 0) {
413 // Read the row above the tile which will become the first upper_row.
414 // Include a pixel to the left if it exists; include a pixel to the right
415 // in all cases (wrapping to the leftmost pixel of the next row if it does
416 // not exist).
417 memcpy(current_row + context_start_x,
418 argb + (start_y - 1) * width + context_start_x,
419 sizeof(*argb) * (max_x + have_left + 1));
420 }
421 for (relative_y = 0; relative_y < max_y; ++relative_y) {
422 const int y = start_y + relative_y;
423 int relative_x;
424 uint32_t* tmp = upper_row;
425 upper_row = current_row;
426 current_row = tmp;
427 // Read current_row. Include a pixel to the left if it exists; include a
428 // pixel to the right in all cases except at the bottom right corner of
429 // the image (wrapping to the leftmost pixel of the next row if it does
430 // not exist in the current row).
431 memcpy(current_row + context_start_x,
432 argb + y * width + context_start_x,
433 sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
434 #if (WEBP_NEAR_LOSSLESS == 1)
435 if (max_quantization > 1 && y >= 1 && y + 1 < height) {
436 MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
437 max_diffs + context_start_x, used_subtract_green);
438 }
439 #endif
440
441 GetResidual(width, height, upper_row, current_row, max_diffs, mode,
442 start_x, start_x + max_x, y, max_quantization, exact,
443 used_subtract_green, residuals);
444 for (relative_x = 0; relative_x < max_x; ++relative_x) {
445 UpdateHisto(histo_argb, residuals[relative_x]);
446 }
447 if (update_up_to_index > 0) {
448 uint32_t subsampling_index;
449 for (subsampling_index = 1; subsampling_index <= update_up_to_index;
450 ++subsampling_index) {
451 uint32_t* const super_histo =
452 GetHistoArgb(all_argb, subsampling_index, mode);
453 for (relative_x = 0; relative_x < max_x; ++relative_x) {
454 UpdateHisto(super_histo, residuals[relative_x]);
455 }
456 }
457 }
458 }
459 }
460 }
461
462 // Converts pixels of the image to residuals with respect to predictions.
463 // If max_quantization > 1, applies near lossless processing, quantizing
464 // residuals to multiples of quantization levels up to max_quantization
465 // (the actual quantization level depends on smoothness near the given pixel).
CopyImageWithPrediction(int width,int height,int bits,const uint32_t * const modes,uint32_t * const argb_scratch,uint32_t * const argb,int low_effort,int max_quantization,int exact,int used_subtract_green)466 static void CopyImageWithPrediction(int width, int height, int bits,
467 const uint32_t* const modes,
468 uint32_t* const argb_scratch,
469 uint32_t* const argb, int low_effort,
470 int max_quantization, int exact,
471 int used_subtract_green) {
472 const int tiles_per_row = VP8LSubSampleSize(width, bits);
473 // The width of upper_row and current_row is one pixel larger than image width
474 // to allow the top right pixel to point to the leftmost pixel of the next row
475 // when at the right edge.
476 uint32_t* upper_row = argb_scratch;
477 uint32_t* current_row = upper_row + width + 1;
478 uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
479 #if (WEBP_NEAR_LOSSLESS == 1)
480 uint8_t* lower_max_diffs = current_max_diffs + width;
481 #endif
482 int y;
483
484 for (y = 0; y < height; ++y) {
485 int x;
486 uint32_t* const tmp32 = upper_row;
487 upper_row = current_row;
488 current_row = tmp32;
489 memcpy(current_row, argb + y * width,
490 sizeof(*argb) * (width + (y + 1 < height)));
491
492 if (low_effort) {
493 PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row,
494 argb + y * width);
495 } else {
496 #if (WEBP_NEAR_LOSSLESS == 1)
497 if (max_quantization > 1) {
498 // Compute max_diffs for the lower row now, because that needs the
499 // contents of argb for the current row, which we will overwrite with
500 // residuals before proceeding with the next row.
