• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Image transform methods for lossless encoder.
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 //          Urvang Joshi (urvang@google.com)
15 //          Vincent Rabaud (vrabaud@google.com)
16 
17 #include <assert.h>
18 #include <stdlib.h>
19 #include <string.h>
20 
21 #include "src/dsp/lossless.h"
22 #include "src/dsp/lossless_common.h"
23 #include "src/enc/vp8i_enc.h"
24 #include "src/enc/vp8li_enc.h"
25 #include "src/utils/utils.h"
26 #include "src/webp/encode.h"
27 #include "src/webp/format_constants.h"
28 #include "src/webp/types.h"
29 
30 #define HISTO_SIZE (4 * 256)
31 static const int64_t kSpatialPredictorBias = 15ll << LOG_2_PRECISION_BITS;
32 static const int kPredLowEffort = 11;
33 static const uint32_t kMaskAlpha = 0xff000000;
34 static const int kNumPredModes = 14;
35 
36 // Mostly used to reduce code size + readability
GetMin(int a,int b)37 static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
GetMax(int a,int b)38 static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
39 
40 //------------------------------------------------------------------------------
41 // Methods to calculate Entropy (Shannon).
42 
43 // Compute a bias for prediction entropy using a global heuristic to favor
44 // values closer to 0. Hence the final negative sign.
45 // 'exp_val' has a scaling factor of 1/100.
PredictionCostBias(const uint32_t counts[256],uint64_t weight_0,uint64_t exp_val)46 static int64_t PredictionCostBias(const uint32_t counts[256], uint64_t weight_0,
47                                   uint64_t exp_val) {
48   const int significant_symbols = 256 >> 4;
49   const uint64_t exp_decay_factor = 6;  // has a scaling factor of 1/10
50   uint64_t bits = (weight_0 * counts[0]) << LOG_2_PRECISION_BITS;
51   int i;
52   exp_val <<= LOG_2_PRECISION_BITS;
53   for (i = 1; i < significant_symbols; ++i) {
54     bits += DivRound(exp_val * (counts[i] + counts[256 - i]), 100);
55     exp_val = DivRound(exp_decay_factor * exp_val, 10);
56   }
57   return -DivRound((int64_t)bits, 10);
58 }
59 
PredictionCostSpatialHistogram(const uint32_t accumulated[HISTO_SIZE],const uint32_t tile[HISTO_SIZE],int mode,int left_mode,int above_mode)60 static int64_t PredictionCostSpatialHistogram(
61     const uint32_t accumulated[HISTO_SIZE], const uint32_t tile[HISTO_SIZE],
62     int mode, int left_mode, int above_mode) {
63   int i;
64   int64_t retval = 0;
65   for (i = 0; i < 4; ++i) {
66     const uint64_t kExpValue = 94;
67     retval += PredictionCostBias(&tile[i * 256], 1, kExpValue);
68     // Compute the new cost if 'tile' is added to 'accumulate' but also add the
69     // cost of the current histogram to guide the spatial predictor selection.
70     // Basically, favor low entropy, locally and globally.
71     retval += (int64_t)VP8LCombinedShannonEntropy(&tile[i * 256],
72                                                   &accumulated[i * 256]);
73   }
74   // Favor keeping the areas locally similar.
75   if (mode == left_mode) retval -= kSpatialPredictorBias;
76   if (mode == above_mode) retval -= kSpatialPredictorBias;
77   return retval;
78 }
79 
UpdateHisto(uint32_t histo_argb[HISTO_SIZE],uint32_t argb)80 static WEBP_INLINE void UpdateHisto(uint32_t histo_argb[HISTO_SIZE],
81                                     uint32_t argb) {
82   ++histo_argb[0 * 256 + (argb >> 24)];
83   ++histo_argb[1 * 256 + ((argb >> 16) & 0xff)];
84   ++histo_argb[2 * 256 + ((argb >> 8) & 0xff)];
85   ++histo_argb[3 * 256 + (argb & 0xff)];
86 }
87 
88 //------------------------------------------------------------------------------
89 // Spatial transform functions.
90 
PredictBatch(int mode,int x_start,int y,int num_pixels,const uint32_t * current,const uint32_t * upper,uint32_t * out)91 static WEBP_INLINE void PredictBatch(int mode, int x_start, int y,
92                                      int num_pixels, const uint32_t* current,
93                                      const uint32_t* upper, uint32_t* out) {
94   if (x_start == 0) {
95     if (y == 0) {
96       // ARGB_BLACK.
97       VP8LPredictorsSub[0](current, NULL, 1, out);
98     } else {
99       // Top one.
100       VP8LPredictorsSub[2](current, upper, 1, out);
101     }
102     ++x_start;
103     ++out;
104     --num_pixels;
105   }
106   if (y == 0) {
107     // Left one.
108     VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out);
109   } else {
110     VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels,
111                             out);
112   }
113 }
114 
115 #if (WEBP_NEAR_LOSSLESS == 1)
MaxDiffBetweenPixels(uint32_t p1,uint32_t p2)116 static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
117   const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
118   const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
119   const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
120   const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
121   return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
122 }
123 
MaxDiffAroundPixel(uint32_t current,uint32_t up,uint32_t down,uint32_t left,uint32_t right)124 static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
125                               uint32_t left, uint32_t right) {
126   const int diff_up = MaxDiffBetweenPixels(current, up);
127   const int diff_down = MaxDiffBetweenPixels(current, down);
128   const int diff_left = MaxDiffBetweenPixels(current, left);
129   const int diff_right = MaxDiffBetweenPixels(current, right);
130   return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
131 }
132 
AddGreenToBlueAndRed(uint32_t argb)133 static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
134   const uint32_t green = (argb >> 8) & 0xff;
135   uint32_t red_blue = argb & 0x00ff00ffu;
136   red_blue += (green << 16) | green;
137   red_blue &= 0x00ff00ffu;
138   return (argb & 0xff00ff00u) | red_blue;
139 }
140 
MaxDiffsForRow(int width,int stride,const uint32_t * const argb,uint8_t * const max_diffs,int used_subtract_green)141 static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
142                            uint8_t* const max_diffs, int used_subtract_green) {
143   uint32_t current, up, down, left, right;
144   int x;
145   if (width <= 2) return;
146   current = argb[0];
147   right = argb[1];
148   if (used_subtract_green) {
149     current = AddGreenToBlueAndRed(current);
150     right = AddGreenToBlueAndRed(right);
151   }
152   // max_diffs[0] and max_diffs[width - 1] are never used.
