1 /* 2 * Copyright 2013 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #pragma once 18 19 #include <optional> 20 #include <string> 21 22 #include <compositionengine/DisplaySurface.h> 23 #include <gui/BufferQueue.h> 24 #include <gui/ConsumerBase.h> 25 #include <gui/IGraphicBufferProducer.h> 26 #include <ui/DisplayId.h> 27 28 #include <ui/DisplayIdentification.h> 29 30 namespace android { 31 32 class HWComposer; 33 class IProducerListener; 34 35 /* This DisplaySurface implementation supports virtual displays, where GPU 36 * and/or HWC compose into a buffer that is then passed to an arbitrary 37 * consumer (the sink) running in another process. 38 * 39 * The simplest case is when the virtual display will never use the h/w 40 * composer -- either the h/w composer doesn't support writing to buffers, or 41 * there are more virtual displays than it supports simultaneously. In this 42 * case, the GPU driver works directly with the output buffer queue, and 43 * calls to the VirtualDisplay from SurfaceFlinger and DisplayHardware do 44 * nothing. 45 * 46 * If h/w composer might be used, then each frame will fall into one of three 47 * configurations: GPU-only, HWC-only, and MIXED composition. In all of these, 48 * we must provide a FB target buffer and output buffer for the HWC set() call. 49 * 50 * In GPU-only composition, the GPU driver is given a buffer from the sink to 51 * render into. When the GPU driver queues the buffer to the 52 * VirtualDisplaySurface, the VirtualDisplaySurface holds onto it instead of 53 * immediately queueing it to the sink. The buffer is used as both the FB 54 * target and output buffer for HWC, though on these frames the HWC doesn't 55 * do any work for this display and doesn't write to the output buffer. After 56 * composition is complete, the buffer is queued to the sink. 57 * 58 * In HWC-only composition, the VirtualDisplaySurface dequeues a buffer from 59 * the sink and passes it to HWC as both the FB target buffer and output 60 * buffer. The HWC doesn't need to read from the FB target buffer, but does 61 * write to the output buffer. After composition is complete, the buffer is 62 * queued to the sink. 63 * 64 * On MIXED frames, things become more complicated, since some h/w composer 65 * implementations can't read from and write to the same buffer. This class has 66 * an internal BufferQueue that it uses as a scratch buffer pool. The GPU 67 * driver is given a scratch buffer to render into. When it finishes rendering, 68 * the buffer is queued and then immediately acquired by the 69 * VirtualDisplaySurface. The scratch buffer is then used as the FB target 70 * buffer for HWC, and a separate buffer is dequeued from the sink and used as 71 * the HWC output buffer. When HWC composition is complete, the scratch buffer 72 * is released and the output buffer is queued to the sink. 73 */ 74 class VirtualDisplaySurface : public compositionengine::DisplaySurface, 75 public BnGraphicBufferProducer, 76 private ConsumerBase { 77 public: 78 VirtualDisplaySurface(HWComposer&, VirtualDisplayIdVariant, 79 const sp<IGraphicBufferProducer>& sink, 80 const sp<IGraphicBufferProducer>& bqProducer, 81 const sp<IGraphicBufferConsumer>& bqConsumer, const std::string& name); 82 83 // 84 // DisplaySurface interface 85 // 86 virtual status_t beginFrame(bool mustRecompose); 87 virtual status_t prepareFrame(CompositionType); 88 virtual status_t advanceFrame(float hdrSdrRatio); 89 virtual void onFrameCommitted(); 90 virtual void dumpAsString(String8& result) const; 91 virtual void resizeBuffers(const ui::Size&) override; 92 virtual const sp<Fence>& getClientTargetAcquireFence() const override; 93 // Virtual display surface needs to prepare the frame based on composition type. Skip 94 // any client composition prediction. supportsCompositionStrategyPrediction()95 virtual bool supportsCompositionStrategyPrediction() const override { return false; }; 96 97 private: 98 enum Source : size_t { 99 SOURCE_SINK = 0, 100 SOURCE_SCRATCH = 1, 101 102 ftl_first = SOURCE_SINK, 103 ftl_last = SOURCE_SCRATCH, 104 }; 105 106 virtual ~VirtualDisplaySurface(); 107 108 // 109 // IGraphicBufferProducer interface, used by the GPU driver. 