501 uint8_t* const tmp8 = current_max_diffs;
502 current_max_diffs = lower_max_diffs;
503 lower_max_diffs = tmp8;
504 if (y + 2 < height) {
505 MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
506 used_subtract_green);
507 }
508 }
509 #endif
510 for (x = 0; x < width;) {
511 const int mode =
512 (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
513 int x_end = x + (1 << bits);
514 if (x_end > width) x_end = width;
515 GetResidual(width, height, upper_row, current_row, current_max_diffs,
516 mode, x, x_end, y, max_quantization, exact,
517 used_subtract_green, argb + y * width + x);
518 x = x_end;
519 }
520 }
521 }
522 }
523
524 // Checks whether 'image' can be subsampled by finding the biggest power of 2
525 // squares (defined by 'best_bits') of uniform value it is made out of.
VP8LOptimizeSampling(uint32_t * const image,int full_width,int full_height,int bits,int max_bits,int * best_bits_out)526 void VP8LOptimizeSampling(uint32_t* const image, int full_width,
527 int full_height, int bits, int max_bits,
528 int* best_bits_out) {
529 int width = VP8LSubSampleSize(full_width, bits);
530 int height = VP8LSubSampleSize(full_height, bits);
531 int old_width, x, y, square_size;
532 int best_bits = bits;
533 *best_bits_out = bits;
534 // Check rows first.
535 while (best_bits < max_bits) {
536 const int new_square_size = 1 << (best_bits + 1 - bits);
537 int is_good = 1;
538 square_size = 1 << (best_bits - bits);
539 for (y = 0; y + square_size < height; y += new_square_size) {
540 // Check the first lines of consecutive line groups.
541 if (memcmp(&image[y * width], &image[(y + square_size) * width],
542 width * sizeof(*image)) != 0) {
543 is_good = 0;
544 break;
545 }
546 }
547 if (is_good) {
548 ++best_bits;
549 } else {
550 break;
551 }
552 }
553 if (best_bits == bits) return;
554
555 // Check columns.
556 while (best_bits > bits) {
557 int is_good = 1;
558 square_size = 1 << (best_bits - bits);
559 for (y = 0; is_good && y < height; ++y) {
560 for (x = 0; is_good && x < width; x += square_size) {
561 int i;
562 for (i = x + 1; i < GetMin(x + square_size, width); ++i) {
563 if (image[y * width + i] != image[y * width + x]) {
564 is_good = 0;
565 break;
566 }
567 }
568 }
569 }
570 if (is_good) {
571 break;
572 }
573 --best_bits;
574 }
575 if (best_bits == bits) return;
576
577 // Subsample the image.
578 old_width = width;
579 square_size = 1 << (best_bits - bits);
580 width = VP8LSubSampleSize(full_width, best_bits);
581 height = VP8LSubSampleSize(full_height, best_bits);
582 for (y = 0; y < height; ++y) {
583 for (x = 0; x < width; ++x) {
584 image[y * width + x] = image[square_size * (y * old_width + x)];
585 }
586 }
587 *best_bits_out = best_bits;
588 }
589
590 // Computes the best predictor image.
591 // Finds the best predictors per tile. Once done, finds the best predictor image
592 // sampling.
593 // best_bits is set to 0 in case of error.
594 // The following requires some glossary:
595 // - a tile is a square of side 2^min_bits pixels.
596 // - a super-tile of a tile is a square of side 2^bits pixels with bits in
597 // [min_bits+1, max_bits].
598 // - the max-tile of a tile is the square of 2^max_bits pixels containing it.
599 // If this max-tile crosses the border of an image, it is cropped.
600 // - tile, super-tiles and max_tile are aligned on powers of 2 in the original
601 // image.
602 // - coordinates for tile, super-tile, max-tile are respectively named
603 // tile_x, super_tile_x, max_tile_x at their bit scale.
604 // - in the max-tile, a tile has local coordinates (local_tile_x, local_tile_y).