153   for (x = 1; x < width - 1; ++x) {
154     up = argb[-stride + x];
155     down = argb[stride + x];
156     left = current;
157     current = right;
158     right = argb[x + 1];
159     if (used_subtract_green) {
160       up = AddGreenToBlueAndRed(up);
161       down = AddGreenToBlueAndRed(down);
162       right = AddGreenToBlueAndRed(right);
163     }
164     max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
165   }
166 }
167 
168 // Quantize the difference between the actual component value and its prediction
169 // to a multiple of quantization, working modulo 256, taking care not to cross
170 // a boundary (inclusive upper limit).
NearLosslessComponent(uint8_t value,uint8_t predict,uint8_t boundary,int quantization)171 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
172                                      uint8_t boundary, int quantization) {
173   const int residual = (value - predict) & 0xff;
174   const int boundary_residual = (boundary - predict) & 0xff;
175   const int lower = residual & ~(quantization - 1);
176   const int upper = lower + quantization;
177   // Resolve ties towards a value closer to the prediction (i.e. towards lower
178   // if value comes after prediction and towards upper otherwise).
179   const int bias = ((boundary - value) & 0xff) < boundary_residual;
180   if (residual - lower < upper - residual + bias) {
181     // lower is closer to residual than upper.
182     if (residual > boundary_residual && lower <= boundary_residual) {
183       // Halve quantization step to avoid crossing boundary. This midpoint is
184       // on the same side of boundary as residual because midpoint >= residual
185       // (since lower is closer than upper) and residual is above the boundary.
186       return lower + (quantization >> 1);
187     }
188     return lower;
189   } else {
190     // upper is closer to residual than lower.
191     if (residual <= boundary_residual && upper > boundary_residual) {
192       // Halve quantization step to avoid crossing boundary. This midpoint is
193       // on the same side of boundary as residual because midpoint <= residual
194       // (since upper is closer than lower) and residual is below the boundary.
195       return lower + (quantization >> 1);
196     }
197     return upper & 0xff;
198   }
199 }
200 
NearLosslessDiff(uint8_t a,uint8_t b)201 static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) {
202   return (uint8_t)((((int)(a) - (int)(b))) & 0xff);
203 }
204 
205 // Quantize every component of the difference between the actual pixel value and
206 // its prediction to a multiple of a quantization (a power of 2, not larger than
207 // max_quantization which is a power of 2, smaller than max_diff). Take care if
208 // value and predict have undergone subtract green, which means that red and
209 // blue are represented as offsets from green.
NearLossless(uint32_t value,uint32_t predict,int max_quantization,int max_diff,int used_subtract_green)210 static uint32_t NearLossless(uint32_t value, uint32_t predict,
211                              int max_quantization, int max_diff,
212                              int used_subtract_green) {
213   int quantization;
214   uint8_t new_green = 0;
215   uint8_t green_diff = 0;
216   uint8_t a, r, g, b;
217   if (max_diff <= 2) {
218     return VP8LSubPixels(value, predict);
219   }
220   quantization = max_quantization;
221   while (quantization >= max_diff) {
222     quantization >>= 1;
223   }
224   if ((value >> 24) == 0 || (value >> 24) == 0xff) {
225     // Preserve transparency of fully transparent or fully opaque pixels.
226     a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff);
227   } else {
228     a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
229   }
230   g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
231                             quantization);
232   if (used_subtract_green) {
233     // The green offset will be added to red and blue components during decoding
234     // to obtain the actual red and blue values.
235     new_green = ((predict >> 8) + g) & 0xff;
236     // The amount by which green has been adjusted during quantization. It is
237     // subtracted from red and blue for compensation, to avoid accumulating two
238     // quantization errors in them.
239     green_diff = NearLosslessDiff(new_green, (value >> 8) & 0xff);
240   }
241   r = NearLosslessComponent(NearLosslessDiff((value >> 16) & 0xff, green_diff),
242                             (predict >> 16) & 0xff, 0xff - new_green,
243                             quantization);
244   b = NearLosslessComponent(NearLosslessDiff(value & 0xff, green_diff),
245                             predict & 0xff, 0xff - new_green, quantization);
246   return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
247 }
248 #endif  // (WEBP_NEAR_LOSSLESS == 1)
249 
250 // Stores the difference between the pixel and its prediction in "out".
251 // In case of a lossy encoding, updates the source image to avoid propagating
252 // the deviation further to pixels which depend on the current pixel for their
253 // predictions.
GetResidual(int width,int height,uint32_t * const upper_row,uint32_t * const current_row,const uint8_t * const max_diffs,int mode,int x_start,int x_end,int y,int max_quantization,int exact,int used_subtract_green,uint32_t * const out)254 static WEBP_INLINE void GetResidual(
255     int width, int height, uint32_t* const upper_row,
256     uint32_t* const current_row, const uint8_t* const max_diffs, int mode,
257     int x_start, int x_end, int y, int max_quantization, int exact,
258     int used_subtract_green, uint32_t* const out) {
259   if (exact) {
260     PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row,
261                  out);
262   } else {
263     const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
264     int x;
265     for (x = x_start; x < x_end; ++x) {
266       uint32_t predict;
267       uint32_t residual;
268       if (y == 0) {
269         predict = (x == 0) ? ARGB_BLACK : current_row[x - 1];  // Left.
270       } else if (x == 0) {
271         predict = upper_row[x];  // Top.
272       } else {
273         predict = pred_func(&current_row[x - 1], upper_row + x);
274       }
275 #if (WEBP_NEAR_LOSSLESS == 1)
276       if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
277           x == 0 || x == width - 1) {
278         residual = VP8LSubPixels(current_row[x], predict);
279       } else {
280         residual = NearLossless(current_row[x], predict, max_quantization,
281                                 max_diffs[x], used_subtract_green);
282         // Update the source image.
283         current_row[x] = VP8LAddPixels(predict, residual);
284         // x is never 0 here so we do not need to update upper_row like below.