110 // 111 virtual status_t requestBuffer(int pslot, sp<GraphicBuffer>* outBuf); 112 virtual status_t setMaxDequeuedBufferCount(int maxDequeuedBuffers); 113 virtual status_t setAsyncMode(bool async); 114 virtual status_t dequeueBuffer(int* pslot, sp<Fence>*, uint32_t w, uint32_t h, PixelFormat, 115 uint64_t usage, uint64_t* outBufferAge, 116 FrameEventHistoryDelta* outTimestamps); 117 virtual status_t detachBuffer(int slot); 118 virtual status_t detachNextBuffer(sp<GraphicBuffer>* outBuffer, sp<Fence>* outFence); 119 virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>&); 120 virtual status_t queueBuffer(int pslot, const QueueBufferInput&, QueueBufferOutput*); 121 virtual status_t cancelBuffer(int pslot, const sp<Fence>&); 122 virtual int query(int what, int* value); 123 virtual status_t connect(const sp<IProducerListener>&, int api, bool producerControlledByApp, 124 QueueBufferOutput*); 125 virtual status_t disconnect(int api, DisconnectMode); 126 virtual status_t setSidebandStream(const sp<NativeHandle>& stream); 127 virtual void allocateBuffers(uint32_t width, uint32_t height, PixelFormat, uint64_t usage); 128 virtual status_t allowAllocation(bool allow); 129 virtual status_t setGenerationNumber(uint32_t); 130 virtual String8 getConsumerName() const override; 131 virtual status_t setSharedBufferMode(bool sharedBufferMode) override; 132 virtual status_t setAutoRefresh(bool autoRefresh) override; 133 virtual status_t setDequeueTimeout(nsecs_t timeout) override; 134 virtual status_t getLastQueuedBuffer(sp<GraphicBuffer>* outBuffer, 135 sp<Fence>* outFence, float outTransformMatrix[16]) override; 136 virtual status_t getUniqueId(uint64_t* outId) const override; 137 virtual status_t getConsumerUsage(uint64_t* outUsage) const override; 138 139 // 140 // Utility methods 141 // 142 static Source fbSourceForCompositionType(CompositionType); 143 static std::string toString(CompositionType); 144 145 status_t dequeueBuffer(Source, PixelFormat, uint64_t usage, int* sslot, sp<Fence>*); 146 void updateQueueBufferOutput(QueueBufferOutput&&); 147 void resetPerFrameState(); 148 status_t refreshOutputBuffer(); 149 bool isBackedByGpu() const; 150 151 // Both the sink and scratch buffer pools have their own set of slots 152 // ("source slots", or "sslot"). We have to merge these into the single 153 // set of slots used by the graphics producer ("producer slots" or "pslot") and 154 // internally in the VirtualDisplaySurface. To minimize the number of times 155 // a producer slot switches which source it comes from, we map source slot 156 // numbers to producer slot numbers differently for each source. 157 static int mapSource2ProducerSlot(Source, int sslot); 158 static int mapProducer2SourceSlot(Source, int pslot); 159 160 // 161 // Immutable after construction 162 // 163 HWComposer& mHwc; 164 const VirtualDisplayIdVariant mVirtualIdVariant; 165 const std::string mDisplayName; 166 sp<IGraphicBufferProducer> mSource[2]; // indexed by SOURCE_* 167 uint32_t mDefaultOutputFormat; 168 169 // Buffers that HWC has seen before, indexed by HWC slot number. 170 // NOTE: The BufferQueue slot number is the same as the HWC slot number. 