605 // The tiles are processed in the following zigzag order to complete the
606 // super-tiles as soon as possible:
607 // 1 2| 5 6
608 // 3 4| 7 8
609 // --------------
610 // 9 10| 13 14
611 // 11 12| 15 16
612 // When computing the residuals for a tile, the histogram of the above
613 // super-tile is updated. If this super-tile is finished, its histogram is used
614 // to update the histogram of the next super-tile and so on up to the max-tile.
GetBestPredictorsAndSubSampling(int width,int height,const int min_bits,const int max_bits,uint32_t * const argb_scratch,const uint32_t * const argb,int max_quantization,int exact,int used_subtract_green,const WebPPicture * const pic,int percent_range,int * const percent,uint32_t ** const all_modes,int * best_bits,uint32_t ** best_mode)615 static void GetBestPredictorsAndSubSampling(
616 int width, int height, const int min_bits, const int max_bits,
617 uint32_t* const argb_scratch, const uint32_t* const argb,
618 int max_quantization, int exact, int used_subtract_green,
619 const WebPPicture* const pic, int percent_range, int* const percent,
620 uint32_t** const all_modes, int* best_bits, uint32_t** best_mode) {
621 const uint32_t tiles_per_row = VP8LSubSampleSize(width, min_bits);
622 const uint32_t tiles_per_col = VP8LSubSampleSize(height, min_bits);
623 int64_t best_cost;
624 uint32_t subsampling_index;
625 const uint32_t max_subsampling_index = max_bits - min_bits;
626 // Compute the needed memory size for residual histograms, accumulated
627 // residual histograms and predictor histograms.
628 const int num_argb = (max_subsampling_index + 1) * kNumPredModes * HISTO_SIZE;
629 const int num_accumulated_rgb = (max_subsampling_index + 1) * HISTO_SIZE;
630 const int num_predictors = (max_subsampling_index + 1) * kNumPredModes;
631 uint32_t* const raw_data = (uint32_t*)WebPSafeCalloc(
632 num_argb + num_accumulated_rgb + num_predictors, sizeof(uint32_t));
633 uint32_t* const all_argb = raw_data;
634 uint32_t* const all_accumulated_argb = all_argb + num_argb;
635 uint32_t* const all_pred_histos = all_accumulated_argb + num_accumulated_rgb;
636 const int max_tile_size = 1 << max_subsampling_index; // in tile size
637 int percent_start = *percent;
638 // When using the residuals of a tile for its super-tiles, you can either:
639 // - use each residual to update the histogram of the super-tile, with a cost
640 // of 4 * (1<<n)^2 increment operations (4 for the number of channels, and
641 // (1<<n)^2 for the number of pixels in the tile)
642 // - use the histogram of the tile to update the histogram of the super-tile,
643 // with a cost of HISTO_SIZE (1024)
644 // The first method is therefore faster until n==4. 'update_up_to_index'
645 // defines the maximum subsampling_index for which the residuals should be
646 // individually added to the super-tile histogram.
647 const uint32_t update_up_to_index =
648 GetMax(GetMin(4, max_bits), min_bits) - min_bits;
649 // Coordinates in the max-tile in tile units.
650 uint32_t local_tile_x = 0, local_tile_y = 0;
651 uint32_t max_tile_x = 0, max_tile_y = 0;
652 uint32_t tile_x = 0, tile_y = 0;
653
654 *best_bits = 0;
655 *best_mode = NULL;
656 if (raw_data == NULL) return;
657
658 while (tile_y < tiles_per_col) {
659 ComputeResidualsForTile(width, height, tile_x, tile_y, min_bits,
660 update_up_to_index, all_argb, argb_scratch, argb,
661 max_quantization, exact, used_subtract_green);
662
663 // Update all the super-tiles that are complete.