285       }
286 #else
287       (void)max_diffs;
288       (void)height;
289       (void)max_quantization;
290       (void)used_subtract_green;
291       residual = VP8LSubPixels(current_row[x], predict);
292 #endif
293       if ((current_row[x] & kMaskAlpha) == 0) {
294         // If alpha is 0, cleanup RGB. We can choose the RGB values of the
295         // residual for best compression. The prediction of alpha itself can be
296         // non-zero and must be kept though. We choose RGB of the residual to be
297         // 0.
298         residual &= kMaskAlpha;
299         // Update the source image.
300         current_row[x] = predict & ~kMaskAlpha;
301         // The prediction for the rightmost pixel in a row uses the leftmost
302         // pixel
303         // in that row as its top-right context pixel. Hence if we change the
304         // leftmost pixel of current_row, the corresponding change must be
305         // applied
306         // to upper_row as well where top-right context is being read from.
307         if (x == 0 && y != 0) upper_row[width] = current_row[0];
308       }
309       out[x - x_start] = residual;
310     }
311   }
312 }
313 
314 // Accessors to residual histograms.
GetHistoArgb(uint32_t * const all_histos,int subsampling_index,int mode)315 static WEBP_INLINE uint32_t* GetHistoArgb(uint32_t* const all_histos,
316                                           int subsampling_index, int mode) {
317   return &all_histos[(subsampling_index * kNumPredModes + mode) * HISTO_SIZE];
318 }
319 
GetHistoArgbConst(const uint32_t * const all_histos,int subsampling_index,int mode)320 static WEBP_INLINE const uint32_t* GetHistoArgbConst(
321     const uint32_t* const all_histos, int subsampling_index, int mode) {
322   return &all_histos[subsampling_index * kNumPredModes * HISTO_SIZE +
323                      mode * HISTO_SIZE];
324 }
325 
326 // Accessors to accumulated residual histogram.
GetAccumulatedHisto(uint32_t * all_accumulated,int subsampling_index)327 static WEBP_INLINE uint32_t* GetAccumulatedHisto(uint32_t* all_accumulated,
328                                                  int subsampling_index) {
329   return &all_accumulated[subsampling_index * HISTO_SIZE];
330 }
331 
332 // Find and store the best predictor for a tile at subsampling
333 // 'subsampling_index'.
GetBestPredictorForTile(const uint32_t * const all_argb,int subsampling_index,int tile_x,int tile_y,int tiles_per_row,uint32_t * all_accumulated_argb,uint32_t ** const all_modes,uint32_t * const all_pred_histos)334 static void GetBestPredictorForTile(const uint32_t* const all_argb,
335                                     int subsampling_index, int tile_x,
336                                     int tile_y, int tiles_per_row,
337                                     uint32_t* all_accumulated_argb,
338                                     uint32_t** const all_modes,
339                                     uint32_t* const all_pred_histos) {
340   uint32_t* const accumulated_argb =
341       GetAccumulatedHisto(all_accumulated_argb, subsampling_index);
342   uint32_t* const modes = all_modes[subsampling_index];
343   uint32_t* const pred_histos =
344       &all_pred_histos[subsampling_index * kNumPredModes];
345   // Prediction modes of the left and above neighbor tiles.
346   const int left_mode =
347       (tile_x > 0) ? (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff
348                    : 0xff;
349   const int above_mode =
350       (tile_y > 0) ? (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff
351                    : 0xff;
352   int mode;
353   int64_t best_diff = WEBP_INT64_MAX;
354   uint32_t best_mode = 0;
355   const uint32_t* best_histo =
356       GetHistoArgbConst(all_argb, /*subsampling_index=*/0, best_mode);
357   for (mode = 0; mode < kNumPredModes; ++mode) {
358     const uint32_t* const histo_argb =
359         GetHistoArgbConst(all_argb, subsampling_index, mode);
360     const int64_t cur_diff = PredictionCostSpatialHistogram(
361         accumulated_argb, histo_argb, mode, left_mode, above_mode);
362 
363     if (cur_diff < best_diff) {
364       best_histo = histo_argb;
365       best_diff = cur_diff;
366       best_mode = mode;
367     }
368   }
369   // Update the accumulated histogram.
370   VP8LAddVectorEq(best_histo, accumulated_argb, HISTO_SIZE);
371   modes[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (best_mode << 8);
372   ++pred_histos[best_mode];
373 }
374 
375 // Computes the residuals for the different predictors.
376 // If max_quantization > 1, assumes that near lossless processing will be
377 // applied, quantizing residuals to multiples of quantization levels up to
378 // max_quantization (the actual quantization level depends on smoothness near
379 // the given pixel).
ComputeResidualsForTile(int width,int height,int tile_x,int tile_y,int min_bits,uint32_t update_up_to_index,uint32_t * const all_argb,uint32_t * const argb_scratch,const uint32_t * const argb,int max_quantization,int exact,int used_subtract_green)380 static void ComputeResidualsForTile(
381     int width, int height, int tile_x, int tile_y, int min_bits,
382     uint32_t update_up_to_index, uint32_t* const all_argb,
383     uint32_t* const argb_scratch, const uint32_t* const argb,
384     int max_quantization, int exact, int used_subtract_green) {
385   const int start_x = tile_x << min_bits;
386   const int start_y = tile_y << min_bits;
387   const int tile_size = 1 << min_bits;
388   const int max_y = GetMin(tile_size, height - start_y);
389   const int max_x = GetMin(tile_size, width - start_x);
390   // Whether there exist columns just outside the tile.
391   const int have_left = (start_x > 0);
392   // Position and size of the strip covering the tile and adjacent columns if
393   // they exist.
394   const int context_start_x = start_x - have_left;
395 #if (WEBP_NEAR_LOSSLESS == 1)
396   const int context_width = max_x + have_left + (max_x < width - start_x);
397 #endif
398   // The width of upper_row and current_row is one pixel larger than image width
399   // to allow the top right pixel to point to the leftmost pixel of the next row
400   // when at the right edge.
401   uint32_t* upper_row = argb_scratch;
402   uint32_t* current_row = upper_row + width + 1;
403   uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
404   int mode;
405   // Need pointers to be able to swap arrays.
406   uint32_t residuals[1 << MAX_TRANSFORM_BITS];
407   assert(max_x <= (1 << MAX_TRANSFORM_BITS));
408   for (mode = 0; mode < kNumPredModes; ++mode) {
409     int relative_y;
410     uint32_t* const histo_argb =
411         GetHistoArgb(all_argb, /*subsampling_index=*/0, mode);
412     if (start_y > 0) {
413       // Read the row above the tile which will become the first upper_row.
