1 /************************************************************************** 2 * 3 * Copyright © 2007 Red Hat Inc. 4 * Copyright © 2007-2012 Intel Corporation 5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 22 * USE OR OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * The above copyright notice and this permission notice (including the 25 * next paragraph) shall be included in all copies or substantial portions 26 * of the Software. 27 * 28 * 29 **************************************************************************/ 30 /* 31 * Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com> 32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com> 33 * Eric Anholt <eric@anholt.net> 34 * Dave Airlie <airlied@linux.ie> 35 */ 36 37 #include <xf86drm.h> 38 #include <xf86atomic.h> 39 #include <fcntl.h> 40 #include <stdio.h> 41 #include <stdlib.h> 42 #include <string.h> 43 #include <unistd.h> 44 #include <assert.h> 45 #include <pthread.h> 46 #include <sys/ioctl.h> 47 #include <sys/stat.h> 48 #include <sys/types.h> 49 #include <stdbool.h> 50 51 #include "errno.h" 52 #ifndef ETIME 53 #define ETIME ETIMEDOUT 54 #endif 55 #include "libdrm_macros.h" 56 #include "libdrm_lists.h" 57 #include "intel_bufmgr.h" 58 #include "intel_bufmgr_priv.h" 59 #include "intel_chipset.h" 60 #include "string.h" 61 62 #include "i915_drm.h" 63 #include "uthash.h" 64 65 #if HAVE_VALGRIND 66 #include <valgrind.h> 67 #include <memcheck.h> 68 #define VG(x) x 69 #else 70 #define VG(x) 71 #endif 72 73 #define memclear(s) memset(&s, 0, sizeof(s)) 74 75 #define DBG(...) do { \ 76 if (bufmgr_gem->bufmgr.debug) \ 77 fprintf(stderr, __VA_ARGS__); \ 78 } while (0) 79 80 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 81 #define MAX2(A, B) ((A) > (B) ? (A) : (B)) 82 83 /** 84 * upper_32_bits - return bits 32-63 of a number 85 * @n: the number we're accessing 86 * 87 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 88 * the "right shift count >= width of type" warning when that quantity is 89 * 32-bits. 90 */ 91 #define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16)) 92 93 /** 94 * lower_32_bits - return bits 0-31 of a number 95 * @n: the number we're accessing 96 */ 97 #define lower_32_bits(n) ((__u32)(n)) 98 99 typedef struct _drm_intel_bo_gem drm_intel_bo_gem; 100 101 struct drm_intel_gem_bo_bucket { 102 drmMMListHead head; 103 unsigned long size; 104 }; 105 106 typedef struct _drm_intel_bufmgr_gem { 107 drm_intel_bufmgr bufmgr; 108 109 atomic_t refcount; 110 111 int fd; 112 113 int max_relocs; 114 115 pthread_mutex_t lock; 116 117 struct drm_i915_gem_exec_object2 *exec2_objects; 118 drm_intel_bo **exec_bos; 119 int exec_size; 120 int exec_count; 121 122 /** Array of lists of cached gem objects of power-of-two sizes */ 123 struct drm_intel_gem_bo_bucket cache_bucket[14 * 4]; 124 int num_buckets; 125 time_t time; 126 127 drmMMListHead managers; 128 129 drm_intel_bo_gem *name_table; 130 drm_intel_bo_gem *handle_table; 131 132 drmMMListHead vma_cache; 133 int vma_count, vma_open, vma_max; 134 135 uint64_t gtt_size; 136 int available_fences; 137 int pci_device; 138 int gen; 139 unsigned int has_bsd : 1; 140 unsigned int has_blt : 1; 141 unsigned int has_relaxed_fencing : 1; 142 unsigned int has_llc : 1; 143 unsigned int has_wait_timeout : 1; 144 unsigned int bo_reuse : 1; 145 unsigned int no_exec : 1; 146 unsigned int has_vebox : 1; 147 unsigned int has_exec_async : 1; 148 bool fenced_relocs; 149 150 struct { 151 void *ptr; 152 uint32_t handle; 153 } userptr_active; 154 155 } drm_intel_bufmgr_gem; 156 157 #define DRM_INTEL_RELOC_FENCE (1<<0) 158 159 typedef struct _drm_intel_reloc_target_info { 160 drm_intel_bo *bo; 161 int flags; 162 } drm_intel_reloc_target; 163 164 struct _drm_intel_bo_gem { 165 drm_intel_bo bo; 166 167 atomic_t refcount; 168 uint32_t gem_handle; 169 const char *name; 170 171 /** 172 * Kenel-assigned global name for this object 173 * 174 * List contains both flink named and prime fd'd objects 175 */ 176 unsigned int global_name; 177 178 UT_hash_handle handle_hh; 179 UT_hash_handle name_hh; 180 181 /** 182 * Index of the buffer within the validation list while preparing a 183 * batchbuffer execution. 184 */ 185 int validate_index; 186 187 /** 188 * Current tiling mode 189 */ 190 uint32_t tiling_mode; 191 uint32_t swizzle_mode; 192 unsigned long stride; 193 194 unsigned long kflags; 195 196 time_t free_time; 197 198 /** Array passed to the DRM containing relocation information. */ 199 struct drm_i915_gem_relocation_entry *relocs; 200 /** 201 * Array of info structs corresponding to relocs[i].target_handle etc 202 */ 203 drm_intel_reloc_target *reloc_target_info; 204 /** Number of entries in relocs */ 205 int reloc_count; 206 /** Array of BOs that are referenced by this buffer and will be softpinned */ 207 drm_intel_bo **softpin_target; 208 /** Number softpinned BOs that are referenced by this buffer */ 209 int softpin_target_count; 210 /** Maximum amount of softpinned BOs that are referenced by this buffer */ 211 int softpin_target_size; 212 213 /** Mapped address for the buffer, saved across map/unmap cycles */ 214 void *mem_virtual; 215 /** GTT virtual address for the buffer, saved across map/unmap cycles */ 216 void *gtt_virtual; 217 /** WC CPU address for the buffer, saved across map/unmap cycles */ 218 void *wc_virtual; 219 /** 220 * Virtual address of the buffer allocated by user, used for userptr 221 * objects only. 222 */ 223 void *user_virtual; 224 int map_count; 225 drmMMListHead vma_list; 226 227 /** BO cache list */ 228 drmMMListHead head; 229 230 /** 231 * Boolean of whether this BO and its children have been included in 232 * the current drm_intel_bufmgr_check_aperture_space() total. 233 */ 234 bool included_in_check_aperture; 235 236 /** 237 * Boolean of whether this buffer has been used as a relocation 238 * target and had its size accounted for, and thus can't have any 239 * further relocations added to it. 240 */ 241 bool used_as_reloc_target; 242 243 /** 244 * Boolean of whether we have encountered an error whilst building the relocation tree. 245 */ 246 bool has_error; 247 248 /** 249 * Boolean of whether this buffer can be re-used 250 */ 251 bool reusable; 252 253 /** 254 * Boolean of whether the GPU is definitely not accessing the buffer. 255 * 256 * This is only valid when reusable, since non-reusable 257 * buffers are those that have been shared with other 258 * processes, so we don't know their state. 259 */ 260 bool idle; 261 262 /** 263 * Boolean of whether this buffer was allocated with userptr 264 */ 265 bool is_userptr; 266 267 /** 268 * Size in bytes of this buffer and its relocation descendents. 269 * 270 * Used to avoid costly tree walking in 271 * drm_intel_bufmgr_check_aperture in the common case. 272 */ 273 int reloc_tree_size; 274 275 /** 276 * Number of potential fence registers required by this buffer and its 277 * relocations. 278 */ 279 int reloc_tree_fences; 280 281 /** Flags that we may need to do the SW_FINISH ioctl on unmap. */ 282 bool mapped_cpu_write; 283 }; 284 285 static unsigned int 286 drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count); 287 288 static unsigned int 289 drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count); 290 291 static int 292 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 293 uint32_t * swizzle_mode); 294 295 static int 296 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo, 297 uint32_t tiling_mode, 298 uint32_t stride); 299 300 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, 301 time_t time); 302 303 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo); 304 305 static void drm_intel_gem_bo_free(drm_intel_bo *bo); 306 307 static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo) 308 { 309 return (drm_intel_bo_gem *)bo; 310 } 311 312 static unsigned long 313 drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size, 314 uint32_t *tiling_mode) 315 { 316 unsigned long min_size, max_size; 317 unsigned long i; 318 319 if (*tiling_mode == I915_TILING_NONE) 320 return size; 321 322 /* 965+ just need multiples of page size for tiling */ 323 if (bufmgr_gem->gen >= 4) 324 return ROUND_UP_TO(size, 4096); 325 326 /* Older chips need powers of two, of at least 512k or 1M */ 327 if (bufmgr_gem->gen == 3) { 328 min_size = 1024*1024; 329 max_size = 128*1024*1024; 330 } else { 331 min_size = 512*1024; 332 max_size = 64*1024*1024; 333 } 334 335 if (size > max_size) { 336 *tiling_mode = I915_TILING_NONE; 337 return size; 338 } 339 340 /* Do we need to allocate every page for the fence? */ 341 if (bufmgr_gem->has_relaxed_fencing) 342 return ROUND_UP_TO(size, 4096); 343 344 for (i = min_size; i < size; i <<= 1) 345 ; 346 347 return i; 348 } 349 350 /* 351 * Round a given pitch up to the minimum required for X tiling on a 352 * given chip. We use 512 as the minimum to allow for a later tiling 353 * change. 354 */ 355 static unsigned long 356 drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem, 357 unsigned long pitch, uint32_t *tiling_mode) 358 { 359 unsigned long tile_width; 360 unsigned long i; 361 362 /* If untiled, then just align it so that we can do rendering 363 * to it with the 3D engine. 364 */ 365 if (*tiling_mode == I915_TILING_NONE) 366 return ALIGN(pitch, 64); 367 368 if (*tiling_mode == I915_TILING_X 369 || (IS_915(bufmgr_gem->pci_device) 370 && *tiling_mode == I915_TILING_Y)) 371 tile_width = 512; 372 else 373 tile_width = 128; 374 375 /* 965 is flexible */ 376 if (bufmgr_gem->gen >= 4) 377 return ROUND_UP_TO(pitch, tile_width); 378 379 /* The older hardware has a maximum pitch of 8192 with tiled 380 * surfaces, so fallback to untiled if it's too large. 381 */ 382 if (pitch > 8192) { 383 *tiling_mode = I915_TILING_NONE; 384 return ALIGN(pitch, 64); 385 } 386 387 /* Pre-965 needs power of two tile width */ 388 for (i = tile_width; i < pitch; i <<= 1) 389 ; 390 391 return i; 392 } 393 394 static struct drm_intel_gem_bo_bucket * 395 drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem, 396 unsigned long size) 397 { 398 int i; 399 400 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 401 struct drm_intel_gem_bo_bucket *bucket = 402 &bufmgr_gem->cache_bucket[i]; 403 if (bucket->size >= size) { 404 return bucket; 405 } 406 } 407 408 return NULL; 409 } 410 411 static void 412 drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem) 413 { 414 int i, j; 415 416 for (i = 0; i < bufmgr_gem->exec_count; i++) { 417 drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; 418 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 419 420 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) { 421 DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle, 422 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 423 bo_gem->name); 424 continue; 425 } 426 427 for (j = 0; j < bo_gem->reloc_count; j++) { 428 drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo; 429 drm_intel_bo_gem *target_gem = 430 (drm_intel_bo_gem *) target_bo; 431 432 DBG("%2d: %d %s(%s)@0x%08x %08x -> " 433 "%d (%s)@0x%08x %08x + 0x%08x\n", 434 i, 435 bo_gem->gem_handle, 436 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 437 bo_gem->name, 438 upper_32_bits(bo_gem->relocs[j].offset), 439 lower_32_bits(bo_gem->relocs[j].offset), 440 target_gem->gem_handle, 441 target_gem->name, 442 upper_32_bits(target_bo->offset64), 443 lower_32_bits(target_bo->offset64), 444 bo_gem->relocs[j].delta); 445 } 446 447 for (j = 0; j < bo_gem->softpin_target_count; j++) { 448 drm_intel_bo *target_bo = bo_gem->softpin_target[j]; 449 drm_intel_bo_gem *target_gem = 450 (drm_intel_bo_gem *) target_bo; 451 DBG("%2d: %d %s(%s) -> " 452 "%d *(%s)@0x%08x %08x\n", 453 i, 454 bo_gem->gem_handle, 455 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 456 bo_gem->name, 457 target_gem->gem_handle, 458 target_gem->name, 459 upper_32_bits(target_bo->offset64), 460 lower_32_bits(target_bo->offset64)); 461 } 462 } 463 } 464 465 static inline void 466 drm_intel_gem_bo_reference(drm_intel_bo *bo) 467 { 468 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 469 470 atomic_inc(&bo_gem->refcount); 471 } 472 473 /** 474 * Adds the given buffer to the list of buffers to be validated (moved into the 475 * appropriate memory type) with the next batch submission. 476 * 477 * If a buffer is validated multiple times in a batch submission, it ends up 478 * with the intersection of the memory type flags and the union of the 479 * access flags. 