664 subsampling_index = 0;
665 while (1) {
666 const uint32_t super_tile_x = tile_x >> subsampling_index;
667 const uint32_t super_tile_y = tile_y >> subsampling_index;
668 const uint32_t super_tiles_per_row =
669 VP8LSubSampleSize(width, min_bits + subsampling_index);
670 GetBestPredictorForTile(all_argb, subsampling_index, super_tile_x,
671 super_tile_y, super_tiles_per_row,
672 all_accumulated_argb, all_modes, all_pred_histos);
673 if (subsampling_index == max_subsampling_index) break;
674
675 // Update the following super-tile histogram if it has not been updated
676 // yet.
677 ++subsampling_index;
678 if (subsampling_index > update_up_to_index &&
679 subsampling_index <= max_subsampling_index) {
680 VP8LAddVectorEq(
681 GetHistoArgbConst(all_argb, subsampling_index - 1, /*mode=*/0),
682 GetHistoArgb(all_argb, subsampling_index, /*mode=*/0),
683 HISTO_SIZE * kNumPredModes);
684 }
685 // Check whether the super-tile is not complete (if the smallest tile
686 // is not at the end of a line/column or at the beginning of a super-tile
687 // of size (1 << subsampling_index)).
688 if (!((tile_x == (tiles_per_row - 1) ||
689 (local_tile_x + 1) % (1 << subsampling_index) == 0) &&
690 (tile_y == (tiles_per_col - 1) ||
691 (local_tile_y + 1) % (1 << subsampling_index) == 0))) {
692 --subsampling_index;
693 // subsampling_index now is the index of the last finished super-tile.
694 break;
695 }
696 }
697 // Reset all the histograms belonging to finished tiles.
698 memset(all_argb, 0,
699 HISTO_SIZE * kNumPredModes * (subsampling_index + 1) *
700 sizeof(*all_argb));
701
702 if (subsampling_index == max_subsampling_index) {
703 // If a new max-tile is started.
704 if (tile_x == (tiles_per_row - 1)) {
705 max_tile_x = 0;
706 ++max_tile_y;
707 } else {
708 ++max_tile_x;
709 }
710 local_tile_x = 0;
711 local_tile_y = 0;
712 } else {
713 // Proceed with the Z traversal.
714 uint32_t coord_x = local_tile_x >> subsampling_index;
715 uint32_t coord_y = local_tile_y >> subsampling_index;
716 if (tile_x == (tiles_per_row - 1) && coord_x % 2 == 0) {
717 ++coord_y;
718 } else {
719 if (coord_x % 2 == 0) {
720 ++coord_x;
721 } else {
722 // Z traversal.
723 ++coord_y;
724 --coord_x;
725 }
726 }
727 local_tile_x = coord_x << subsampling_index;
728 local_tile_y = coord_y << subsampling_index;
729 }
730 tile_x = max_tile_x * max_tile_size + local_tile_x;
731 tile_y = max_tile_y * max_tile_size + local_tile_y;
732
733 if (tile_x == 0 &&
734 !WebPReportProgress(
735 pic, percent_start + percent_range * tile_y / tiles_per_col,
736 percent)) {
737 WebPSafeFree(raw_data);
738 return;
739 }
740 }
741
742 // Figure out the best sampling.
743 best_cost = WEBP_INT64_MAX;
744 for (subsampling_index = 0; subsampling_index <= max_subsampling_index;
745 ++subsampling_index) {
746 int plane;
747 const uint32_t* const accumulated =
748 GetAccumulatedHisto(all_accumulated_argb, subsampling_index);
749 int64_t cost = VP8LShannonEntropy(
750 &all_pred_histos[subsampling_index * kNumPredModes], kNumPredModes);
751 for (plane = 0; plane < 4; ++plane) {
752 cost += VP8LShannonEntropy(&accumulated[plane * 256], 256);
753 }
754 if (cost < best_cost) {
755 best_cost = cost;
756 *best_bits = min_bits + subsampling_index;
757 *best_mode = all_modes[subsampling_index];
758 }
759 }
760
761 WebPSafeFree(raw_data);
762
763 VP8LOptimizeSampling(*best_mode, width, height, *best_bits,
764 MAX_TRANSFORM_BITS, best_bits);
765 }
766
767 // Finds the best predictor for each tile, and converts the image to residuals
768 // with respect to predictions. If near_lossless_quality < 100, applies
769 // near lossless processing, shaving off more bits of residuals for lower
770 // qualities.