414       // Include a pixel to the left if it exists; include a pixel to the right
415       // in all cases (wrapping to the leftmost pixel of the next row if it does
416       // not exist).
417       memcpy(current_row + context_start_x,
418              argb + (start_y - 1) * width + context_start_x,
419              sizeof(*argb) * (max_x + have_left + 1));
420     }
421     for (relative_y = 0; relative_y < max_y; ++relative_y) {
422       const int y = start_y + relative_y;
423       int relative_x;
424       uint32_t* tmp = upper_row;
425       upper_row = current_row;
426       current_row = tmp;
427       // Read current_row. Include a pixel to the left if it exists; include a
428       // pixel to the right in all cases except at the bottom right corner of
429       // the image (wrapping to the leftmost pixel of the next row if it does
430       // not exist in the current row).
431       memcpy(current_row + context_start_x,
432              argb + y * width + context_start_x,
433              sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
434 #if (WEBP_NEAR_LOSSLESS == 1)
435       if (max_quantization > 1 && y >= 1 && y + 1 < height) {
436         MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
437                        max_diffs + context_start_x, used_subtract_green);
438       }
439 #endif
440 
441       GetResidual(width, height, upper_row, current_row, max_diffs, mode,
442                   start_x, start_x + max_x, y, max_quantization, exact,
443                   used_subtract_green, residuals);
444       for (relative_x = 0; relative_x < max_x; ++relative_x) {
445         UpdateHisto(histo_argb, residuals[relative_x]);
446       }
447       if (update_up_to_index > 0) {
448         uint32_t subsampling_index;
449         for (subsampling_index = 1; subsampling_index <= update_up_to_index;
450              ++subsampling_index) {
451           uint32_t* const super_histo =
452               GetHistoArgb(all_argb, subsampling_index, mode);
453           for (relative_x = 0; relative_x < max_x; ++relative_x) {
454             UpdateHisto(super_histo, residuals[relative_x]);
455           }
456         }
457       }
458     }
459   }
460 }
461 
462 // Converts pixels of the image to residuals with respect to predictions.
463 // If max_quantization > 1, applies near lossless processing, quantizing
464 // residuals to multiples of quantization levels up to max_quantization
465 // (the actual quantization level depends on smoothness near the given pixel).
CopyImageWithPrediction(int width,int height,int bits,const uint32_t * const modes,uint32_t * const argb_scratch,uint32_t * const argb,int low_effort,int max_quantization,int exact,int used_subtract_green)466 static void CopyImageWithPrediction(int width, int height, int bits,
467                                     const uint32_t* const modes,
468                                     uint32_t* const argb_scratch,
469                                     uint32_t* const argb, int low_effort,
470                                     int max_quantization, int exact,
471                                     int used_subtract_green) {
472   const int tiles_per_row = VP8LSubSampleSize(width, bits);
473   // The width of upper_row and current_row is one pixel larger than image width
474   // to allow the top right pixel to point to the leftmost pixel of the next row
475   // when at the right edge.
476   uint32_t* upper_row = argb_scratch;
477   uint32_t* current_row = upper_row + width + 1;
478   uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
479 #if (WEBP_NEAR_LOSSLESS == 1)
480   uint8_t* lower_max_diffs = current_max_diffs + width;
481 #endif
482   int y;
483 
484   for (y = 0; y < height; ++y) {
485     int x;
486     uint32_t* const tmp32 = upper_row;
487     upper_row = current_row;
488     current_row = tmp32;
489     memcpy(current_row, argb + y * width,
490            sizeof(*argb) * (width + (y + 1 < height)));
491 
492     if (low_effort) {
493       PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row,
494                    argb + y * width);
495     } else {
496 #if (WEBP_NEAR_LOSSLESS == 1)
497       if (max_quantization > 1) {
498         // Compute max_diffs for the lower row now, because that needs the
499         // contents of argb for the current row, which we will overwrite with
500         // residuals before proceeding with the next row.
501         uint8_t* const tmp8 = current_max_diffs;
502         current_max_diffs = lower_max_diffs;
503         lower_max_diffs = tmp8;
504         if (y + 2 < height) {
505           MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
506                          used_subtract_green);
507         }
508       }
509 #endif
510       for (x = 0; x < width;) {
511         const int mode =
512             (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
513         int x_end = x + (1 << bits);
514         if (x_end > width) x_end = width;
515         GetResidual(width, height, upper_row, current_row, current_max_diffs,
516                     mode, x, x_end, y, max_quantization, exact,
517                     used_subtract_green, argb + y * width + x);
518         x = x_end;
519       }
520     }
521   }
522 }
523 
524 // Checks whether 'image' can be subsampled by finding the biggest power of 2
525 // squares (defined by 'best_bits') of uniform value it is made out of.
VP8LOptimizeSampling(uint32_t * const image,int full_width,int full_height,int bits,int max_bits,int * best_bits_out)526 void VP8LOptimizeSampling(uint32_t* const image, int full_width,
527                           int full_height, int bits, int max_bits,
528                           int* best_bits_out) {
529   int width = VP8LSubSampleSize(full_width, bits);
530   int height = VP8LSubSampleSize(full_height, bits);
531   int old_width, x, y, square_size;
532   int best_bits = bits;
533   *best_bits_out = bits;
534   // Check rows first.
535   while (best_bits < max_bits) {
536     const int new_square_size = 1 << (best_bits + 1 - bits);
537     int is_good = 1;
538     square_size = 1 << (best_bits - bits);
539     for (y = 0; y + square_size < height; y += new_square_size) {
540       // Check the first lines of consecutive line groups.
541       if (memcmp(&image[y * width], &image[(y + square_size) * width],
542                  width * sizeof(*image)) != 0) {
543         is_good = 0;
544         break;
545       }
546     }
547     if (is_good) {
548       ++best_bits;
549     } else {
550       break;
551     }
552   }
553   if (best_bits == bits) return;
554 
555   // Check columns.
556   while (best_bits > bits) {
557     int is_good = 1;
558     square_size = 1 << (best_bits - bits);
559     for (y = 0; is_good && y < height; ++y) {
560       for (x = 0; is_good && x < width; x += square_size) {
561         int i;
562         for (i = x + 1; i < GetMin(x + square_size, width); ++i) {
563           if (image[y * width + i] != image[y * width + x]) {
564             is_good = 0;
565             break;
566           }
567         }
568       }
569     }
570     if (is_good) {
571       break;
572     }
573     --best_bits;
574   }
575   if (best_bits == bits) return;
576 
577   // Subsample the image.