480 */ 481 static void 482 drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence) 483 { 484 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 485 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 486 int index; 487 unsigned long flags; 488 489 flags = 0; 490 if (need_fence) 491 flags |= EXEC_OBJECT_NEEDS_FENCE; 492 493 if (bo_gem->validate_index != -1) { 494 bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags; 495 return; 496 } 497 498 /* Extend the array of validation entries as necessary. */ 499 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) { 500 int new_size = bufmgr_gem->exec_size * 2; 501 502 if (new_size == 0) 503 new_size = 5; 504 505 bufmgr_gem->exec2_objects = 506 realloc(bufmgr_gem->exec2_objects, 507 sizeof(*bufmgr_gem->exec2_objects) * new_size); 508 bufmgr_gem->exec_bos = 509 realloc(bufmgr_gem->exec_bos, 510 sizeof(*bufmgr_gem->exec_bos) * new_size); 511 bufmgr_gem->exec_size = new_size; 512 } 513 514 index = bufmgr_gem->exec_count; 515 bo_gem->validate_index = index; 516 /* Fill in array entry */ 517 bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle; 518 bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count; 519 bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs; 520 bufmgr_gem->exec2_objects[index].alignment = bo->align; 521 bufmgr_gem->exec2_objects[index].offset = bo->offset64; 522 bufmgr_gem->exec2_objects[index].flags = bo_gem->kflags | flags; 523 bufmgr_gem->exec2_objects[index].rsvd1 = 0; 524 bufmgr_gem->exec2_objects[index].rsvd2 = 0; 525 bufmgr_gem->exec_bos[index] = bo; 526 bufmgr_gem->exec_count++; 527 } 528 529 #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \ 530 sizeof(uint32_t)) 531 532 static void 533 drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem, 534 drm_intel_bo_gem *bo_gem, 535 unsigned int alignment) 536 { 537 unsigned int size; 538 539 assert(!bo_gem->used_as_reloc_target); 540 541 /* The older chipsets are far-less flexible in terms of tiling, 542 * and require tiled buffer to be size aligned in the aperture. 543 * This means that in the worst possible case we will need a hole 544 * twice as large as the object in order for it to fit into the 545 * aperture. Optimal packing is for wimps. 546 */ 547 size = bo_gem->bo.size; 548 if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) { 549 unsigned int min_size; 550 551 if (bufmgr_gem->has_relaxed_fencing) { 552 if (bufmgr_gem->gen == 3) 553 min_size = 1024*1024; 554 else 555 min_size = 512*1024; 556 557 while (min_size < size) 558 min_size *= 2; 559 } else 560 min_size = size; 561 562 /* Account for worst-case alignment. */ 563 alignment = MAX2(alignment, min_size); 564 } 565 566 bo_gem->reloc_tree_size = size + alignment; 567 } 568 569 static int 570 drm_intel_setup_reloc_list(drm_intel_bo *bo) 571 { 572 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 573 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 574 unsigned int max_relocs = bufmgr_gem->max_relocs; 575 576 if (bo->size / 4 < max_relocs) 577 max_relocs = bo->size / 4; 578 579 bo_gem->relocs = malloc(max_relocs * 580 sizeof(struct drm_i915_gem_relocation_entry)); 581 bo_gem->reloc_target_info = malloc(max_relocs * 582 sizeof(drm_intel_reloc_target)); 583 if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) { 584 bo_gem->has_error = true; 585 586 free (bo_gem->relocs); 587 bo_gem->relocs = NULL; 588 589 free (bo_gem->reloc_target_info); 590 bo_gem->reloc_target_info = NULL; 591 592 return 1; 593 } 594 595 return 0; 596 } 597 598 static int 599 drm_intel_gem_bo_busy(drm_intel_bo *bo) 600 { 601 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 602 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 603 struct drm_i915_gem_busy busy; 604 int ret; 605 606 if (bo_gem->reusable && bo_gem->idle) 607 return false; 608 609 memclear(busy); 610 busy.handle = bo_gem->gem_handle; 611 612 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); 613 if (ret == 0) { 614 bo_gem->idle = !busy.busy; 615 return busy.busy; 616 } else { 617 return false; 618 } 619 } 620 621 static int 622 drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem, 623 drm_intel_bo_gem *bo_gem, int state) 624 { 625 struct drm_i915_gem_madvise madv; 626 627 memclear(madv); 628 madv.handle = bo_gem->gem_handle; 629 madv.madv = state; 630 madv.retained = 1; 631 drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); 632 633 return madv.retained; 634 } 635 636 static int 637 drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv) 638 { 639 return drm_intel_gem_bo_madvise_internal 640 ((drm_intel_bufmgr_gem *) bo->bufmgr, 641 (drm_intel_bo_gem *) bo, 642 madv); 643 } 644 645 /* drop the oldest entries that have been purged by the kernel */ 646 static void 647 drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem, 648 struct drm_intel_gem_bo_bucket *bucket) 649 { 650 while (!DRMLISTEMPTY(&bucket->head)) { 651 drm_intel_bo_gem *bo_gem; 652 653 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 654 bucket->head.next, head); 655 if (drm_intel_gem_bo_madvise_internal 656 (bufmgr_gem, bo_gem, I915_MADV_DONTNEED)) 657 break; 658 659 DRMLISTDEL(&bo_gem->head); 660 drm_intel_gem_bo_free(&bo_gem->bo); 661 } 662 } 663 664 static drm_intel_bo * 665 drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr, 666 const char *name, 667 unsigned long size, 668 unsigned long flags, 669 uint32_t tiling_mode, 670 unsigned long stride, 671 unsigned int alignment) 672 { 673 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 674 drm_intel_bo_gem *bo_gem; 675 unsigned int page_size = getpagesize(); 676 int ret; 677 struct drm_intel_gem_bo_bucket *bucket; 678 bool alloc_from_cache; 679 unsigned long bo_size; 680 bool for_render = false; 681 682 if (flags & BO_ALLOC_FOR_RENDER) 683 for_render = true; 684 685 /* Round the allocated size up to a power of two number of pages. */ 686 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size); 687 688 /* If we don't have caching at this size, don't actually round the 689 * allocation up. 690 */ 691 if (bucket == NULL) { 692 bo_size = size; 693 if (bo_size < page_size) 694 bo_size = page_size; 695 } else { 696 bo_size = bucket->size; 697 } 698 699 pthread_mutex_lock(&bufmgr_gem->lock); 700 /* Get a buffer out of the cache if available */ 701 retry: 702 alloc_from_cache = false; 703 if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) { 704 if (for_render) { 705 /* Allocate new render-target BOs from the tail (MRU) 706 * of the list, as it will likely be hot in the GPU 707 * cache and in the aperture for us. 708 */ 709 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 710 bucket->head.prev, head); 711 DRMLISTDEL(&bo_gem->head); 712 alloc_from_cache = true; 713 bo_gem->bo.align = alignment; 714 } else { 715 assert(alignment == 0); 716 /* For non-render-target BOs (where we're probably 717 * going to map it first thing in order to fill it 718 * with data), check if the last BO in the cache is 719 * unbusy, and only reuse in that case. Otherwise, 720 * allocating a new buffer is probably faster than 721 * waiting for the GPU to finish. 722 */ 723 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 724 bucket->head.next, head); 725 if (!drm_intel_gem_bo_busy(&bo_gem->bo)) { 726 alloc_from_cache = true; 727 DRMLISTDEL(&bo_gem->head); 728 } 729 } 730 731 if (alloc_from_cache) { 732 if (!drm_intel_gem_bo_madvise_internal 733 (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) { 734 drm_intel_gem_bo_free(&bo_gem->bo); 735 drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem, 736 bucket); 737 goto retry; 738 } 739 740 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo, 741 tiling_mode, 742 stride)) { 743 drm_intel_gem_bo_free(&bo_gem->bo); 744 goto retry; 745 } 746 } 747 } 748 749 if (!alloc_from_cache) { 750 struct drm_i915_gem_create create; 751 752 bo_gem = calloc(1, sizeof(*bo_gem)); 753 if (!bo_gem) 754 goto err; 755 756 /* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized 757 list (vma_list), so better set the list head here */ 758 DRMINITLISTHEAD(&bo_gem->vma_list); 759 760 bo_gem->bo.size = bo_size; 761 762 memclear(create); 763 create.size = bo_size; 764 765 ret = drmIoctl(bufmgr_gem->fd, 766 DRM_IOCTL_I915_GEM_CREATE, 767 &create); 768 if (ret != 0) { 769 free(bo_gem); 770 goto err; 771 } 772 773 bo_gem->gem_handle = create.handle; 774 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 775 gem_handle, sizeof(bo_gem->gem_handle), 776 bo_gem); 777 778 bo_gem->bo.handle = bo_gem->gem_handle; 779 bo_gem->bo.bufmgr = bufmgr; 780 bo_gem->bo.align = alignment; 781 782 bo_gem->tiling_mode = I915_TILING_NONE; 783 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; 784 bo_gem->stride = 0; 785 786 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo, 787 tiling_mode, 788 stride)) 789 goto err_free; 790 } 791 792 bo_gem->name = name; 793 atomic_set(&bo_gem->refcount, 1); 794 bo_gem->validate_index = -1; 795 bo_gem->reloc_tree_fences = 0; 796 bo_gem->used_as_reloc_target = false; 797 bo_gem->has_error = false; 798 bo_gem->reusable = true; 799 800 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment); 801 pthread_mutex_unlock(&bufmgr_gem->lock); 802 803 DBG("bo_create: buf %d (%s) %ldb\n", 804 bo_gem->gem_handle, bo_gem->name, size); 805 806 return &bo_gem->bo; 807 808 err_free: 809 drm_intel_gem_bo_free(&bo_gem->bo); 810 err: 811 pthread_mutex_unlock(&bufmgr_gem->lock); 812 return NULL; 813 } 814 815 static drm_intel_bo * 816 drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr, 817 const char *name, 818 unsigned long size, 819 unsigned int alignment) 820 { 821 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 822 BO_ALLOC_FOR_RENDER, 823 I915_TILING_NONE, 0, 824 alignment); 825 } 826 827 static drm_intel_bo * 828 drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr, 829 const char *name, 830 unsigned long size, 831 unsigned int alignment) 832 { 833 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0, 834 I915_TILING_NONE, 0, 0); 835 } 836 837 static drm_intel_bo * 838 drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name, 839 int x, int y, int cpp, uint32_t *tiling_mode, 840 unsigned long *pitch, unsigned long flags) 841 { 842 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 843 unsigned long size, stride; 844 uint32_t tiling; 845 846 do { 847 unsigned long aligned_y, height_alignment; 848 849 tiling = *tiling_mode; 850 851 /* If we're tiled, our allocations are in 8 or 32-row blocks, 852 * so failure to align our height means that we won't allocate 853 * enough pages. 854 * 855 * If we're untiled, we still have to align to 2 rows high 856 * because the data port accesses 2x2 blocks even if the 857 * bottom row isn't to be rendered, so failure to align means 858 * we could walk off the end of the GTT and fault. This is 859 * documented on 965, and may be the case on older chipsets 860 * too so we try to be careful. 861 */ 862 aligned_y = y; 863 height_alignment = 2; 864 865 if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE) 866 height_alignment = 16; 867 else if (tiling == I915_TILING_X 868 || (IS_915(bufmgr_gem->pci_device) 869 && tiling == I915_TILING_Y)) 870 height_alignment = 8; 871 else if (tiling == I915_TILING_Y) 872 height_alignment = 32; 873 aligned_y = ALIGN(y, height_alignment); 874 875 stride = x * cpp; 876 stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode); 877 size = stride * aligned_y; 878 size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode); 879 } while (*tiling_mode != tiling); 880 *pitch = stride; 881 882 if (tiling == I915_TILING_NONE) 883 stride = 0; 884 885 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags, 886 tiling, stride, 0); 887 } 888 889 static drm_intel_bo * 890 drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr, 891 const char *name, 892 void *addr, 893 uint32_t tiling_mode, 894 uint32_t stride, 895 unsigned long size, 896 unsigned long flags) 897 { 898 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 899 drm_intel_bo_gem *bo_gem; 900 int ret; 901 struct drm_i915_gem_userptr userptr; 902 903 /* Tiling with userptr surfaces is not supported 904 * on all hardware so refuse it for time being. 