VP8LResidualImage(int width,int height,int min_bits,int max_bits,int low_effort,uint32_t * const argb,uint32_t * const argb_scratch,uint32_t * const image,int near_lossless_quality,int exact,int used_subtract_green,const WebPPicture * const pic,int percent_range,int * const percent,int * const best_bits)771 int VP8LResidualImage(int width, int height, int min_bits, int max_bits,
772 int low_effort, uint32_t* const argb,
773 uint32_t* const argb_scratch, uint32_t* const image,
774 int near_lossless_quality, int exact,
775 int used_subtract_green, const WebPPicture* const pic,
776 int percent_range, int* const percent,
777 int* const best_bits) {
778 int percent_start = *percent;
779 const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
780 if (low_effort) {
781 const int tiles_per_row = VP8LSubSampleSize(width, max_bits);
782 const int tiles_per_col = VP8LSubSampleSize(height, max_bits);
783 int i;
784 for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
785 image[i] = ARGB_BLACK | (kPredLowEffort << 8);
786 }
787 *best_bits = max_bits;
788 } else {
789 // Allocate data to try all samplings from min_bits to max_bits.
790 int bits;
791 uint32_t sum_num_pixels = 0u;
792 uint32_t *modes_raw, *best_mode;
793 uint32_t* modes[MAX_TRANSFORM_BITS + 1];
794 uint32_t num_pixels[MAX_TRANSFORM_BITS + 1];
795 for (bits = min_bits; bits <= max_bits; ++bits) {
796 const int tiles_per_row = VP8LSubSampleSize(width, bits);
797 const int tiles_per_col = VP8LSubSampleSize(height, bits);
798 num_pixels[bits] = tiles_per_row * tiles_per_col;
799 sum_num_pixels += num_pixels[bits];
800 }
801 modes_raw = (uint32_t*)WebPSafeMalloc(sum_num_pixels, sizeof(*modes_raw));
802 if (modes_raw == NULL) return 0;
803 // Have modes point to the right global memory modes_raw.
804 modes[min_bits] = modes_raw;
805 for (bits = min_bits + 1; bits <= max_bits; ++bits) {
806 modes[bits] = modes[bits - 1] + num_pixels[bits - 1];
807 }
808 // Find the best sampling.
809 GetBestPredictorsAndSubSampling(
810 width, height, min_bits, max_bits, argb_scratch, argb, max_quantization,
811 exact, used_subtract_green, pic, percent_range, percent,
812 &modes[min_bits], best_bits, &best_mode);
813 if (*best_bits == 0) {
814 WebPSafeFree(modes_raw);
815 return 0;
816 }
817 // Keep the best predictor image.
818 memcpy(image, best_mode,
819 VP8LSubSampleSize(width, *best_bits) *
820 VP8LSubSampleSize(height, *best_bits) * sizeof(*image));
821 WebPSafeFree(modes_raw);
822 }
823
824 CopyImageWithPrediction(width, height, *best_bits, image, argb_scratch, argb,
825 low_effort, max_quantization, exact,
826 used_subtract_green);
827 return WebPReportProgress(pic, percent_start + percent_range, percent);
828 }
829
830 //------------------------------------------------------------------------------
831 // Color transform functions.