578   old_width = width;
579   square_size = 1 << (best_bits - bits);
580   width = VP8LSubSampleSize(full_width, best_bits);
581   height = VP8LSubSampleSize(full_height, best_bits);
582   for (y = 0; y < height; ++y) {
583     for (x = 0; x < width; ++x) {
584       image[y * width + x] = image[square_size * (y * old_width + x)];
585     }
586   }
587   *best_bits_out = best_bits;
588 }
589 
590 // Computes the best predictor image.
591 // Finds the best predictors per tile. Once done, finds the best predictor image
592 // sampling.
593 // best_bits is set to 0 in case of error.
594 // The following requires some glossary:
595 // - a tile is a square of side 2^min_bits pixels.
596 // - a super-tile of a tile is a square of side 2^bits pixels with bits in
597 // [min_bits+1, max_bits].
598 // - the max-tile of a tile is the square of 2^max_bits pixels containing it.
599 //   If this max-tile crosses the border of an image, it is cropped.
600 // - tile, super-tiles and max_tile are aligned on powers of 2 in the original
601 //   image.
602 // - coordinates for tile, super-tile, max-tile are respectively named
603 //   tile_x, super_tile_x, max_tile_x at their bit scale.
604 // - in the max-tile, a tile has local coordinates (local_tile_x, local_tile_y).
605 // The tiles are processed in the following zigzag order to complete the
606 // super-tiles as soon as possible:
607 //   1  2|  5  6
608 //   3  4|  7  8
609 // --------------
610 //   9 10| 13 14
611 //  11 12| 15 16
612 // When computing the residuals for a tile, the histogram of the above
613 // super-tile is updated. If this super-tile is finished, its histogram is used
614 // to update the histogram of the next super-tile and so on up to the max-tile.
GetBestPredictorsAndSubSampling(int width,int height,const int min_bits,const int max_bits,uint32_t * const argb_scratch,const uint32_t * const argb,int max_quantization,int exact,int used_subtract_green,const WebPPicture * const pic,int percent_range,int * const percent,uint32_t ** const all_modes,int * best_bits,uint32_t ** best_mode)615 static void GetBestPredictorsAndSubSampling(
616     int width, int height, const int min_bits, const int max_bits,
617     uint32_t* const argb_scratch, const uint32_t* const argb,
618     int max_quantization, int exact, int used_subtract_green,
619     const WebPPicture* const pic, int percent_range, int* const percent,
620     uint32_t** const all_modes, int* best_bits, uint32_t** best_mode) {
621   const uint32_t tiles_per_row = VP8LSubSampleSize(width, min_bits);
622   const uint32_t tiles_per_col = VP8LSubSampleSize(height, min_bits);
623   int64_t best_cost;
624   uint32_t subsampling_index;
625   const uint32_t max_subsampling_index = max_bits - min_bits;
626   // Compute the needed memory size for residual histograms, accumulated
627   // residual histograms and predictor histograms.
628   const int num_argb = (max_subsampling_index + 1) * kNumPredModes * HISTO_SIZE;
629   const int num_accumulated_rgb = (max_subsampling_index + 1) * HISTO_SIZE;
630   const int num_predictors = (max_subsampling_index + 1) * kNumPredModes;
631   uint32_t* const raw_data = (uint32_t*)WebPSafeCalloc(
632       num_argb + num_accumulated_rgb + num_predictors, sizeof(uint32_t));
633   uint32_t* const all_argb = raw_data;
634   uint32_t* const all_accumulated_argb = all_argb + num_argb;
635   uint32_t* const all_pred_histos = all_accumulated_argb + num_accumulated_rgb;
636   const int max_tile_size = 1 << max_subsampling_index;  // in tile size
637   int percent_start = *percent;
638   // When using the residuals of a tile for its super-tiles, you can either:
639   // - use each residual to update the histogram of the super-tile, with a cost
640   //   of 4 * (1<<n)^2 increment operations (4 for the number of channels, and
641   //   (1<<n)^2 for the number of pixels in the tile)
642   // - use the histogram of the tile to update the histogram of the super-tile,
643   //   with a cost of HISTO_SIZE (1024)
644   // The first method is therefore faster until n==4. 'update_up_to_index'
645   // defines the maximum subsampling_index for which the residuals should be
646   // individually added to the super-tile histogram.
647   const uint32_t update_up_to_index =
648       GetMax(GetMin(4, max_bits), min_bits) - min_bits;
649   // Coordinates in the max-tile in tile units.
650   uint32_t local_tile_x = 0, local_tile_y = 0;
651   uint32_t max_tile_x = 0, max_tile_y = 0;
652   uint32_t tile_x = 0, tile_y = 0;
653 
654   *best_bits = 0;
655   *best_mode = NULL;
656   if (raw_data == NULL) return;
657 
658   while (tile_y < tiles_per_col) {
659     ComputeResidualsForTile(width, height, tile_x, tile_y, min_bits,
660                             update_up_to_index, all_argb, argb_scratch, argb,
661                             max_quantization, exact, used_subtract_green);
662 
663     // Update all the super-tiles that are complete.
664     subsampling_index = 0;
665     while (1) {
666       const uint32_t super_tile_x = tile_x >> subsampling_index;
667       const uint32_t super_tile_y = tile_y >> subsampling_index;
668       const uint32_t super_tiles_per_row =
669           VP8LSubSampleSize(width, min_bits + subsampling_index);
670       GetBestPredictorForTile(all_argb, subsampling_index, super_tile_x,
671                               super_tile_y, super_tiles_per_row,
672                               all_accumulated_argb, all_modes, all_pred_histos);
673       if (subsampling_index == max_subsampling_index) break;
674 
675       // Update the following super-tile histogram if it has not been updated
676       // yet.
677       ++subsampling_index;
678       if (subsampling_index > update_up_to_index &&
679           subsampling_index <= max_subsampling_index) {
680         VP8LAddVectorEq(
681             GetHistoArgbConst(all_argb, subsampling_index - 1, /*mode=*/0),
682             GetHistoArgb(all_argb, subsampling_index, /*mode=*/0),
683             HISTO_SIZE * kNumPredModes);
684       }
685       // Check whether the super-tile is not complete (if the smallest tile
686       // is not at the end of a line/column or at the beginning of a super-tile
687       // of size (1 << subsampling_index)).