905 */ 906 if (tiling_mode != I915_TILING_NONE) 907 return NULL; 908 909 bo_gem = calloc(1, sizeof(*bo_gem)); 910 if (!bo_gem) 911 return NULL; 912 913 atomic_set(&bo_gem->refcount, 1); 914 DRMINITLISTHEAD(&bo_gem->vma_list); 915 916 bo_gem->bo.size = size; 917 918 memclear(userptr); 919 userptr.user_ptr = (__u64)((unsigned long)addr); 920 userptr.user_size = size; 921 userptr.flags = flags; 922 923 ret = drmIoctl(bufmgr_gem->fd, 924 DRM_IOCTL_I915_GEM_USERPTR, 925 &userptr); 926 if (ret != 0) { 927 DBG("bo_create_userptr: " 928 "ioctl failed with user ptr %p size 0x%lx, " 929 "user flags 0x%lx\n", addr, size, flags); 930 free(bo_gem); 931 return NULL; 932 } 933 934 pthread_mutex_lock(&bufmgr_gem->lock); 935 936 bo_gem->gem_handle = userptr.handle; 937 bo_gem->bo.handle = bo_gem->gem_handle; 938 bo_gem->bo.bufmgr = bufmgr; 939 bo_gem->is_userptr = true; 940 bo_gem->bo.virtual = addr; 941 /* Save the address provided by user */ 942 bo_gem->user_virtual = addr; 943 bo_gem->tiling_mode = I915_TILING_NONE; 944 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; 945 bo_gem->stride = 0; 946 947 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 948 gem_handle, sizeof(bo_gem->gem_handle), 949 bo_gem); 950 951 bo_gem->name = name; 952 bo_gem->validate_index = -1; 953 bo_gem->reloc_tree_fences = 0; 954 bo_gem->used_as_reloc_target = false; 955 bo_gem->has_error = false; 956 bo_gem->reusable = false; 957 958 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 959 pthread_mutex_unlock(&bufmgr_gem->lock); 960 961 DBG("bo_create_userptr: " 962 "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n", 963 addr, bo_gem->gem_handle, bo_gem->name, 964 size, stride, tiling_mode); 965 966 return &bo_gem->bo; 967 } 968 969 static bool 970 has_userptr(drm_intel_bufmgr_gem *bufmgr_gem) 971 { 972 int ret; 973 void *ptr; 974 long pgsz; 975 struct drm_i915_gem_userptr userptr; 976 977 pgsz = sysconf(_SC_PAGESIZE); 978 assert(pgsz > 0); 979 980 ret = posix_memalign(&ptr, pgsz, pgsz); 981 if (ret) { 982 DBG("Failed to get a page (%ld) for userptr detection!\n", 983 pgsz); 984 return false; 985 } 986 987 memclear(userptr); 988 userptr.user_ptr = (__u64)(unsigned long)ptr; 989 userptr.user_size = pgsz; 990 991 retry: 992 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr); 993 if (ret) { 994 if (errno == ENODEV && userptr.flags == 0) { 995 userptr.flags = I915_USERPTR_UNSYNCHRONIZED; 996 goto retry; 997 } 998 free(ptr); 999 return false; 1000 } 1001 1002 /* We don't release the userptr bo here as we want to keep the 1003 * kernel mm tracking alive for our lifetime. The first time we 1004 * create a userptr object the kernel has to install a mmu_notifer 1005 * which is a heavyweight operation (e.g. it requires taking all 1006 * mm_locks and stop_machine()). 1007 */ 1008 1009 bufmgr_gem->userptr_active.ptr = ptr; 1010 bufmgr_gem->userptr_active.handle = userptr.handle; 1011 1012 return true; 1013 } 1014 1015 static drm_intel_bo * 1016 check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr, 1017 const char *name, 1018 void *addr, 1019 uint32_t tiling_mode, 1020 uint32_t stride, 1021 unsigned long size, 1022 unsigned long flags) 1023 { 1024 if (has_userptr((drm_intel_bufmgr_gem *)bufmgr)) 1025 bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr; 1026 else 1027 bufmgr->bo_alloc_userptr = NULL; 1028 1029 return drm_intel_bo_alloc_userptr(bufmgr, name, addr, 1030 tiling_mode, stride, size, flags); 1031 } 1032 1033 static int get_tiling_mode(drm_intel_bufmgr_gem *bufmgr_gem, 1034 uint32_t gem_handle, 1035 uint32_t *tiling_mode, 1036 uint32_t *swizzle_mode) 1037 { 1038 struct drm_i915_gem_get_tiling get_tiling = { 1039 .handle = gem_handle, 1040 }; 1041 int ret; 1042 1043 ret = drmIoctl(bufmgr_gem->fd, 1044 DRM_IOCTL_I915_GEM_GET_TILING, 1045 &get_tiling); 1046 if (ret != 0 && errno != EOPNOTSUPP) 1047 return ret; 1048 1049 *tiling_mode = get_tiling.tiling_mode; 1050 *swizzle_mode = get_tiling.swizzle_mode; 1051 1052 return 0; 1053 } 1054 1055 /** 1056 * Returns a drm_intel_bo wrapping the given buffer object handle. 1057 * 1058 * This can be used when one application needs to pass a buffer object 1059 * to another. 1060 */ 1061 drm_public drm_intel_bo * 1062 drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr, 1063 const char *name, 1064 unsigned int handle) 1065 { 1066 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1067 drm_intel_bo_gem *bo_gem; 1068 int ret; 1069 struct drm_gem_open open_arg; 1070 1071 /* At the moment most applications only have a few named bo. 1072 * For instance, in a DRI client only the render buffers passed 1073 * between X and the client are named. And since X returns the 1074 * alternating names for the front/back buffer a linear search 1075 * provides a sufficiently fast match. 1076 */ 1077 pthread_mutex_lock(&bufmgr_gem->lock); 1078 HASH_FIND(name_hh, bufmgr_gem->name_table, 1079 &handle, sizeof(handle), bo_gem); 1080 if (bo_gem) { 1081 drm_intel_gem_bo_reference(&bo_gem->bo); 1082 goto out; 1083 } 1084 1085 memclear(open_arg); 1086 open_arg.name = handle; 1087 ret = drmIoctl(bufmgr_gem->fd, 1088 DRM_IOCTL_GEM_OPEN, 1089 &open_arg); 1090 if (ret != 0) { 1091 DBG("Couldn't reference %s handle 0x%08x: %s\n", 1092 name, handle, strerror(errno)); 1093 bo_gem = NULL; 1094 goto out; 1095 } 1096 /* Now see if someone has used a prime handle to get this 1097 * object from the kernel before by looking through the list 1098 * again for a matching gem_handle 1099 */ 1100 HASH_FIND(handle_hh, bufmgr_gem->handle_table, 1101 &open_arg.handle, sizeof(open_arg.handle), bo_gem); 1102 if (bo_gem) { 1103 drm_intel_gem_bo_reference(&bo_gem->bo); 1104 goto out; 1105 } 1106 1107 bo_gem = calloc(1, sizeof(*bo_gem)); 1108 if (!bo_gem) 1109 goto out; 1110 1111 atomic_set(&bo_gem->refcount, 1); 1112 DRMINITLISTHEAD(&bo_gem->vma_list); 1113 1114 bo_gem->bo.size = open_arg.size; 1115 bo_gem->bo.offset = 0; 1116 bo_gem->bo.offset64 = 0; 1117 bo_gem->bo.virtual = NULL; 1118 bo_gem->bo.bufmgr = bufmgr; 1119 bo_gem->name = name; 1120 bo_gem->validate_index = -1; 1121 bo_gem->gem_handle = open_arg.handle; 1122 bo_gem->bo.handle = open_arg.handle; 1123 bo_gem->global_name = handle; 1124 bo_gem->reusable = false; 1125 1126 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 1127 gem_handle, sizeof(bo_gem->gem_handle), bo_gem); 1128 HASH_ADD(name_hh, bufmgr_gem->name_table, 1129 global_name, sizeof(bo_gem->global_name), bo_gem); 1130 1131 ret = get_tiling_mode(bufmgr_gem, bo_gem->gem_handle, 1132 &bo_gem->tiling_mode, &bo_gem->swizzle_mode); 1133 if (ret != 0) 1134 goto err_unref; 1135 1136 /* XXX stride is unknown */ 1137 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 1138 DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name); 1139 1140 out: 1141 pthread_mutex_unlock(&bufmgr_gem->lock); 1142 return &bo_gem->bo; 1143 1144 err_unref: 1145 drm_intel_gem_bo_free(&bo_gem->bo); 1146 pthread_mutex_unlock(&bufmgr_gem->lock); 1147 return NULL; 1148 } 1149 1150 static void 1151 drm_intel_gem_bo_free(drm_intel_bo *bo) 1152 { 1153 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1154 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1155 int ret; 1156 1157 DRMLISTDEL(&bo_gem->vma_list); 1158 if (bo_gem->mem_virtual) { 1159 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0)); 1160 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size); 1161 bufmgr_gem->vma_count--; 1162 } 1163 if (bo_gem->wc_virtual) { 1164 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->wc_virtual, 0)); 1165 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size); 1166 bufmgr_gem->vma_count--; 1167 } 1168 if (bo_gem->gtt_virtual) { 1169 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size); 1170 bufmgr_gem->vma_count--; 1171 } 1172 1173 if (bo_gem->global_name) 1174 HASH_DELETE(name_hh, bufmgr_gem->name_table, bo_gem); 1175 HASH_DELETE(handle_hh, bufmgr_gem->handle_table, bo_gem); 1176 1177 /* Close this object */ 1178 ret = drmCloseBufferHandle(bufmgr_gem->fd, bo_gem->gem_handle); 1179 if (ret != 0) { 1180 DBG("drmCloseBufferHandle %d failed (%s): %s\n", 1181 bo_gem->gem_handle, bo_gem->name, strerror(errno)); 1182 } 1183 free(bo); 1184 } 1185 1186 static void 1187 drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo) 1188 { 1189 #if HAVE_VALGRIND 1190 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1191 1192 if (bo_gem->mem_virtual) 1193 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size); 1194 1195 if (bo_gem->wc_virtual) 1196 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->wc_virtual, bo->size); 1197 1198 if (bo_gem->gtt_virtual) 1199 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size); 1200 #endif 1201 } 1202 1203 /** Frees all cached buffers significantly older than @time. */ 1204 static void 1205 drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time) 1206 { 1207 int i; 1208 1209 if (bufmgr_gem->time == time) 1210 return; 1211 1212 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 1213 struct drm_intel_gem_bo_bucket *bucket = 1214 &bufmgr_gem->cache_bucket[i]; 1215 1216 while (!DRMLISTEMPTY(&bucket->head)) { 1217 drm_intel_bo_gem *bo_gem; 1218 1219 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1220 bucket->head.next, head); 1221 if (time - bo_gem->free_time <= 1) 1222 break; 1223 1224 DRMLISTDEL(&bo_gem->head); 1225 1226 drm_intel_gem_bo_free(&bo_gem->bo); 1227 } 1228 } 1229 1230 bufmgr_gem->time = time; 1231 } 1232 1233 static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem) 1234 { 1235 int limit; 1236 1237 DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__, 1238 bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max); 1239 1240 if (bufmgr_gem->vma_max < 0) 1241 return; 1242 1243 /* We may need to evict a few entries in order to create new mmaps */ 1244 limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open; 1245 if (limit < 0) 1246 limit = 0; 1247 1248 while (bufmgr_gem->vma_count > limit) { 1249 drm_intel_bo_gem *bo_gem; 1250 1251 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1252 bufmgr_gem->vma_cache.next, 1253 vma_list); 1254 assert(bo_gem->map_count == 0); 1255 DRMLISTDELINIT(&bo_gem->vma_list); 1256 1257 if (bo_gem->mem_virtual) { 1258 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size); 1259 bo_gem->mem_virtual = NULL; 1260 bufmgr_gem->vma_count--; 1261 } 1262 if (bo_gem->wc_virtual) { 1263 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size); 1264 bo_gem->wc_virtual = NULL; 1265 bufmgr_gem->vma_count--; 1266 } 1267 if (bo_gem->gtt_virtual) { 1268 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size); 1269 bo_gem->gtt_virtual = NULL; 1270 bufmgr_gem->vma_count--; 1271 } 1272 } 1273 } 1274 1275 static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem, 1276 drm_intel_bo_gem *bo_gem) 1277 { 1278 bufmgr_gem->vma_open--; 1279 DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache); 1280 if (bo_gem->mem_virtual) 1281 bufmgr_gem->vma_count++; 1282 if (bo_gem->wc_virtual) 1283 bufmgr_gem->vma_count++; 1284 if (bo_gem->gtt_virtual) 1285 bufmgr_gem->vma_count++; 1286 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 1287 } 1288 1289 static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem, 1290 drm_intel_bo_gem *bo_gem) 1291 { 1292 bufmgr_gem->vma_open++; 1293 DRMLISTDEL(&bo_gem->vma_list); 1294 if (bo_gem->mem_virtual) 1295 bufmgr_gem->vma_count--; 1296 if (bo_gem->wc_virtual) 1297 bufmgr_gem->vma_count--; 1298 if (bo_gem->gtt_virtual) 1299 bufmgr_gem->vma_count--; 1300 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 1301 } 1302 1303 static void 1304 drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time) 1305 { 1306 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1307 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1308 struct drm_intel_gem_bo_bucket *bucket; 1309 int i; 1310 1311 /* Unreference all the target buffers */ 1312 for (i = 0; i < bo_gem->reloc_count; i++) { 1313 if (bo_gem->reloc_target_info[i].bo != bo) { 1314 drm_intel_gem_bo_unreference_locked_timed(bo_gem-> 1315 reloc_target_info[i].bo, 1316 time); 1317 } 1318 } 1319 for (i = 0; i < bo_gem->softpin_target_count; i++) 1320 drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i], 1321 time); 1322 bo_gem->kflags = 0; 1323 bo_gem->reloc_count = 0; 1324 bo_gem->used_as_reloc_target = false; 1325 bo_gem->softpin_target_count = 0; 1326 1327 DBG("bo_unreference final: %d (%s)\n", 1328 bo_gem->gem_handle, bo_gem->name); 1329 1330 /* release memory associated with this object */ 1331 if (bo_gem->reloc_target_info) { 1332 free(bo_gem->reloc_target_info); 1333 bo_gem->reloc_target_info = NULL; 1334 } 1335 if (bo_gem->relocs) { 1336 free(bo_gem->relocs); 1337 bo_gem->relocs = NULL; 1338 } 1339 if (bo_gem->softpin_target) { 1340 free(bo_gem->softpin_target); 1341 bo_gem->softpin_target = NULL; 1342 bo_gem->softpin_target_size = 0; 1343 } 1344 1345 /* Clear any left-over mappings */ 1346 if (bo_gem->map_count) { 1347 DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count); 1348 bo_gem->map_count = 0; 1349 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1350 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1351 } 1352 1353 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size); 