832
MultipliersClear(VP8LMultipliers * const m)833 static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
834 m->green_to_red_ = 0;
835 m->green_to_blue_ = 0;
836 m->red_to_blue_ = 0;
837 }
838
ColorCodeToMultipliers(uint32_t color_code,VP8LMultipliers * const m)839 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
840 VP8LMultipliers* const m) {
841 m->green_to_red_ = (color_code >> 0) & 0xff;
842 m->green_to_blue_ = (color_code >> 8) & 0xff;
843 m->red_to_blue_ = (color_code >> 16) & 0xff;
844 }
845
MultipliersToColorCode(const VP8LMultipliers * const m)846 static WEBP_INLINE uint32_t MultipliersToColorCode(
847 const VP8LMultipliers* const m) {
848 return 0xff000000u |
849 ((uint32_t)(m->red_to_blue_) << 16) |
850 ((uint32_t)(m->green_to_blue_) << 8) |
851 m->green_to_red_;
852 }
853
PredictionCostCrossColor(const uint32_t accumulated[256],const uint32_t counts[256])854 static int64_t PredictionCostCrossColor(const uint32_t accumulated[256],
855 const uint32_t counts[256]) {
856 // Favor low entropy, locally and globally.
857 // Favor small absolute values for PredictionCostSpatial
858 static const uint64_t kExpValue = 240;
859 return (int64_t)VP8LCombinedShannonEntropy(counts, accumulated) +
860 PredictionCostBias(counts, 3, kExpValue);
861 }
862
GetPredictionCostCrossColorRed(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int green_to_red,const uint32_t accumulated_red_histo[256])863 static int64_t GetPredictionCostCrossColorRed(
864 const uint32_t* argb, int stride, int tile_width, int tile_height,
865 VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
866 const uint32_t accumulated_red_histo[256]) {
867 uint32_t histo[256] = { 0 };
868 int64_t cur_diff;
869
870 VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
871 green_to_red, histo);
872
873 cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
874 if ((uint8_t)green_to_red == prev_x.green_to_red_) {
875 // favor keeping the areas locally similar
876 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
877 }
878 if ((uint8_t)green_to_red == prev_y.green_to_red_) {
879 // favor keeping the areas locally similar
880 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
881 }
882 if (green_to_red == 0) {
883 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
884 }
885 return cur_diff;
886 }
887
GetBestGreenToRed(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,const uint32_t accumulated_red_histo[256],VP8LMultipliers * const best_tx)888 static void GetBestGreenToRed(const uint32_t* argb, int stride, int tile_width,
889 int tile_height, VP8LMultipliers prev_x,
890 VP8LMultipliers prev_y, int quality,
891 const uint32_t accumulated_red_histo[256],
892 VP8LMultipliers* const best_tx) {
893 const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
894 int green_to_red_best = 0;
895 int iter, offset;
896 int64_t best_diff = GetPredictionCostCrossColorRed(
897 argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_red_best,
898 accumulated_red_histo);
899 for (iter = 0; iter < kMaxIters; ++iter) {
900 // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
901 // one in color computation. Having initial delta here as 1 is sufficient
902 // to explore the range of (-2, 2).
903 const int delta = 32 >> iter;
904 // Try a negative and a positive delta from the best known value.