688       if (!((tile_x == (tiles_per_row - 1) ||
689              (local_tile_x + 1) % (1 << subsampling_index) == 0) &&
690             (tile_y == (tiles_per_col - 1) ||
691              (local_tile_y + 1) % (1 << subsampling_index) == 0))) {
692         --subsampling_index;
693         // subsampling_index now is the index of the last finished super-tile.
694         break;
695       }
696     }
697     // Reset all the histograms belonging to finished tiles.
698     memset(all_argb, 0,
699            HISTO_SIZE * kNumPredModes * (subsampling_index + 1) *
700                sizeof(*all_argb));
701 
702     if (subsampling_index == max_subsampling_index) {
703       // If a new max-tile is started.
704       if (tile_x == (tiles_per_row - 1)) {
705         max_tile_x = 0;
706         ++max_tile_y;
707       } else {
708         ++max_tile_x;
709       }
710       local_tile_x = 0;
711       local_tile_y = 0;
712     } else {
713       // Proceed with the Z traversal.
714       uint32_t coord_x = local_tile_x >> subsampling_index;
715       uint32_t coord_y = local_tile_y >> subsampling_index;
716       if (tile_x == (tiles_per_row - 1) && coord_x % 2 == 0) {
717         ++coord_y;
718       } else {
719         if (coord_x % 2 == 0) {
720           ++coord_x;
721         } else {
722           // Z traversal.
723           ++coord_y;
724           --coord_x;
725         }
726       }
727       local_tile_x = coord_x << subsampling_index;
728       local_tile_y = coord_y << subsampling_index;
729     }
730     tile_x = max_tile_x * max_tile_size + local_tile_x;
731     tile_y = max_tile_y * max_tile_size + local_tile_y;
732 
733     if (tile_x == 0 &&
734         !WebPReportProgress(
735             pic, percent_start + percent_range * tile_y / tiles_per_col,
736             percent)) {
737       WebPSafeFree(raw_data);
738       return;
739     }
740   }
741 
742   // Figure out the best sampling.
743   best_cost = WEBP_INT64_MAX;
744   for (subsampling_index = 0; subsampling_index <= max_subsampling_index;
745        ++subsampling_index) {
746     int plane;
747     const uint32_t* const accumulated =
748         GetAccumulatedHisto(all_accumulated_argb, subsampling_index);
749     int64_t cost = VP8LShannonEntropy(
750         &all_pred_histos[subsampling_index * kNumPredModes], kNumPredModes);
751     for (plane = 0; plane < 4; ++plane) {
752       cost += VP8LShannonEntropy(&accumulated[plane * 256], 256);
753     }
754     if (cost < best_cost) {
755       best_cost = cost;
756       *best_bits = min_bits + subsampling_index;
757       *best_mode = all_modes[subsampling_index];
758     }
759   }
760 
761   WebPSafeFree(raw_data);
762 
763   VP8LOptimizeSampling(*best_mode, width, height, *best_bits,
764                        MAX_TRANSFORM_BITS, best_bits);
765 }
766 
767 // Finds the best predictor for each tile, and converts the image to residuals
768 // with respect to predictions. If near_lossless_quality < 100, applies
769 // near lossless processing, shaving off more bits of residuals for lower
770 // qualities.
VP8LResidualImage(int width,int height,int min_bits,int max_bits,int low_effort,uint32_t * const argb,uint32_t * const argb_scratch,uint32_t * const image,int near_lossless_quality,int exact,int used_subtract_green,const WebPPicture * const pic,int percent_range,int * const percent,int * const best_bits)771 int VP8LResidualImage(int width, int height, int min_bits, int max_bits,
772                       int low_effort, uint32_t* const argb,
773                       uint32_t* const argb_scratch, uint32_t* const image,
774                       int near_lossless_quality, int exact,
775                       int used_subtract_green, const WebPPicture* const pic,
776                       int percent_range, int* const percent,
777                       int* const best_bits) {
778   int percent_start = *percent;
779   const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
780   if (low_effort) {
781     const int tiles_per_row = VP8LSubSampleSize(width, max_bits);
782     const int tiles_per_col = VP8LSubSampleSize(height, max_bits);
783     int i;
784     for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
785       image[i] = ARGB_BLACK | (kPredLowEffort << 8);
786     }
787     *best_bits = max_bits;
788   } else {
789     // Allocate data to try all samplings from min_bits to max_bits.
790     int bits;
791     uint32_t sum_num_pixels = 0u;
792     uint32_t *modes_raw, *best_mode;
793     uint32_t* modes[MAX_TRANSFORM_BITS + 1];
794     uint32_t num_pixels[MAX_TRANSFORM_BITS + 1];
795     for (bits = min_bits; bits <= max_bits; ++bits) {
796       const int tiles_per_row = VP8LSubSampleSize(width, bits);
797       const int tiles_per_col = VP8LSubSampleSize(height, bits);
798       num_pixels[bits] = tiles_per_row * tiles_per_col;
799       sum_num_pixels += num_pixels[bits];
800     }
801     modes_raw = (uint32_t*)WebPSafeMalloc(sum_num_pixels, sizeof(*modes_raw));
802     if (modes_raw == NULL) return 0;
803     // Have modes point to the right global memory modes_raw.
804     modes[min_bits] = modes_raw;
805     for (bits = min_bits + 1; bits <= max_bits; ++bits) {
806       modes[bits] = modes[bits - 1] + num_pixels[bits - 1];
807     }
808     // Find the best sampling.
809     GetBestPredictorsAndSubSampling(
810         width, height, min_bits, max_bits, argb_scratch, argb, max_quantization,
811         exact, used_subtract_green, pic, percent_range, percent,
812         &modes[min_bits], best_bits, &best_mode);
813     if (*best_bits == 0) {
814       WebPSafeFree(modes_raw);
815       return 0;
816     }
817     // Keep the best predictor image.