1354 /* Put the buffer into our internal cache for reuse if we can. */ 1355 if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL && 1356 drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem, 1357 I915_MADV_DONTNEED)) { 1358 bo_gem->free_time = time; 1359 1360 bo_gem->name = NULL; 1361 bo_gem->validate_index = -1; 1362 1363 DRMLISTADDTAIL(&bo_gem->head, &bucket->head); 1364 } else { 1365 drm_intel_gem_bo_free(bo); 1366 } 1367 } 1368 1369 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, 1370 time_t time) 1371 { 1372 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1373 1374 assert(atomic_read(&bo_gem->refcount) > 0); 1375 if (atomic_dec_and_test(&bo_gem->refcount)) 1376 drm_intel_gem_bo_unreference_final(bo, time); 1377 } 1378 1379 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo) 1380 { 1381 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1382 drm_intel_bufmgr_gem *bufmgr_gem; 1383 struct timespec time; 1384 1385 assert(atomic_read(&bo_gem->refcount) > 0); 1386 1387 if (atomic_add_unless(&bo_gem->refcount, -1, 1)) 1388 return; 1389 1390 bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1391 1392 clock_gettime(CLOCK_MONOTONIC, &time); 1393 1394 pthread_mutex_lock(&bufmgr_gem->lock); 1395 1396 if (atomic_dec_and_test(&bo_gem->refcount)) { 1397 drm_intel_gem_bo_unreference_final(bo, time.tv_sec); 1398 drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec); 1399 } 1400 1401 pthread_mutex_unlock(&bufmgr_gem->lock); 1402 } 1403 1404 static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable) 1405 { 1406 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1407 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1408 struct drm_i915_gem_set_domain set_domain; 1409 int ret; 1410 1411 if (bo_gem->is_userptr) { 1412 /* Return the same user ptr */ 1413 bo->virtual = bo_gem->user_virtual; 1414 return 0; 1415 } 1416 1417 pthread_mutex_lock(&bufmgr_gem->lock); 1418 1419 if (bo_gem->map_count++ == 0) 1420 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 1421 1422 if (!bo_gem->mem_virtual) { 1423 struct drm_i915_gem_mmap mmap_arg; 1424 1425 DBG("bo_map: %d (%s), map_count=%d\n", 1426 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 1427 1428 memclear(mmap_arg); 1429 mmap_arg.handle = bo_gem->gem_handle; 1430 mmap_arg.size = bo->size; 1431 ret = drmIoctl(bufmgr_gem->fd, 1432 DRM_IOCTL_I915_GEM_MMAP, 1433 &mmap_arg); 1434 if (ret != 0) { 1435 ret = -errno; 1436 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 1437 __FILE__, __LINE__, bo_gem->gem_handle, 1438 bo_gem->name, strerror(errno)); 1439 if (--bo_gem->map_count == 0) 1440 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1441 pthread_mutex_unlock(&bufmgr_gem->lock); 1442 return ret; 1443 } 1444 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 1445 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 1446 } 1447 DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, 1448 bo_gem->mem_virtual); 1449 bo->virtual = bo_gem->mem_virtual; 1450 1451 memclear(set_domain); 1452 set_domain.handle = bo_gem->gem_handle; 1453 set_domain.read_domains = I915_GEM_DOMAIN_CPU; 1454 if (write_enable) 1455 set_domain.write_domain = I915_GEM_DOMAIN_CPU; 1456 else 1457 set_domain.write_domain = 0; 1458 ret = drmIoctl(bufmgr_gem->fd, 1459 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1460 &set_domain); 1461 if (ret != 0) { 1462 DBG("%s:%d: Error setting to CPU domain %d: %s\n", 1463 __FILE__, __LINE__, bo_gem->gem_handle, 1464 strerror(errno)); 1465 } 1466 1467 if (write_enable) 1468 bo_gem->mapped_cpu_write = true; 1469 1470 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1471 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size)); 1472 pthread_mutex_unlock(&bufmgr_gem->lock); 1473 1474 return 0; 1475 } 1476 1477 static int 1478 map_gtt(drm_intel_bo *bo) 1479 { 1480 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1481 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1482 int ret; 1483 1484 if (bo_gem->is_userptr) 1485 return -EINVAL; 1486 1487 if (bo_gem->map_count++ == 0) 1488 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 1489 1490 /* Get a mapping of the buffer if we haven't before. */ 1491 if (bo_gem->gtt_virtual == NULL) { 1492 struct drm_i915_gem_mmap_gtt mmap_arg; 1493 1494 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n", 1495 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 1496 1497 memclear(mmap_arg); 1498 mmap_arg.handle = bo_gem->gem_handle; 1499 1500 /* Get the fake offset back... */ 1501 ret = drmIoctl(bufmgr_gem->fd, 1502 DRM_IOCTL_I915_GEM_MMAP_GTT, 1503 &mmap_arg); 1504 if (ret != 0) { 1505 ret = -errno; 1506 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n", 1507 __FILE__, __LINE__, 1508 bo_gem->gem_handle, bo_gem->name, 1509 strerror(errno)); 1510 if (--bo_gem->map_count == 0) 1511 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1512 return ret; 1513 } 1514 1515 /* and mmap it */ 1516 bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, 1517 MAP_SHARED, bufmgr_gem->fd, 1518 mmap_arg.offset); 1519 if (bo_gem->gtt_virtual == MAP_FAILED) { 1520 bo_gem->gtt_virtual = NULL; 1521 ret = -errno; 1522 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 1523 __FILE__, __LINE__, 1524 bo_gem->gem_handle, bo_gem->name, 1525 strerror(errno)); 1526 if (--bo_gem->map_count == 0) 1527 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1528 return ret; 1529 } 1530 } 1531 1532 bo->virtual = bo_gem->gtt_virtual; 1533 1534 DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, 1535 bo_gem->gtt_virtual); 1536 1537 return 0; 1538 } 1539 1540 drm_public int 1541 drm_intel_gem_bo_map_gtt(drm_intel_bo *bo) 1542 { 1543 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1544 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1545 struct drm_i915_gem_set_domain set_domain; 1546 int ret; 1547 1548 pthread_mutex_lock(&bufmgr_gem->lock); 1549 1550 ret = map_gtt(bo); 1551 if (ret) { 1552 pthread_mutex_unlock(&bufmgr_gem->lock); 1553 return ret; 1554 } 1555 1556 /* Now move it to the GTT domain so that the GPU and CPU 1557 * caches are flushed and the GPU isn't actively using the 1558 * buffer. 1559 * 1560 * The pagefault handler does this domain change for us when 1561 * it has unbound the BO from the GTT, but it's up to us to 1562 * tell it when we're about to use things if we had done 1563 * rendering and it still happens to be bound to the GTT. 1564 */ 1565 memclear(set_domain); 1566 set_domain.handle = bo_gem->gem_handle; 1567 set_domain.read_domains = I915_GEM_DOMAIN_GTT; 1568 set_domain.write_domain = I915_GEM_DOMAIN_GTT; 1569 ret = drmIoctl(bufmgr_gem->fd, 1570 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1571 &set_domain); 1572 if (ret != 0) { 1573 DBG("%s:%d: Error setting domain %d: %s\n", 1574 __FILE__, __LINE__, bo_gem->gem_handle, 1575 strerror(errno)); 1576 } 1577 1578 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1579 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size)); 1580 pthread_mutex_unlock(&bufmgr_gem->lock); 1581 1582 return 0; 1583 } 1584 1585 /** 1586 * Performs a mapping of the buffer object like the normal GTT 1587 * mapping, but avoids waiting for the GPU to be done reading from or 1588 * rendering to the buffer. 1589 * 1590 * This is used in the implementation of GL_ARB_map_buffer_range: The 1591 * user asks to create a buffer, then does a mapping, fills some 1592 * space, runs a drawing command, then asks to map it again without 1593 * synchronizing because it guarantees that it won't write over the 1594 * data that the GPU is busy using (or, more specifically, that if it 1595 * does write over the data, it acknowledges that rendering is 1596 * undefined). 1597 */ 1598 1599 drm_public int 1600 drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo) 1601 { 1602 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1603 #if HAVE_VALGRIND 1604 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1605 #endif 1606 int ret; 1607 1608 /* If the CPU cache isn't coherent with the GTT, then use a 1609 * regular synchronized mapping. The problem is that we don't 1610 * track where the buffer was last used on the CPU side in 1611 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so 1612 * we would potentially corrupt the buffer even when the user 1613 * does reasonable things. 1614 */ 1615 if (!bufmgr_gem->has_llc) 1616 return drm_intel_gem_bo_map_gtt(bo); 1617 1618 pthread_mutex_lock(&bufmgr_gem->lock); 1619 1620 ret = map_gtt(bo); 1621 if (ret == 0) { 1622 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1623 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size)); 1624 } 1625 1626 pthread_mutex_unlock(&bufmgr_gem->lock); 1627 1628 return ret; 1629 } 1630 1631 static int drm_intel_gem_bo_unmap(drm_intel_bo *bo) 1632 { 1633 drm_intel_bufmgr_gem *bufmgr_gem; 1634 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1635 int ret = 0; 1636 1637 if (bo == NULL) 1638 return 0; 1639 1640 if (bo_gem->is_userptr) 1641 return 0; 1642 1643 bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1644 1645 pthread_mutex_lock(&bufmgr_gem->lock); 1646 1647 if (bo_gem->map_count <= 0) { 1648 DBG("attempted to unmap an unmapped bo\n"); 1649 pthread_mutex_unlock(&bufmgr_gem->lock); 1650 /* Preserve the old behaviour of just treating this as a 1651 * no-op rather than reporting the error. 1652 */ 1653 return 0; 1654 } 1655 1656 if (bo_gem->mapped_cpu_write) { 1657 struct drm_i915_gem_sw_finish sw_finish; 1658 1659 /* Cause a flush to happen if the buffer's pinned for 1660 * scanout, so the results show up in a timely manner. 1661 * Unlike GTT set domains, this only does work if the 1662 * buffer should be scanout-related. 1663 */ 1664 memclear(sw_finish); 1665 sw_finish.handle = bo_gem->gem_handle; 1666 ret = drmIoctl(bufmgr_gem->fd, 1667 DRM_IOCTL_I915_GEM_SW_FINISH, 1668 &sw_finish); 1669 ret = ret == -1 ? -errno : 0; 1670 1671 bo_gem->mapped_cpu_write = false; 1672 } 1673 1674 /* We need to unmap after every innovation as we cannot track 1675 * an open vma for every bo as that will exhaust the system 1676 * limits and cause later failures. 1677 */ 1678 if (--bo_gem->map_count == 0) { 1679 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1680 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1681 bo->virtual = NULL; 1682 } 1683 pthread_mutex_unlock(&bufmgr_gem->lock); 1684 1685 return ret; 1686 } 1687 1688 drm_public int 1689 drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo) 1690 { 1691 return drm_intel_gem_bo_unmap(bo); 1692 } 1693 1694 static bool is_cache_coherent(drm_intel_bo *bo) 1695 { 1696 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1697 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1698 struct drm_i915_gem_caching arg = {}; 1699 1700 arg.handle = bo_gem->gem_handle; 1701 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_CACHING, &arg)) 1702 assert(false); 1703 return arg.caching != I915_CACHING_NONE; 1704 } 1705 1706 static void set_domain(drm_intel_bo *bo, uint32_t read, uint32_t write) 1707 { 1708 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1709 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1710 struct drm_i915_gem_set_domain arg = {}; 1711 1712 arg.handle = bo_gem->gem_handle; 1713 arg.read_domains = read; 1714 arg.write_domain = write; 1715 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &arg)) 1716 assert(false); 1717 } 1718 1719 static int mmap_write(drm_intel_bo *bo, unsigned long offset, 1720 unsigned long length, const void *buf) 1721 { 1722 void *map = NULL; 1723 1724 if (!length) 1725 return 0; 1726 1727 if (is_cache_coherent(bo)) { 1728 map = drm_intel_gem_bo_map__cpu(bo); 1729 if (map) 1730 set_domain(bo, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); 1731 } 1732 if (!map) { 1733 map = drm_intel_gem_bo_map__wc(bo); 1734 if (map) 1735 set_domain(bo, I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC); 1736 } 1737 1738 assert(map); 1739 memcpy((char *)map + offset, buf, length); 1740 drm_intel_gem_bo_unmap(bo); 1741 return 0; 1742 } 1743 1744 static int mmap_read(drm_intel_bo *bo, unsigned long offset, 1745 unsigned long length, void *buf) 1746 { 1747 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1748 void *map = NULL; 1749 1750 if (!length) 1751 return 0; 1752 1753 if (bufmgr_gem->has_llc || is_cache_coherent(bo)) { 1754 map = drm_intel_gem_bo_map__cpu(bo); 1755 if (map) 1756 set_domain(bo, I915_GEM_DOMAIN_CPU, 0); 1757 } 1758 if (!map) { 1759 map = drm_intel_gem_bo_map__wc(bo); 1760 if (map) 1761 set_domain(bo, I915_GEM_DOMAIN_WC, 0); 1762 } 1763 1764 assert(map); 1765 memcpy(buf, (char *)map + offset, length); 1766 drm_intel_gem_bo_unmap(bo); 1767 return 0; 1768 } 1769 1770 static int 1771 drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset, 1772 unsigned long size, const void *data) 1773 { 1774 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1775 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1776 struct drm_i915_gem_pwrite pwrite; 1777 int ret; 1778 1779 if (bo_gem->is_userptr) 1780 return -EINVAL; 1781 1782 memclear(pwrite); 1783 pwrite.handle = bo_gem->gem_handle; 1784 pwrite.offset = offset; 1785 pwrite.size = size; 1786 pwrite.data_ptr = (uint64_t) (uintptr_t) data; 1787 ret = drmIoctl(bufmgr_gem->fd, 1788 DRM_IOCTL_I915_GEM_PWRITE, 1789 &pwrite); 1790 if (ret) 1791 ret = -errno; 1792 1793 if (ret != 0 && ret != -EOPNOTSUPP) { 1794 DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n", 1795 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, 1796 (int)size, strerror(errno)); 1797 return ret; 1798 } 1799 1800 if (ret == -EOPNOTSUPP) 1801 mmap_write(bo, offset, size, data); 1802 1803 return 0; 1804 } 1805 1806 static int 1807 drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id) 1808 { 1809 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1810 struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id; 1811 int ret; 1812 1813 memclear(get_pipe_from_crtc_id); 1814 get_pipe_from_crtc_id.crtc_id = crtc_id; 1815 ret = drmIoctl(bufmgr_gem->fd, 1816 DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, 1817 &get_pipe_from_crtc_id); 1818 if (ret != 0) { 1819 /* We return -1 here to signal that we don't 1820 * know which pipe is associated with this crtc. 1821 * This lets the caller know that this information 1822 * isn't available; using the wrong pipe for 1823 * vblank waiting can cause the chipset to lock up 1824 */ 1825 return -1; 1826 } 1827 1828 return get_pipe_from_crtc_id.pipe; 1829 } 1830 1831 static int 1832 drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset, 1833 unsigned long size, void *data) 1834 { 1835 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1836 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1837 struct drm_i915_gem_pread pread; 1838 int ret; 1839 1840 if (bo_gem->is_userptr) 1841 return -EINVAL; 1842 1843 memclear(pread); 1844 pread.handle = bo_gem->gem_handle; 1845 pread.offset = offset; 1846 pread.size = size; 1847 pread.data_ptr = (uint64_t) (uintptr_t) data; 1848 ret = drmIoctl(bufmgr_gem->fd, 1849 DRM_IOCTL_I915_GEM_PREAD, 1850 &pread); 1851 if (ret) 1852 ret = -errno; 1853 1854 if (ret != 0 && ret != -EOPNOTSUPP) { 1855 DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n", 1856 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, 1857 (int)size, strerror(errno)); 1858 return ret; 1859 } 1860 1861 if (ret == -EOPNOTSUPP) 1862 mmap_read(bo, offset, size, data); 1863 1864 return 0; 1865 } 1866 1867 /** Waits for all GPU rendering with the object to have completed. */ 1868 static void 1869 drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo) 1870 { 1871 drm_intel_gem_bo_start_gtt_access(bo, 1); 1872 } 1873 1874 /** 1875 * Waits on a BO for the given amount of time. 1876 * 1877 * @bo: buffer object to wait for 1878 * @timeout_ns: amount of time to wait in nanoseconds. 1879 * If value is less than 0, an infinite wait will occur. 1880 * 1881 * Returns 0 if the wait was successful ie. the last batch referencing the 1882 * object has completed within the allotted time. Otherwise some negative return 1883 * value describes the error. Of particular interest is -ETIME when the wait has 1884 * failed to yield the desired result. 1885 * 1886 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows 1887 * the operation to give up after a certain amount of time. Another subtle 1888 * difference is the internal locking semantics are different (this variant does 1889 * not hold the lock for the duration of the wait). This makes the wait subject 1890 * to a larger userspace race window. 1891 * 1892 * The implementation shall wait until the object is no longer actively 1893 * referenced within a batch buffer at the time of the call. The wait will 1894 * not guarantee that the buffer is re-issued via another thread, or an flinked 1895 * handle. Userspace must make sure this race does not occur if such precision 1896 * is important. 1897 * 1898 * Note that some kernels have broken the inifite wait for negative values 1899 * promise, upgrade to latest stable kernels if this is the case. 1900 */ 1901 drm_public int 1902 drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns) 1903 { 1904 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1905 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1906 struct drm_i915_gem_wait wait; 1907 int ret; 1908 1909 if (!bufmgr_gem->has_wait_timeout) { 1910 DBG("%s:%d: Timed wait is not supported. Falling back to " 1911 "infinite wait\n", __FILE__, __LINE__); 1912 if (timeout_ns) { 1913 drm_intel_gem_bo_wait_rendering(bo); 1914 return 0; 1915 } else { 1916 return drm_intel_gem_bo_busy(bo) ? -ETIME : 0; 1917 } 1918 } 1919 1920 memclear(wait); 1921 wait.bo_handle = bo_gem->gem_handle; 1922 wait.timeout_ns = timeout_ns; 1923 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); 1924 if (ret == -1) 1925 return -errno; 1926 1927 return ret; 1928 } 1929 1930 /** 1931 * Sets the object to the GTT read and possibly write domain, used by the X 1932 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt(). 1933 * 1934 * In combination with drm_intel_gem_bo_pin() and manual fence management, we 1935 * can do tiled pixmaps this way. 1936 */ 1937 drm_public void 1938 drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable) 1939 { 1940 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1941 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1942 struct drm_i915_gem_set_domain set_domain; 1943 int ret; 1944 1945 memclear(set_domain); 1946 set_domain.handle = bo_gem->gem_handle; 1947 set_domain.read_domains = I915_GEM_DOMAIN_GTT; 1948 set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0; 1949 ret = drmIoctl(bufmgr_gem->fd, 1950 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1951 &set_domain); 1952 if (ret != 0) { 1953 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n", 1954 __FILE__, __LINE__, bo_gem->gem_handle, 1955 set_domain.read_domains, set_domain.write_domain, 1956 strerror(errno)); 1957 } 1958 } 1959 1960 static void 1961 drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr) 1962 { 1963 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1964 int i, ret; 1965 1966 free(bufmgr_gem->exec2_objects); 1967 free(bufmgr_gem->exec_bos); 1968 1969 pthread_mutex_destroy(&bufmgr_gem->lock); 1970 1971 /* Free any cached buffer objects we were going to reuse */ 1972 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 1973 struct drm_intel_gem_bo_bucket *bucket = 1974 &bufmgr_gem->cache_bucket[i]; 1975 drm_intel_bo_gem *bo_gem; 1976 1977 while (!DRMLISTEMPTY(&bucket->head)) { 1978 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1979 bucket->head.next, head); 1980 DRMLISTDEL(&bo_gem->head); 1981 1982 drm_intel_gem_bo_free(&bo_gem->bo); 1983 } 1984 } 1985 1986 /* Release userptr bo kept hanging around for optimisation. */ 1987 if (bufmgr_gem->userptr_active.ptr) { 1988 ret = drmCloseBufferHandle(bufmgr_gem->fd, 1989 bufmgr_gem->userptr_active.handle); 1990 free(bufmgr_gem->userptr_active.ptr); 1991 if (ret) 1992 fprintf(stderr, 1993 "Failed to release test userptr object! (%d) " 1994 "i915 kernel driver may not be sane!\n", errno); 1995 } 1996 1997 free(bufmgr); 1998 } 1999 2000 /** 2001 * Adds the target buffer to the validation list and adds the relocation 2002 * to the reloc_buffer's relocation list. 2003 * 2004 * The relocation entry at the given offset must already contain the 2005 * precomputed relocation value, because the kernel will optimize out 2006 * the relocation entry write when the buffer hasn't moved from the 2007 * last known offset in target_bo. 2008 */ 2009 static int 2010 do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, 2011 drm_intel_bo *target_bo, uint32_t target_offset, 2012 uint32_t read_domains, uint32_t write_domain, 2013 bool need_fence) 2014 { 2015 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2016 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2017 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 2018 bool fenced_command; 2019 2020 if (bo_gem->has_error) 2021 return -ENOMEM; 2022 2023 if (target_bo_gem->has_error) { 2024 bo_gem->has_error = true; 2025 return -ENOMEM; 2026 } 2027 2028 /* We never use HW fences for rendering on 965+ */ 2029 if (bufmgr_gem->gen >= 4) 2030 need_fence = false; 2031 2032 fenced_command = need_fence; 2033 if (target_bo_gem->tiling_mode == I915_TILING_NONE) 2034 need_fence = false; 2035 2036 /* Create a new relocation list if needed */ 2037 if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo)) 2038 return -ENOMEM; 2039 2040 /* Check overflow */ 2041 assert(bo_gem->reloc_count < bufmgr_gem->max_relocs); 2042 2043 /* Check args */ 2044 assert(offset <= bo->size - 4); 2045 assert((write_domain & (write_domain - 1)) == 0); 2046 2047 /* An object needing a fence is a tiled buffer, so it won't have 2048 * relocs to other buffers. 2049 */ 2050 if (need_fence) { 2051 assert(target_bo_gem->reloc_count == 0); 2052 target_bo_gem->reloc_tree_fences = 1; 2053 } 2054 2055 /* Make sure that we're not adding a reloc to something whose size has 2056 * already been accounted for. 2057 */ 2058 assert(!bo_gem->used_as_reloc_target); 2059 if (target_bo_gem != bo_gem) { 2060 target_bo_gem->used_as_reloc_target = true; 2061 bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size; 2062 bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences; 2063 } 2064 2065 bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo; 2066 if (target_bo != bo) 2067 drm_intel_gem_bo_reference(target_bo); 2068 if (fenced_command) 2069 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 2070 DRM_INTEL_RELOC_FENCE; 2071 else 2072 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0; 2073 2074 bo_gem->relocs[bo_gem->reloc_count].offset = offset; 2075 bo_gem->relocs[bo_gem->reloc_count].delta = target_offset; 2076 bo_gem->relocs[bo_gem->reloc_count].target_handle = 2077 target_bo_gem->gem_handle; 2078 bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains; 2079 bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain; 2080 bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64; 2081 bo_gem->reloc_count++; 2082 2083 return 0; 2084 } 2085 2086 static void 2087 drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable) 2088 { 2089 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2090 2091 if (enable) 2092 bo_gem->kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 2093 else 2094 bo_gem->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 2095 } 2096 2097 static int 2098 drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo) 2099 { 2100 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2101 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2102 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 2103 if (bo_gem->has_error) 2104 return -ENOMEM; 2105 2106 if (target_bo_gem->has_error) { 2107 bo_gem->has_error = true; 2108 return -ENOMEM; 2109 } 2110 2111 if (!(target_bo_gem->kflags & EXEC_OBJECT_PINNED)) 2112 return -EINVAL; 2113 if (target_bo_gem == bo_gem) 2114 return -EINVAL; 2115 2116 if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) { 2117 int new_size = bo_gem->softpin_target_size * 2; 2118 if (new_size == 0) 2119 new_size = bufmgr_gem->max_relocs; 2120 2121 bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size * 2122 sizeof(drm_intel_bo *)); 2123 if (!bo_gem->softpin_target) 2124 return -ENOMEM; 2125 2126 bo_gem->softpin_target_size = new_size; 2127 } 2128 bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo; 2129 drm_intel_gem_bo_reference(target_bo); 2130 bo_gem->softpin_target_count++; 2131 2132 return 0; 2133 } 2134 2135 static int 2136 drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, 2137 drm_intel_bo *target_bo, uint32_t target_offset, 2138 uint32_t read_domains, uint32_t write_domain) 2139 { 2140 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 2141 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo; 2142 2143 if (target_bo_gem->kflags & EXEC_OBJECT_PINNED) 2144 return drm_intel_gem_bo_add_softpin_target(bo, target_bo); 2145 else 2146 return do_bo_emit_reloc(bo, offset, target_bo, target_offset, 2147 read_domains, write_domain, 2148 !bufmgr_gem->fenced_relocs); 2149 } 2150 2151 static int 2152 drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset, 2153 drm_intel_bo *target_bo, 2154 uint32_t target_offset, 2155 uint32_t read_domains, uint32_t write_domain) 2156 { 2157 return do_bo_emit_reloc(bo, offset, target_bo, target_offset, 2158 read_domains, write_domain, true); 2159 } 2160 2161 drm_public int 2162 drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo) 2163 { 2164 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2165 2166 return bo_gem->reloc_count; 2167 } 2168 2169 /** 2170 * Removes existing relocation entries in the BO after "start". 