905 for (offset = -delta; offset <= delta; offset += 2 * delta) {
906 const int green_to_red_cur = offset + green_to_red_best;
907 const int64_t cur_diff = GetPredictionCostCrossColorRed(
908 argb, stride, tile_width, tile_height, prev_x, prev_y,
909 green_to_red_cur, accumulated_red_histo);
910 if (cur_diff < best_diff) {
911 best_diff = cur_diff;
912 green_to_red_best = green_to_red_cur;
913 }
914 }
915 }
916 best_tx->green_to_red_ = (green_to_red_best & 0xff);
917 }
918
GetPredictionCostCrossColorBlue(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int green_to_blue,int red_to_blue,const uint32_t accumulated_blue_histo[256])919 static int64_t GetPredictionCostCrossColorBlue(
920 const uint32_t* argb, int stride, int tile_width, int tile_height,
921 VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_blue,
922 int red_to_blue, const uint32_t accumulated_blue_histo[256]) {
923 uint32_t histo[256] = { 0 };
924 int64_t cur_diff;
925
926 VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
927 green_to_blue, red_to_blue, histo);
928
929 cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
930 if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
931 // favor keeping the areas locally similar
932 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
933 }
934 if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
935 // favor keeping the areas locally similar
936 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
937 }
938 if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
939 // favor keeping the areas locally similar
940 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
941 }
942 if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
943 // favor keeping the areas locally similar
944 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
945 }
946 if (green_to_blue == 0) {
947 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
948 }
949 if (red_to_blue == 0) {
950 cur_diff -= 3ll << LOG_2_PRECISION_BITS;
951 }
952 return cur_diff;
953 }
954
955 #define kGreenRedToBlueNumAxis 8
956 #define kGreenRedToBlueMaxIters 7
GetBestGreenRedToBlue(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,const uint32_t accumulated_blue_histo[256],VP8LMultipliers * const best_tx)957 static void GetBestGreenRedToBlue(const uint32_t* argb, int stride,
958 int tile_width, int tile_height,
959 VP8LMultipliers prev_x,
960 VP8LMultipliers prev_y, int quality,
961 const uint32_t accumulated_blue_histo[256],
962 VP8LMultipliers* const best_tx) {
963 const int8_t offset[kGreenRedToBlueNumAxis][2] =
964 {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
965 const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
966 const int iters =
967 (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
968 int green_to_blue_best = 0;
969 int red_to_blue_best = 0;
970 int iter;
971 // Initial value at origin:
972 int64_t best_diff = GetPredictionCostCrossColorBlue(
973 argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_blue_best,
974 red_to_blue_best, accumulated_blue_histo);
975 for (iter = 0; iter < iters; ++iter) {
976 const int delta = delta_lut[iter];
977 int axis;
978 for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
979 const int green_to_blue_cur =
980 offset[axis][0] * delta + green_to_blue_best;
981 const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
982 const int64_t cur_diff = GetPredictionCostCrossColorBlue(
983 argb, stride, tile_width, tile_height, prev_x, prev_y,
984 green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
985 if (cur_diff < best_diff) {
986 best_diff = cur_diff;
987 green_to_blue_best = green_to_blue_cur;
988 red_to_blue_best = red_to_blue_cur;
989 }
990 if (quality < 25 && iter == 4) {
991 // Only axis aligned diffs for lower quality.
992 break; // next iter.
993 }
994 }
995 if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
996 // Further iterations would not help.
997 break; // out of iter-loop.
998 }
999 }
1000 best_tx->green_to_blue_ = green_to_blue_best & 0xff;
1001 best_tx->red_to_blue_ = red_to_blue_best & 0xff;
1002 }
1003 #undef kGreenRedToBlueMaxIters
1004 #undef kGreenRedToBlueNumAxis
1005
GetBestColorTransformForTile(int tile_x,int tile_y,int bits,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,int xsize,int ysize,const uint32_t accumulated_red_histo[256],const uint32_t accumulated_blue_histo[256],const uint32_t * const argb)1006 static VP8LMultipliers GetBestColorTransformForTile(