818     memcpy(image, best_mode,
819            VP8LSubSampleSize(width, *best_bits) *
820                VP8LSubSampleSize(height, *best_bits) * sizeof(*image));
821     WebPSafeFree(modes_raw);
822   }
823 
824   CopyImageWithPrediction(width, height, *best_bits, image, argb_scratch, argb,
825                           low_effort, max_quantization, exact,
826                           used_subtract_green);
827   return WebPReportProgress(pic, percent_start + percent_range, percent);
828 }
829 
830 //------------------------------------------------------------------------------
831 // Color transform functions.
832 
MultipliersClear(VP8LMultipliers * const m)833 static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
834   m->green_to_red_ = 0;
835   m->green_to_blue_ = 0;
836   m->red_to_blue_ = 0;
837 }
838 
ColorCodeToMultipliers(uint32_t color_code,VP8LMultipliers * const m)839 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
840                                                VP8LMultipliers* const m) {
841   m->green_to_red_  = (color_code >>  0) & 0xff;
842   m->green_to_blue_ = (color_code >>  8) & 0xff;
843   m->red_to_blue_   = (color_code >> 16) & 0xff;
844 }
845 
MultipliersToColorCode(const VP8LMultipliers * const m)846 static WEBP_INLINE uint32_t MultipliersToColorCode(
847     const VP8LMultipliers* const m) {
848   return 0xff000000u |
849          ((uint32_t)(m->red_to_blue_) << 16) |
850          ((uint32_t)(m->green_to_blue_) << 8) |
851          m->green_to_red_;
852 }
853 
PredictionCostCrossColor(const uint32_t accumulated[256],const uint32_t counts[256])854 static int64_t PredictionCostCrossColor(const uint32_t accumulated[256],
855                                         const uint32_t counts[256]) {
856   // Favor low entropy, locally and globally.
857   // Favor small absolute values for PredictionCostSpatial
858   static const uint64_t kExpValue = 240;
859   return (int64_t)VP8LCombinedShannonEntropy(counts, accumulated) +
860          PredictionCostBias(counts, 3, kExpValue);
861 }
862 
GetPredictionCostCrossColorRed(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int green_to_red,const uint32_t accumulated_red_histo[256])863 static int64_t GetPredictionCostCrossColorRed(
864     const uint32_t* argb, int stride, int tile_width, int tile_height,
865     VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
866     const uint32_t accumulated_red_histo[256]) {
867   uint32_t histo[256] = { 0 };
868   int64_t cur_diff;
869 
870   VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
871                                 green_to_red, histo);
872 
873   cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
874   if ((uint8_t)green_to_red == prev_x.green_to_red_) {
875     // favor keeping the areas locally similar
876     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
877   }
878   if ((uint8_t)green_to_red == prev_y.green_to_red_) {
879     // favor keeping the areas locally similar
880     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
881   }
882   if (green_to_red == 0) {
883     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
884   }
885   return cur_diff;
886 }
887 
GetBestGreenToRed(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,const uint32_t accumulated_red_histo[256],VP8LMultipliers * const best_tx)888 static void GetBestGreenToRed(const uint32_t* argb, int stride, int tile_width,
889                               int tile_height, VP8LMultipliers prev_x,
890                               VP8LMultipliers prev_y, int quality,
891                               const uint32_t accumulated_red_histo[256],
892                               VP8LMultipliers* const best_tx) {
893   const int kMaxIters = 4 + ((7 * quality) >> 8);  // in range [4..6]
894   int green_to_red_best = 0;
895   int iter, offset;
896   int64_t best_diff = GetPredictionCostCrossColorRed(
897       argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_red_best,
898       accumulated_red_histo);
899   for (iter = 0; iter < kMaxIters; ++iter) {
900     // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
901     // one in color computation. Having initial delta here as 1 is sufficient
902     // to explore the range of (-2, 2).
903     const int delta = 32 >> iter;
904     // Try a negative and a positive delta from the best known value.
905     for (offset = -delta; offset <= delta; offset += 2 * delta) {
906       const int green_to_red_cur = offset + green_to_red_best;
907       const int64_t cur_diff = GetPredictionCostCrossColorRed(
908           argb, stride, tile_width, tile_height, prev_x, prev_y,
909           green_to_red_cur, accumulated_red_histo);
910       if (cur_diff < best_diff) {
911         best_diff = cur_diff;
912         green_to_red_best = green_to_red_cur;
913       }
914     }
915   }
916   best_tx->green_to_red_ = (green_to_red_best & 0xff);
917 }
918 
GetPredictionCostCrossColorBlue(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int green_to_blue,int red_to_blue,const uint32_t accumulated_blue_histo[256])919 static int64_t GetPredictionCostCrossColorBlue(
920     const uint32_t* argb, int stride, int tile_width, int tile_height,
921     VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_blue,
922     int red_to_blue, const uint32_t accumulated_blue_histo[256]) {
923   uint32_t histo[256] = { 0 };
924   int64_t cur_diff;
925 
926   VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
927                                  green_to_blue, red_to_blue, histo);
928 
929   cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
930   if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
931     // favor keeping the areas locally similar
932     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
933   }
934   if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
935     // favor keeping the areas locally similar
936     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
937   }
938   if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
939     // favor keeping the areas locally similar
940     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
941   }
942   if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
943     // favor keeping the areas locally similar
944     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
945   }
946   if (green_to_blue == 0) {
947     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
948   }
949   if (red_to_blue == 0) {
950     cur_diff -= 3ll << LOG_2_PRECISION_BITS;
951   }
952   return cur_diff;
953 }
954 
955 #define kGreenRedToBlueNumAxis 8
956 #define kGreenRedToBlueMaxIters 7
GetBestGreenRedToBlue(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,const uint32_t accumulated_blue_histo[256],VP8LMultipliers * const best_tx)957 static void GetBestGreenRedToBlue(const uint32_t* argb, int stride,
958                                   int tile_width, int tile_height,
959                                   VP8LMultipliers prev_x,
960                                   VP8LMultipliers prev_y, int quality,
961                                   const uint32_t accumulated_blue_histo[256],
962                                   VP8LMultipliers* const best_tx) {
963   const int8_t offset[kGreenRedToBlueNumAxis][2] =
964       {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
965   const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
966   const int iters =
967       (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
968   int green_to_blue_best = 0;
969   int red_to_blue_best = 0;
970   int iter;
971   // Initial value at origin:
972   int64_t best_diff = GetPredictionCostCrossColorBlue(
973       argb, stride, tile_width, tile_height, prev_x, prev_y, green_to_blue_best,
974       red_to_blue_best, accumulated_blue_histo);
975   for (iter = 0; iter < iters; ++iter) {
976     const int delta = delta_lut[iter];
977     int axis;
978     for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
979       const int green_to_blue_cur =
980           offset[axis][0] * delta + green_to_blue_best;
981       const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
982       const int64_t cur_diff = GetPredictionCostCrossColorBlue(
983           argb, stride, tile_width, tile_height, prev_x, prev_y,
984           green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
985       if (cur_diff < best_diff) {
986         best_diff = cur_diff;
987         green_to_blue_best = green_to_blue_cur;
988         red_to_blue_best = red_to_blue_cur;
989       }
990       if (quality < 25 && iter == 4) {
991         // Only axis aligned diffs for lower quality.