2171 * 2172 * This allows a user to avoid a two-step process for state setup with 2173 * counting up all the buffer objects and doing a 2174 * drm_intel_bufmgr_check_aperture_space() before emitting any of the 2175 * relocations for the state setup. Instead, save the state of the 2176 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the 2177 * state, and then check if it still fits in the aperture. 2178 * 2179 * Any further drm_intel_bufmgr_check_aperture_space() queries 2180 * involving this buffer in the tree are undefined after this call. 2181 * 2182 * This also removes all softpinned targets being referenced by the BO. 2183 */ 2184 drm_public void 2185 drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start) 2186 { 2187 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2188 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2189 int i; 2190 struct timespec time; 2191 2192 clock_gettime(CLOCK_MONOTONIC, &time); 2193 2194 assert(bo_gem->reloc_count >= start); 2195 2196 /* Unreference the cleared target buffers */ 2197 pthread_mutex_lock(&bufmgr_gem->lock); 2198 2199 for (i = start; i < bo_gem->reloc_count; i++) { 2200 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo; 2201 if (&target_bo_gem->bo != bo) { 2202 bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences; 2203 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, 2204 time.tv_sec); 2205 } 2206 } 2207 bo_gem->reloc_count = start; 2208 2209 for (i = 0; i < bo_gem->softpin_target_count; i++) { 2210 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i]; 2211 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec); 2212 } 2213 bo_gem->softpin_target_count = 0; 2214 2215 pthread_mutex_unlock(&bufmgr_gem->lock); 2216 2217 } 2218 2219 /** 2220 * Walk the tree of relocations rooted at BO and accumulate the list of 2221 * validations to be performed and update the relocation buffers with 2222 * index values into the validation list. 2223 */ 2224 static void 2225 drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo) 2226 { 2227 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 2228 int i; 2229 2230 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) 2231 return; 2232 2233 for (i = 0; i < bo_gem->reloc_count; i++) { 2234 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo; 2235 int need_fence; 2236 2237 if (target_bo == bo) 2238 continue; 2239 2240 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 2241 2242 /* Continue walking the tree depth-first. */ 2243 drm_intel_gem_bo_process_reloc2(target_bo); 2244 2245 need_fence = (bo_gem->reloc_target_info[i].flags & 2246 DRM_INTEL_RELOC_FENCE); 2247 2248 /* Add the target to the validate list */ 2249 drm_intel_add_validate_buffer2(target_bo, need_fence); 2250 } 2251 2252 for (i = 0; i < bo_gem->softpin_target_count; i++) { 2253 drm_intel_bo *target_bo = bo_gem->softpin_target[i]; 2254 2255 if (target_bo == bo) 2256 continue; 2257 2258 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 2259 drm_intel_gem_bo_process_reloc2(target_bo); 2260 drm_intel_add_validate_buffer2(target_bo, false); 2261 } 2262 } 2263 2264 static void 2265 drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem) 2266 { 2267 int i; 2268 2269 for (i = 0; i < bufmgr_gem->exec_count; i++) { 2270 drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; 2271 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 2272 2273 /* Update the buffer offset */ 2274 if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) { 2275 /* If we're seeing softpinned object here it means that the kernel 2276 * has relocated our object... Indicating a programming error 2277 */ 2278 assert(!(bo_gem->kflags & EXEC_OBJECT_PINNED)); 2279 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n", 2280 bo_gem->gem_handle, bo_gem->name, 2281 upper_32_bits(bo->offset64), 2282 lower_32_bits(bo->offset64), 2283 upper_32_bits(bufmgr_gem->exec2_objects[i].offset), 2284 lower_32_bits(bufmgr_gem->exec2_objects[i].offset)); 2285 bo->offset64 = bufmgr_gem->exec2_objects[i].offset; 2286 bo->offset = bufmgr_gem->exec2_objects[i].offset; 2287 } 2288 } 2289 } 2290 2291 drm_public void 2292 drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo, 2293 int x1, int y1, int width, int height, 2294 enum aub_dump_bmp_format format, 2295 int pitch, int offset) 2296 { 2297 } 2298 2299 static int 2300 do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx, 2301 drm_clip_rect_t *cliprects, int num_cliprects, int DR4, 2302 int in_fence, int *out_fence, 2303 unsigned int flags) 2304 { 2305 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 2306 struct drm_i915_gem_execbuffer2 execbuf; 2307 int ret = 0; 2308 int i; 2309 2310 if (to_bo_gem(bo)->has_error) 2311 return -ENOMEM; 2312 2313 switch (flags & 0x7) { 2314 default: 2315 return -EINVAL; 2316 case I915_EXEC_BLT: 2317 if (!bufmgr_gem->has_blt) 2318 return -EINVAL; 2319 break; 2320 case I915_EXEC_BSD: 2321 if (!bufmgr_gem->has_bsd) 2322 return -EINVAL; 2323 break; 2324 case I915_EXEC_VEBOX: 2325 if (!bufmgr_gem->has_vebox) 2326 return -EINVAL; 2327 break; 2328 case I915_EXEC_RENDER: 2329 case I915_EXEC_DEFAULT: 2330 break; 2331 } 2332 2333 pthread_mutex_lock(&bufmgr_gem->lock); 2334 /* Update indices and set up the validate list. */ 2335 drm_intel_gem_bo_process_reloc2(bo); 2336 2337 /* Add the batch buffer to the validation list. There are no relocations 2338 * pointing to it. 2339 */ 2340 drm_intel_add_validate_buffer2(bo, 0); 2341 2342 memclear(execbuf); 2343 execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects; 2344 execbuf.buffer_count = bufmgr_gem->exec_count; 2345 execbuf.batch_start_offset = 0; 2346 execbuf.batch_len = used; 2347 execbuf.cliprects_ptr = (uintptr_t)cliprects; 2348 execbuf.num_cliprects = num_cliprects; 2349 execbuf.DR1 = 0; 2350 execbuf.DR4 = DR4; 2351 execbuf.flags = flags; 2352 if (ctx == NULL) 2353 i915_execbuffer2_set_context_id(execbuf, 0); 2354 else 2355 i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id); 2356 execbuf.rsvd2 = 0; 2357 if (in_fence != -1) { 2358 execbuf.rsvd2 = in_fence; 2359 execbuf.flags |= I915_EXEC_FENCE_IN; 2360 } 2361 if (out_fence != NULL) { 2362 *out_fence = -1; 2363 execbuf.flags |= I915_EXEC_FENCE_OUT; 2364 } 2365 2366 if (bufmgr_gem->no_exec) 2367 goto skip_execution; 2368 2369 ret = drmIoctl(bufmgr_gem->fd, 2370 DRM_IOCTL_I915_GEM_EXECBUFFER2_WR, 2371 &execbuf); 2372 if (ret != 0) { 2373 ret = -errno; 2374 if (ret == -ENOSPC) { 2375 DBG("Execbuffer fails to pin. " 2376 "Estimate: %u. Actual: %u. Available: %u\n", 2377 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos, 2378 bufmgr_gem->exec_count), 2379 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos, 2380 bufmgr_gem->exec_count), 2381 (unsigned int) bufmgr_gem->gtt_size); 2382 } 2383 } 2384 drm_intel_update_buffer_offsets2(bufmgr_gem); 2385 2386 if (ret == 0 && out_fence != NULL) 2387 *out_fence = execbuf.rsvd2 >> 32; 2388 2389 skip_execution: 2390 if (bufmgr_gem->bufmgr.debug) 2391 drm_intel_gem_dump_validation_list(bufmgr_gem); 2392 2393 for (i = 0; i < bufmgr_gem->exec_count; i++) { 2394 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]); 2395 2396 bo_gem->idle = false; 2397 2398 /* Disconnect the buffer from the validate list */ 2399 bo_gem->validate_index = -1; 2400 bufmgr_gem->exec_bos[i] = NULL; 2401 } 2402 bufmgr_gem->exec_count = 0; 2403 pthread_mutex_unlock(&bufmgr_gem->lock); 2404 2405 return ret; 2406 } 2407 2408 static int 2409 drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used, 2410 drm_clip_rect_t *cliprects, int num_cliprects, 2411 int DR4) 2412 { 2413 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4, 2414 -1, NULL, I915_EXEC_RENDER); 2415 } 2416 2417 static int 2418 drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used, 2419 drm_clip_rect_t *cliprects, int num_cliprects, int DR4, 2420 unsigned int flags) 2421 { 2422 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4, 2423 -1, NULL, flags); 2424 } 2425 2426 drm_public int 2427 drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx, 2428 int used, unsigned int flags) 2429 { 2430 return do_exec2(bo, used, ctx, NULL, 0, 0, -1, NULL, flags); 2431 } 2432 2433 drm_public int 2434 drm_intel_gem_bo_fence_exec(drm_intel_bo *bo, 2435 drm_intel_context *ctx, 2436 int used, 2437 int in_fence, 2438 int *out_fence, 2439 unsigned int flags) 2440 { 2441 return do_exec2(bo, used, ctx, NULL, 0, 0, in_fence, out_fence, flags); 2442 } 2443 2444 static int 2445 drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment) 2446 { 2447 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2448 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2449 struct drm_i915_gem_pin pin; 2450 int ret; 2451 2452 memclear(pin); 2453 pin.handle = bo_gem->gem_handle; 2454 pin.alignment = alignment; 2455 2456 ret = drmIoctl(bufmgr_gem->fd, 2457 DRM_IOCTL_I915_GEM_PIN, 2458 &pin); 2459 if (ret != 0) 2460 return -errno; 2461 2462 bo->offset64 = pin.offset; 2463 bo->offset = pin.offset; 2464 return 0; 2465 } 2466 2467 static int 2468 drm_intel_gem_bo_unpin(drm_intel_bo *bo) 2469 { 2470 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2471 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2472 struct drm_i915_gem_unpin unpin; 2473 int ret; 2474 2475 memclear(unpin); 2476 unpin.handle = bo_gem->gem_handle; 2477 2478 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin); 2479 if (ret != 0) 2480 return -errno; 2481 2482 return 0; 2483 } 2484 2485 static int 2486 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo, 2487 uint32_t tiling_mode, 2488 uint32_t stride) 2489 { 2490 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2491 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2492 struct drm_i915_gem_set_tiling set_tiling; 2493 int ret; 2494 2495 if (bo_gem->global_name == 0 && 2496 tiling_mode == bo_gem->tiling_mode && 2497 stride == bo_gem->stride) 2498 return 0; 2499 2500 memset(&set_tiling, 0, sizeof(set_tiling)); 2501 do { 2502 /* set_tiling is slightly broken and overwrites the 2503 * input on the error path, so we have to open code 2504 * rmIoctl. 2505 */ 2506 set_tiling.handle = bo_gem->gem_handle; 2507 set_tiling.tiling_mode = tiling_mode; 2508 set_tiling.stride = stride; 2509 2510 ret = ioctl(bufmgr_gem->fd, 2511 DRM_IOCTL_I915_GEM_SET_TILING, 2512 &set_tiling); 2513 } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); 2514 if (ret == -1) 2515 return -errno; 2516 2517 bo_gem->tiling_mode = set_tiling.tiling_mode; 2518 bo_gem->swizzle_mode = set_tiling.swizzle_mode; 2519 bo_gem->stride = set_tiling.stride; 2520 return 0; 2521 } 2522 2523 static int 2524 drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 2525 uint32_t stride) 2526 { 2527 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2528 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2529 int ret; 2530 2531 /* Tiling with userptr surfaces is not supported 2532 * on all hardware so refuse it for time being. 