171 uint64_t mHwcBufferIds[BufferQueue::NUM_BUFFER_SLOTS]; 172 173 // 174 // Inter-frame state 175 // 176 177 // To avoid buffer reallocations, we track the buffer usage and format 178 // we used on the previous frame and use it again on the new frame. If 179 // the composition type changes or the GPU driver starts requesting 180 // different usage/format, we'll get a new buffer. 181 uint32_t mOutputFormat; 182 uint64_t mOutputUsage; 183 184 // Since we present a single producer interface to the GPU driver, but 185 // are internally muxing between the sink and scratch producers, we have 186 // to keep track of which source last returned each producer slot from 187 // dequeueBuffer. Each bit in mProducerSlotSource corresponds to a producer 188 // slot. Both mProducerSlotSource and mProducerBuffers are indexed by a 189 // "producer slot"; see the mapSlot*() functions. 190 uint64_t mProducerSlotSource; 191 sp<GraphicBuffer> mProducerBuffers[BufferQueueDefs::NUM_BUFFER_SLOTS]; 192 193 // Need to propagate reallocation to VDS consumer. 194 // Each bit corresponds to a producer slot. 195 uint64_t mProducerSlotNeedReallocation; 196 197 // The QueueBufferOutput with the latest info from the sink, and with the 198 // transform hint cleared. Since we defer queueBuffer from the GPU driver 199 // to the sink, we have to return the previous version. 200 // Moves instead of copies are performed to avoid duplicate 201 // FrameEventHistoryDeltas. 202 QueueBufferOutput mQueueBufferOutput; 203 204 // Details of the current sink buffer. These become valid when a buffer is 205 // dequeued from the sink, and are used when queueing the buffer. 206 uint32_t mSinkBufferWidth, mSinkBufferHeight; 207 208 // 209 // Intra-frame state 210 // 211 212 // Composition type and graphics buffer source for the current frame. 213 // Valid after prepareFrame(), cleared in onFrameCommitted. 214 CompositionType mCompositionType = CompositionType::Unknown; 215 216 // mFbFence is the fence HWC should wait for before reading the framebuffer 217 // target buffer. 218 sp<Fence> mFbFence; 219 220 // mOutputFence is the fence HWC should wait for before writing to the 221 // output buffer. 222 sp<Fence> mOutputFence; 223 224 // Producer slot numbers for the buffers to use for HWC framebuffer target 225 // and output. 226 int mFbProducerSlot; 227 int mOutputProducerSlot; 228 229 // Debug only -- track the sequence of events in each frame so we can make 230 // sure they happen in the order we expect. This class implicitly models 231 // a state machine; this enum/variable makes it explicit. 232 // 233 // +-----------+-------------------+-------------+ 234 // | State | Event || Next State | 235 // +-----------+-------------------+-------------+ 236 // | Idle | beginFrame || Begun | 237 // | Begun | prepareFrame || Prepared | 238 // | Prepared | dequeueBuffer [1] || Gpu | 239 // | Prepared | advanceFrame [2] || Hwc | 240 // | Gpu | queueBuffer || GpuDone | 241 // | GpuDone | advanceFrame || Hwc | 242 // | Hwc | onFrameCommitted || Idle | 243 // +-----------+-------------------++------------+ 244 // [1] CompositionType::Gpu and CompositionType::Mixed frames. 245 // [2] CompositionType::Hwc frames. 246 // 247 enum class DebugState { 248 // no buffer dequeued, don't know anything about the next frame 249 Idle, 250 // output buffer dequeued, framebuffer source not yet known 251 Begun, 252 // output buffer dequeued, framebuffer source known but not provided 253 // to GPU yet. 254 Prepared, 255 // GPU driver has a buffer dequeued 256 Gpu, 257 // GPU driver has queued the buffer, we haven't sent it to HWC yet 258 GpuDone, 259 // HWC has the buffer for this frame 260 Hwc, 261 262 ftl_last = Hwc 263 }; 264 DebugState mDebugState = DebugState::Idle; 265 CompositionType mDebugLastCompositionType = CompositionType::Unknown; 266 267 bool mMustRecompose = false; 268 269 bool mForceHwcCopy; 270 }; 271 272 } // namespace android 273