992         break;  // next iter.
993       }
994     }
995     if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
996       // Further iterations would not help.
997       break;  // out of iter-loop.
998     }
999   }
1000   best_tx->green_to_blue_ = green_to_blue_best & 0xff;
1001   best_tx->red_to_blue_ = red_to_blue_best & 0xff;
1002 }
1003 #undef kGreenRedToBlueMaxIters
1004 #undef kGreenRedToBlueNumAxis
1005 
GetBestColorTransformForTile(int tile_x,int tile_y,int bits,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,int xsize,int ysize,const uint32_t accumulated_red_histo[256],const uint32_t accumulated_blue_histo[256],const uint32_t * const argb)1006 static VP8LMultipliers GetBestColorTransformForTile(
1007     int tile_x, int tile_y, int bits, VP8LMultipliers prev_x,
1008     VP8LMultipliers prev_y, int quality, int xsize, int ysize,
1009     const uint32_t accumulated_red_histo[256],
1010     const uint32_t accumulated_blue_histo[256], const uint32_t* const argb) {
1011   const int max_tile_size = 1 << bits;
1012   const int tile_y_offset = tile_y * max_tile_size;
1013   const int tile_x_offset = tile_x * max_tile_size;
1014   const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
1015   const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
1016   const int tile_width = all_x_max - tile_x_offset;
1017   const int tile_height = all_y_max - tile_y_offset;
1018   const uint32_t* const tile_argb = argb + tile_y_offset * xsize
1019                                   + tile_x_offset;
1020   VP8LMultipliers best_tx;
1021   MultipliersClear(&best_tx);
1022 
1023   GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
1024                     prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
1025   GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
1026                         prev_x, prev_y, quality, accumulated_blue_histo,
1027                         &best_tx);
1028   return best_tx;
1029 }
1030 
CopyTileWithColorTransform(int xsize,int ysize,int tile_x,int tile_y,int max_tile_size,VP8LMultipliers color_transform,uint32_t * argb)1031 static void CopyTileWithColorTransform(int xsize, int ysize,
1032                                        int tile_x, int tile_y,
1033                                        int max_tile_size,
1034                                        VP8LMultipliers color_transform,
1035                                        uint32_t* argb) {
1036   const int xscan = GetMin(max_tile_size, xsize - tile_x);
1037   int yscan = GetMin(max_tile_size, ysize - tile_y);
1038   argb += tile_y * xsize + tile_x;
1039   while (yscan-- > 0) {
1040     VP8LTransformColor(&color_transform, argb, xscan);
1041     argb += xsize;
1042   }
1043 }
1044 
VP8LColorSpaceTransform(int width,int height,int bits,int quality,uint32_t * const argb,uint32_t * image,const WebPPicture * const pic,int percent_range,int * const percent,int * const best_bits)1045 int VP8LColorSpaceTransform(int width, int height, int bits, int quality,
1046                             uint32_t* const argb, uint32_t* image,
1047                             const WebPPicture* const pic, int percent_range,
1048                             int* const percent, int* const best_bits) {
1049   const int max_tile_size = 1 << bits;
1050   const int tile_xsize = VP8LSubSampleSize(width, bits);
1051   const int tile_ysize = VP8LSubSampleSize(height, bits);
1052   int percent_start = *percent;
1053   uint32_t accumulated_red_histo[256] = { 0 };
1054   uint32_t accumulated_blue_histo[256] = { 0 };
1055   int tile_x, tile_y;
1056   VP8LMultipliers prev_x, prev_y;
1057   MultipliersClear(&prev_y);
1058   MultipliersClear(&prev_x);
1059   for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
1060     for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
1061       int y;
1062       const int tile_x_offset = tile_x * max_tile_size;
1063       const int tile_y_offset = tile_y * max_tile_size;
1064       const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
1065       const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
1066       const int offset = tile_y * tile_xsize + tile_x;
1067       if (tile_y != 0) {
1068         ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
1069       }
1070       prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
1071                                             prev_x, prev_y,
1072                                             quality, width, height,
1073                                             accumulated_red_histo,
1074                                             accumulated_blue_histo,
1075                                             argb);
1076       image[offset] = MultipliersToColorCode(&prev_x);
1077       CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
1078                                  max_tile_size, prev_x, argb);
1079 
1080       // Gather accumulated histogram data.
1081       for (y = tile_y_offset; y < all_y_max; ++y) {
1082         int ix = y * width + tile_x_offset;
1083         const int ix_end = ix + all_x_max - tile_x_offset;
1084         for (; ix < ix_end; ++ix) {
1085           const uint32_t pix = argb[ix];
1086           if (ix >= 2 &&
1087               pix == argb[ix - 2] &&
1088               pix == argb[ix - 1]) {
1089             continue;  // repeated pixels are handled by backward references
1090           }
1091           if (ix >= width + 2 &&
1092               argb[ix - 2] == argb[ix - width - 2] &&
1093               argb[ix - 1] == argb[ix - width - 1] &&
1094               pix == argb[ix - width]) {
1095             continue;  // repeated pixels are handled by backward references
1096           }
1097           ++accumulated_red_histo[(pix >> 16) & 0xff];
1098           ++accumulated_blue_histo[(pix >> 0) & 0xff];
1099         }
1100       }
1101     }
1102     if (!WebPReportProgress(
1103             pic, percent_start + percent_range * tile_y / tile_ysize,
1104             percent)) {
1105       return 0;
1106     }
1107   }
1108   VP8LOptimizeSampling(image, width, height, bits, MAX_TRANSFORM_BITS,
1109                        best_bits);
1110   return 1;
1111 }
1112