2533 */ 2534 if (bo_gem->is_userptr) 2535 return -EINVAL; 2536 2537 /* Linear buffers have no stride. By ensuring that we only ever use 2538 * stride 0 with linear buffers, we simplify our code. 2539 */ 2540 if (*tiling_mode == I915_TILING_NONE) 2541 stride = 0; 2542 2543 ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride); 2544 if (ret == 0) 2545 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 2546 2547 *tiling_mode = bo_gem->tiling_mode; 2548 return ret; 2549 } 2550 2551 static int 2552 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 2553 uint32_t * swizzle_mode) 2554 { 2555 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2556 2557 *tiling_mode = bo_gem->tiling_mode; 2558 *swizzle_mode = bo_gem->swizzle_mode; 2559 return 0; 2560 } 2561 2562 static int 2563 drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset) 2564 { 2565 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2566 2567 bo->offset64 = offset; 2568 bo->offset = offset; 2569 bo_gem->kflags |= EXEC_OBJECT_PINNED; 2570 2571 return 0; 2572 } 2573 2574 drm_public drm_intel_bo * 2575 drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size) 2576 { 2577 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2578 int ret; 2579 uint32_t handle; 2580 drm_intel_bo_gem *bo_gem; 2581 2582 pthread_mutex_lock(&bufmgr_gem->lock); 2583 ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle); 2584 if (ret) { 2585 DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno)); 2586 pthread_mutex_unlock(&bufmgr_gem->lock); 2587 return NULL; 2588 } 2589 2590 /* 2591 * See if the kernel has already returned this buffer to us. Just as 2592 * for named buffers, we must not create two bo's pointing at the same 2593 * kernel object 2594 */ 2595 HASH_FIND(handle_hh, bufmgr_gem->handle_table, 2596 &handle, sizeof(handle), bo_gem); 2597 if (bo_gem) { 2598 drm_intel_gem_bo_reference(&bo_gem->bo); 2599 goto out; 2600 } 2601 2602 bo_gem = calloc(1, sizeof(*bo_gem)); 2603 if (!bo_gem) 2604 goto out; 2605 2606 atomic_set(&bo_gem->refcount, 1); 2607 DRMINITLISTHEAD(&bo_gem->vma_list); 2608 2609 /* Determine size of bo. The fd-to-handle ioctl really should 2610 * return the size, but it doesn't. If we have kernel 3.12 or 2611 * later, we can lseek on the prime fd to get the size. Older 2612 * kernels will just fail, in which case we fall back to the 2613 * provided (estimated or guess size). */ 2614 ret = lseek(prime_fd, 0, SEEK_END); 2615 if (ret != -1) 2616 bo_gem->bo.size = ret; 2617 else 2618 bo_gem->bo.size = size; 2619 2620 bo_gem->bo.handle = handle; 2621 bo_gem->bo.bufmgr = bufmgr; 2622 2623 bo_gem->gem_handle = handle; 2624 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 2625 gem_handle, sizeof(bo_gem->gem_handle), bo_gem); 2626 2627 bo_gem->name = "prime"; 2628 bo_gem->validate_index = -1; 2629 bo_gem->reloc_tree_fences = 0; 2630 bo_gem->used_as_reloc_target = false; 2631 bo_gem->has_error = false; 2632 bo_gem->reusable = false; 2633 2634 ret = get_tiling_mode(bufmgr_gem, handle, 2635 &bo_gem->tiling_mode, &bo_gem->swizzle_mode); 2636 if (ret) 2637 goto err; 2638 2639 /* XXX stride is unknown */ 2640 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 2641 2642 out: 2643 pthread_mutex_unlock(&bufmgr_gem->lock); 2644 return &bo_gem->bo; 2645 2646 err: 2647 drm_intel_gem_bo_free(&bo_gem->bo); 2648 pthread_mutex_unlock(&bufmgr_gem->lock); 2649 return NULL; 2650 } 2651 2652 drm_public int 2653 drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd) 2654 { 2655 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2656 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2657 2658 if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle, 2659 DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0) 2660 return -errno; 2661 2662 bo_gem->reusable = false; 2663 2664 return 0; 2665 } 2666 2667 static int 2668 drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name) 2669 { 2670 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2671 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2672 2673 if (!bo_gem->global_name) { 2674 struct drm_gem_flink flink; 2675 2676 memclear(flink); 2677 flink.handle = bo_gem->gem_handle; 2678 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink)) 2679 return -errno; 2680 2681 pthread_mutex_lock(&bufmgr_gem->lock); 2682 if (!bo_gem->global_name) { 2683 bo_gem->global_name = flink.name; 2684 bo_gem->reusable = false; 2685 2686 HASH_ADD(name_hh, bufmgr_gem->name_table, 2687 global_name, sizeof(bo_gem->global_name), 2688 bo_gem); 2689 } 2690 pthread_mutex_unlock(&bufmgr_gem->lock); 2691 } 2692 2693 *name = bo_gem->global_name; 2694 return 0; 2695 } 2696 2697 /** 2698 * Enables unlimited caching of buffer objects for reuse. 2699 * 2700 * This is potentially very memory expensive, as the cache at each bucket 2701 * size is only bounded by how many buffers of that size we've managed to have 2702 * in flight at once. 2703 */ 2704 drm_public void 2705 drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr) 2706 { 2707 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2708 2709 bufmgr_gem->bo_reuse = true; 2710 } 2711 2712 /** 2713 * Disables implicit synchronisation before executing the bo 2714 * 2715 * This will cause rendering corruption unless you correctly manage explicit 2716 * fences for all rendering involving this buffer - including use by others. 2717 * Disabling the implicit serialisation is only required if that serialisation 2718 * is too coarse (for example, you have split the buffer into many 2719 * non-overlapping regions and are sharing the whole buffer between concurrent 2720 * independent command streams). 2721 * 2722 * Note the kernel must advertise support via I915_PARAM_HAS_EXEC_ASYNC, 2723 * which can be checked using drm_intel_bufmgr_can_disable_implicit_sync, 2724 * or subsequent execbufs involving the bo will generate EINVAL. 2725 */ 2726 drm_public void 2727 drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo *bo) 2728 { 2729 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2730 2731 bo_gem->kflags |= EXEC_OBJECT_ASYNC; 2732 } 2733 2734 /** 2735 * Enables implicit synchronisation before executing the bo 2736 * 2737 * This is the default behaviour of the kernel, to wait upon prior writes 2738 * completing on the object before rendering with it, or to wait for prior 2739 * reads to complete before writing into the object. 2740 * drm_intel_gem_bo_disable_implicit_sync() can stop this behaviour, telling 2741 * the kernel never to insert a stall before using the object. Then this 2742 * function can be used to restore the implicit sync before subsequent 2743 * rendering. 2744 */ 2745 drm_public void 2746 drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo *bo) 2747 { 2748 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2749 2750 bo_gem->kflags &= ~EXEC_OBJECT_ASYNC; 2751 } 2752 2753 /** 2754 * Query whether the kernel supports disabling of its implicit synchronisation 2755 * before execbuf. See drm_intel_gem_bo_disable_implicit_sync() 2756 */ 2757 drm_public int 2758 drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr *bufmgr) 2759 { 2760 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2761 2762 return bufmgr_gem->has_exec_async; 2763 } 2764 2765 /** 2766 * Enable use of fenced reloc type. 2767 * 2768 * New code should enable this to avoid unnecessary fence register 2769 * allocation. If this option is not enabled, all relocs will have fence 2770 * register allocated. 2771 */ 2772 drm_public void 2773 drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr) 2774 { 2775 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 2776 bufmgr_gem->fenced_relocs = true; 2777 } 2778 2779 /** 2780 * Return the additional aperture space required by the tree of buffer objects 2781 * rooted at bo. 2782 */ 2783 static int 2784 drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo) 2785 { 2786 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2787 int i; 2788 int total = 0; 2789 2790 if (bo == NULL || bo_gem->included_in_check_aperture) 2791 return 0; 2792 2793 total += bo->size; 2794 bo_gem->included_in_check_aperture = true; 2795 2796 for (i = 0; i < bo_gem->reloc_count; i++) 2797 total += 2798 drm_intel_gem_bo_get_aperture_space(bo_gem-> 2799 reloc_target_info[i].bo); 2800 2801 return total; 2802 } 2803 2804 /** 2805 * Count the number of buffers in this list that need a fence reg 2806 * 2807 * If the count is greater than the number of available regs, we'll have 2808 * to ask the caller to resubmit a batch with fewer tiled buffers. 2809 * 2810 * This function over-counts if the same buffer is used multiple times. 2811 */ 2812 static unsigned int 2813 drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count) 2814 { 2815 int i; 2816 unsigned int total = 0; 2817 2818 for (i = 0; i < count; i++) { 2819 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; 2820 2821 if (bo_gem == NULL) 2822 continue; 2823 2824 total += bo_gem->reloc_tree_fences; 2825 } 2826 return total; 2827 } 2828 2829 /** 2830 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready 2831 * for the next drm_intel_bufmgr_check_aperture_space() call. 2832 */ 2833 static void 2834 drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo) 2835 { 2836 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2837 int i; 2838 2839 if (bo == NULL || !bo_gem->included_in_check_aperture) 2840 return; 2841 2842 bo_gem->included_in_check_aperture = false; 2843 2844 for (i = 0; i < bo_gem->reloc_count; i++) 2845 drm_intel_gem_bo_clear_aperture_space_flag(bo_gem-> 2846 reloc_target_info[i].bo); 2847 } 2848 2849 /** 2850 * Return a conservative estimate for the amount of aperture required 2851 * for a collection of buffers. This may double-count some buffers. 2852 */ 2853 static unsigned int 2854 drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count) 2855 { 2856 int i; 2857 unsigned int total = 0; 2858 2859 for (i = 0; i < count; i++) { 2860 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; 2861 if (bo_gem != NULL) 2862 total += bo_gem->reloc_tree_size; 2863 } 2864 return total; 2865 } 2866 2867 /** 2868 * Return the amount of aperture needed for a collection of buffers. 2869 * This avoids double counting any buffers, at the cost of looking 2870 * at every buffer in the set. 2871 */ 2872 static unsigned int 2873 drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count) 2874 { 2875 int i; 2876 unsigned int total = 0; 2877 2878 for (i = 0; i < count; i++) { 2879 total += drm_intel_gem_bo_get_aperture_space(bo_array[i]); 2880 /* For the first buffer object in the array, we get an 2881 * accurate count back for its reloc_tree size (since nothing 2882 * had been flagged as being counted yet). We can save that 2883 * value out as a more conservative reloc_tree_size that 2884 * avoids double-counting target buffers. Since the first 2885 * buffer happens to usually be the batch buffer in our 2886 * callers, this can pull us back from doing the tree 2887 * walk on every new batch emit. 2888 */ 2889 if (i == 0) { 2890 drm_intel_bo_gem *bo_gem = 2891 (drm_intel_bo_gem *) bo_array[i]; 2892 bo_gem->reloc_tree_size = total; 2893 } 2894 } 2895 2896 for (i = 0; i < count; i++) 2897 drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]); 2898 return total; 2899 } 2900 2901 /** 2902 * Return -1 if the batchbuffer should be flushed before attempting to 2903 * emit rendering referencing the buffers pointed to by bo_array. 2904 * 2905 * This is required because if we try to emit a batchbuffer with relocations 2906 * to a tree of buffers that won't simultaneously fit in the aperture, 2907 * the rendering will return an error at a point where the software is not 2908 * prepared to recover from it. 2909 * 2910 * However, we also want to emit the batchbuffer significantly before we reach 2911 * the limit, as a series of batchbuffers each of which references buffers 2912 * covering almost all of the aperture means that at each emit we end up 2913 * waiting to evict a buffer from the last rendering, and we get synchronous 2914 * performance. By emitting smaller batchbuffers, we eat some CPU overhead to 2915 * get better parallelism. 