1007 int tile_x, int tile_y, int bits, VP8LMultipliers prev_x,
1008 VP8LMultipliers prev_y, int quality, int xsize, int ysize,
1009 const uint32_t accumulated_red_histo[256],
1010 const uint32_t accumulated_blue_histo[256], const uint32_t* const argb) {
1011 const int max_tile_size = 1 << bits;
1012 const int tile_y_offset = tile_y * max_tile_size;
1013 const int tile_x_offset = tile_x * max_tile_size;
1014 const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
1015 const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
1016 const int tile_width = all_x_max - tile_x_offset;
1017 const int tile_height = all_y_max - tile_y_offset;
1018 const uint32_t* const tile_argb = argb + tile_y_offset * xsize
1019 + tile_x_offset;
1020 VP8LMultipliers best_tx;
1021 MultipliersClear(&best_tx);
1022
1023 GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
1024 prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
1025 GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
1026 prev_x, prev_y, quality, accumulated_blue_histo,
1027 &best_tx);
1028 return best_tx;
1029 }
1030
CopyTileWithColorTransform(int xsize,int ysize,int tile_x,int tile_y,int max_tile_size,VP8LMultipliers color_transform,uint32_t * argb)1031 static void CopyTileWithColorTransform(int xsize, int ysize,
1032 int tile_x, int tile_y,
1033 int max_tile_size,
1034 VP8LMultipliers color_transform,
1035 uint32_t* argb) {
1036 const int xscan = GetMin(max_tile_size, xsize - tile_x);
1037 int yscan = GetMin(max_tile_size, ysize - tile_y);
1038 argb += tile_y * xsize + tile_x;
1039 while (yscan-- > 0) {
1040 VP8LTransformColor(&color_transform, argb, xscan);
1041 argb += xsize;
1042 }
1043 }
1044
VP8LColorSpaceTransform(int width,int height,int bits,int quality,uint32_t * const argb,uint32_t * image,const WebPPicture * const pic,int percent_range,int * const percent,int * const best_bits)1045 int VP8LColorSpaceTransform(int width, int height, int bits, int quality,
1046 uint32_t* const argb, uint32_t* image,
1047 const WebPPicture* const pic, int percent_range,
1048 int* const percent, int* const best_bits) {
1049 const int max_tile_size = 1 << bits;
1050 const int tile_xsize = VP8LSubSampleSize(width, bits);
1051 const int tile_ysize = VP8LSubSampleSize(height, bits);
1052 int percent_start = *percent;
1053 uint32_t accumulated_red_histo[256] = { 0 };
1054 uint32_t accumulated_blue_histo[256] = { 0 };
1055 int tile_x, tile_y;
1056 VP8LMultipliers prev_x, prev_y;
1057 MultipliersClear(&prev_y);
1058 MultipliersClear(&prev_x);
1059 for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
1060 for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
1061 int y;
1062 const int tile_x_offset = tile_x * max_tile_size;
1063 const int tile_y_offset = tile_y * max_tile_size;
1064 const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
1065 const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
1066 const int offset = tile_y * tile_xsize + tile_x;
1067 if (tile_y != 0) {
1068 ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
1069 }
1070 prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
1071 prev_x, prev_y,
1072 quality, width, height,
1073 accumulated_red_histo,
1074 accumulated_blue_histo,
1075 argb);
1076 image[offset] = MultipliersToColorCode(&prev_x);
1077 CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
1078 max_tile_size, prev_x, argb);
1079
1080 // Gather accumulated histogram data.
1081 for (y = tile_y_offset; y < all_y_max; ++y) {
1082 int ix = y * width + tile_x_offset;
1083 const int ix_end = ix + all_x_max - tile_x_offset;
1084 for (; ix < ix_end; ++ix) {
1085 const uint32_t pix = argb[ix];
1086 if (ix >= 2 &&
1087 pix == argb[ix - 2] &&
1088 pix == argb[ix - 1]) {
1089 continue; // repeated pixels are handled by backward references
1090 }
1091 if (ix >= width + 2 &&
1092 argb[ix - 2] == argb[ix - width - 2] &&
1093 argb[ix - 1] == argb[ix - width - 1] &&
1094 pix == argb[ix - width]) {
1095 continue; // repeated pixels are handled by backward references
1096 }
1097 ++accumulated_red_histo[(pix >> 16) & 0xff];
1098 ++accumulated_blue_histo[(pix >> 0) & 0xff];
1099 }
1100 }
1101 }
1102 if (!WebPReportProgress(
1103 pic, percent_start + percent_range * tile_y / tile_ysize,
1104 percent)) {
1105 return 0;
1106 }
1107 }
1108 VP8LOptimizeSampling(image, width, height, bits, MAX_TRANSFORM_BITS,
1109 best_bits);
1110 return 1;
1111 }
1112