2916 */ 2917 static int 2918 drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count) 2919 { 2920 drm_intel_bufmgr_gem *bufmgr_gem = 2921 (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr; 2922 unsigned int total = 0; 2923 unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4; 2924 int total_fences; 2925 2926 /* Check for fence reg constraints if necessary */ 2927 if (bufmgr_gem->available_fences) { 2928 total_fences = drm_intel_gem_total_fences(bo_array, count); 2929 if (total_fences > bufmgr_gem->available_fences) 2930 return -ENOSPC; 2931 } 2932 2933 total = drm_intel_gem_estimate_batch_space(bo_array, count); 2934 2935 if (total > threshold) 2936 total = drm_intel_gem_compute_batch_space(bo_array, count); 2937 2938 if (total > threshold) { 2939 DBG("check_space: overflowed available aperture, " 2940 "%dkb vs %dkb\n", 2941 total / 1024, (int)bufmgr_gem->gtt_size / 1024); 2942 return -ENOSPC; 2943 } else { 2944 DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024, 2945 (int)bufmgr_gem->gtt_size / 1024); 2946 return 0; 2947 } 2948 } 2949 2950 /* 2951 * Disable buffer reuse for objects which are shared with the kernel 2952 * as scanout buffers 2953 */ 2954 static int 2955 drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo) 2956 { 2957 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2958 2959 bo_gem->reusable = false; 2960 return 0; 2961 } 2962 2963 static int 2964 drm_intel_gem_bo_is_reusable(drm_intel_bo *bo) 2965 { 2966 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2967 2968 return bo_gem->reusable; 2969 } 2970 2971 static int 2972 _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) 2973 { 2974 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2975 int i; 2976 2977 for (i = 0; i < bo_gem->reloc_count; i++) { 2978 if (bo_gem->reloc_target_info[i].bo == target_bo) 2979 return 1; 2980 if (bo == bo_gem->reloc_target_info[i].bo) 2981 continue; 2982 if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo, 2983 target_bo)) 2984 return 1; 2985 } 2986 2987 for (i = 0; i< bo_gem->softpin_target_count; i++) { 2988 if (bo_gem->softpin_target[i] == target_bo) 2989 return 1; 2990 if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo)) 2991 return 1; 2992 } 2993 2994 return 0; 2995 } 2996 2997 /** Return true if target_bo is referenced by bo's relocation tree. */ 2998 static int 2999 drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) 3000 { 3001 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 3002 3003 if (bo == NULL || target_bo == NULL) 3004 return 0; 3005 if (target_bo_gem->used_as_reloc_target) 3006 return _drm_intel_gem_bo_references(bo, target_bo); 3007 return 0; 3008 } 3009 3010 static void 3011 add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size) 3012 { 3013 unsigned int i = bufmgr_gem->num_buckets; 3014 3015 assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket)); 3016 3017 DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head); 3018 bufmgr_gem->cache_bucket[i].size = size; 3019 bufmgr_gem->num_buckets++; 3020 } 3021 3022 static void 3023 init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem) 3024 { 3025 unsigned long size, cache_max_size = 64 * 1024 * 1024; 3026 3027 /* OK, so power of two buckets was too wasteful of memory. 3028 * Give 3 other sizes between each power of two, to hopefully 3029 * cover things accurately enough. (The alternative is 3030 * probably to just go for exact matching of sizes, and assume 3031 * that for things like composited window resize the tiled 3032 * width/height alignment and rounding of sizes to pages will 3033 * get us useful cache hit rates anyway) 3034 */ 3035 add_bucket(bufmgr_gem, 4096); 3036 add_bucket(bufmgr_gem, 4096 * 2); 3037 add_bucket(bufmgr_gem, 4096 * 3); 3038 3039 /* Initialize the linked lists for BO reuse cache. */ 3040 for (size = 4 * 4096; size <= cache_max_size; size *= 2) { 3041 add_bucket(bufmgr_gem, size); 3042 3043 add_bucket(bufmgr_gem, size + size * 1 / 4); 3044 add_bucket(bufmgr_gem, size + size * 2 / 4); 3045 add_bucket(bufmgr_gem, size + size * 3 / 4); 3046 } 3047 } 3048 3049 drm_public void 3050 drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit) 3051 { 3052 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3053 3054 bufmgr_gem->vma_max = limit; 3055 3056 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 3057 } 3058 3059 static int 3060 parse_devid_override(const char *devid_override) 3061 { 3062 static const struct { 3063 const char *name; 3064 int pci_id; 3065 } name_map[] = { 3066 { "brw", PCI_CHIP_I965_GM }, 3067 { "g4x", PCI_CHIP_GM45_GM }, 3068 { "ilk", PCI_CHIP_ILD_G }, 3069 { "snb", PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS }, 3070 { "ivb", PCI_CHIP_IVYBRIDGE_S_GT2 }, 3071 { "hsw", PCI_CHIP_HASWELL_CRW_E_GT3 }, 3072 { "byt", PCI_CHIP_VALLEYVIEW_3 }, 3073 { "bdw", 0x1620 | BDW_ULX }, 3074 { "skl", PCI_CHIP_SKYLAKE_DT_GT2 }, 3075 { "kbl", PCI_CHIP_KABYLAKE_DT_GT2 }, 3076 }; 3077 unsigned int i; 3078 3079 for (i = 0; i < ARRAY_SIZE(name_map); i++) { 3080 if (!strcmp(name_map[i].name, devid_override)) 3081 return name_map[i].pci_id; 3082 } 3083 3084 return strtod(devid_override, NULL); 3085 } 3086 3087 /** 3088 * Get the PCI ID for the device. This can be overridden by setting the 3089 * INTEL_DEVID_OVERRIDE environment variable to the desired ID. 3090 */ 3091 static int 3092 get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem) 3093 { 3094 char *devid_override; 3095 int devid = 0; 3096 int ret; 3097 drm_i915_getparam_t gp; 3098 3099 if (geteuid() == getuid()) { 3100 devid_override = getenv("INTEL_DEVID_OVERRIDE"); 3101 if (devid_override) { 3102 bufmgr_gem->no_exec = true; 3103 return parse_devid_override(devid_override); 3104 } 3105 } 3106 3107 memclear(gp); 3108 gp.param = I915_PARAM_CHIPSET_ID; 3109 gp.value = &devid; 3110 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3111 if (ret) { 3112 fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno); 3113 fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value); 3114 } 3115 return devid; 3116 } 3117 3118 drm_public int 3119 drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr) 3120 { 3121 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3122 3123 return bufmgr_gem->pci_device; 3124 } 3125 3126 /** 3127 * Sets the AUB filename. 3128 * 3129 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump() 3130 * for it to have any effect. 3131 */ 3132 drm_public void 3133 drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr, 3134 const char *filename) 3135 { 3136 } 3137 3138 /** 3139 * Sets up AUB dumping. 3140 * 3141 * This is a trace file format that can be used with the simulator. 3142 * Packets are emitted in a format somewhat like GPU command packets. 3143 * You can set up a GTT and upload your objects into the referenced 3144 * space, then send off batchbuffers and get BMPs out the other end. 3145 */ 3146 drm_public void 3147 drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable) 3148 { 3149 fprintf(stderr, "libdrm aub dumping is deprecated.\n\n" 3150 "Use intel_aubdump from intel-gpu-tools instead. Install intel-gpu-tools,\n" 3151 "then run (for example)\n\n" 3152 "\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n" 3153 "See the intel_aubdump man page for more details.\n"); 3154 } 3155 3156 drm_public drm_intel_context * 3157 drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr) 3158 { 3159 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3160 struct drm_i915_gem_context_create create; 3161 drm_intel_context *context = NULL; 3162 int ret; 3163 3164 context = calloc(1, sizeof(*context)); 3165 if (!context) 3166 return NULL; 3167 3168 memclear(create); 3169 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create); 3170 if (ret != 0) { 3171 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", 3172 strerror(errno)); 3173 free(context); 3174 return NULL; 3175 } 3176 3177 context->ctx_id = create.ctx_id; 3178 context->bufmgr = bufmgr; 3179 3180 return context; 3181 } 3182 3183 drm_public int 3184 drm_intel_gem_context_get_id(drm_intel_context *ctx, uint32_t *ctx_id) 3185 { 3186 if (ctx == NULL) 3187 return -EINVAL; 3188 3189 *ctx_id = ctx->ctx_id; 3190 3191 return 0; 3192 } 3193 3194 drm_public void 3195 drm_intel_gem_context_destroy(drm_intel_context *ctx) 3196 { 3197 drm_intel_bufmgr_gem *bufmgr_gem; 3198 struct drm_i915_gem_context_destroy destroy; 3199 int ret; 3200 3201 if (ctx == NULL) 3202 return; 3203 3204 memclear(destroy); 3205 3206 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr; 3207 destroy.ctx_id = ctx->ctx_id; 3208 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, 3209 &destroy); 3210 if (ret != 0) 3211 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n", 3212 strerror(errno)); 3213 3214 free(ctx); 3215 } 3216 3217 drm_public int 3218 drm_intel_get_reset_stats(drm_intel_context *ctx, 3219 uint32_t *reset_count, 3220 uint32_t *active, 3221 uint32_t *pending) 3222 { 3223 drm_intel_bufmgr_gem *bufmgr_gem; 3224 struct drm_i915_reset_stats stats; 3225 int ret; 3226 3227 if (ctx == NULL) 3228 return -EINVAL; 3229 3230 memclear(stats); 3231 3232 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr; 3233 stats.ctx_id = ctx->ctx_id; 3234 ret = drmIoctl(bufmgr_gem->fd, 3235 DRM_IOCTL_I915_GET_RESET_STATS, 3236 &stats); 3237 if (ret == 0) { 3238 if (reset_count != NULL) 3239 *reset_count = stats.reset_count; 3240 3241 if (active != NULL) 3242 *active = stats.batch_active; 3243 3244 if (pending != NULL) 3245 *pending = stats.batch_pending; 3246 } 3247 3248 return ret; 3249 } 3250 3251 drm_public int 3252 drm_intel_reg_read(drm_intel_bufmgr *bufmgr, 3253 uint32_t offset, 3254 uint64_t *result) 3255 { 3256 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3257 struct drm_i915_reg_read reg_read; 3258 int ret; 3259 3260 memclear(reg_read); 3261 reg_read.offset = offset; 3262 3263 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, ®_read); 3264 3265 *result = reg_read.val; 3266 return ret; 3267 } 3268 3269 drm_public int 3270 drm_intel_get_subslice_total(int fd, unsigned int *subslice_total) 3271 { 3272 drm_i915_getparam_t gp; 3273 int ret; 3274 3275 memclear(gp); 3276 gp.value = (int*)subslice_total; 3277 gp.param = I915_PARAM_SUBSLICE_TOTAL; 3278 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); 3279 if (ret) 3280 return -errno; 3281 3282 return 0; 3283 } 3284 3285 drm_public int 3286 drm_intel_get_eu_total(int fd, unsigned int *eu_total) 3287 { 3288 drm_i915_getparam_t gp; 3289 int ret; 3290 3291 memclear(gp); 3292 gp.value = (int*)eu_total; 3293 gp.param = I915_PARAM_EU_TOTAL; 3294 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); 3295 if (ret) 3296 return -errno; 3297 3298 return 0; 3299 } 3300 3301 drm_public int 3302 drm_intel_get_pooled_eu(int fd) 3303 { 3304 drm_i915_getparam_t gp; 3305 int ret = -1; 3306 3307 memclear(gp); 3308 gp.param = I915_PARAM_HAS_POOLED_EU; 3309 gp.value = &ret; 3310 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) 3311 return -errno; 3312 3313 return ret; 3314 } 3315 3316 drm_public int 3317 drm_intel_get_min_eu_in_pool(int fd) 3318 { 3319 drm_i915_getparam_t gp; 3320 int ret = -1; 3321 3322 memclear(gp); 3323 gp.param = I915_PARAM_MIN_EU_IN_POOL; 3324 gp.value = &ret; 3325 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) 3326 return -errno; 3327 3328 return ret; 3329 } 3330 3331 /** 3332 * Annotate the given bo for use in aub dumping. 3333 * 3334 * \param annotations is an array of drm_intel_aub_annotation objects 3335 * describing the type of data in various sections of the bo. Each 3336 * element of the array specifies the type and subtype of a section of 3337 * the bo, and the past-the-end offset of that section. The elements 3338 * of \c annotations must be sorted so that ending_offset is 3339 * increasing. 3340 * 3341 * \param count is the number of elements in the \c annotations array. 3342 * If \c count is zero, then \c annotations will not be dereferenced. 3343 * 3344 * Annotations are copied into a private data structure, so caller may 3345 * re-use the memory pointed to by \c annotations after the call 3346 * returns. 3347 * 3348 * Annotations are stored for the lifetime of the bo; to reset to the 3349 * default state (no annotations), call this function with a \c count 3350 * of zero. 3351 */ 3352 drm_public void drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo, 3353 drm_intel_aub_annotation *annotations, 3354 unsigned count) 3355 { 3356 } 3357 3358 static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER; 3359 static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list }; 3360 3361 static drm_intel_bufmgr_gem * 3362 drm_intel_bufmgr_gem_find(int fd) 3363 { 3364 drm_intel_bufmgr_gem *bufmgr_gem; 3365 3366 DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) { 3367 if (bufmgr_gem->fd == fd) { 3368 atomic_inc(&bufmgr_gem->refcount); 3369 return bufmgr_gem; 3370 } 3371 } 3372 3373 return NULL; 3374 } 3375 3376 static void 3377 drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr) 3378 { 3379 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3380 3381 if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) 3382 return; 3383 3384 pthread_mutex_lock(&bufmgr_list_mutex); 3385 3386 if (atomic_dec_and_test(&bufmgr_gem->refcount)) { 3387 DRMLISTDEL(&bufmgr_gem->managers); 3388 drm_intel_bufmgr_gem_destroy(bufmgr); 3389 } 3390 3391 pthread_mutex_unlock(&bufmgr_list_mutex); 3392 } 3393 3394 drm_public void *drm_intel_gem_bo_map__gtt(drm_intel_bo *bo) 3395 { 3396 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3397 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3398 3399 if (bo_gem->gtt_virtual) 3400 return bo_gem->gtt_virtual; 3401 3402 if (bo_gem->is_userptr) 3403 return NULL; 3404 3405 pthread_mutex_lock(&bufmgr_gem->lock); 3406 if (bo_gem->gtt_virtual == NULL) { 3407 struct drm_i915_gem_mmap_gtt mmap_arg; 3408 void *ptr; 3409 3410 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n", 3411 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3412 3413 if (bo_gem->map_count++ == 0) 3414 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3415 3416 memclear(mmap_arg); 3417 mmap_arg.handle = bo_gem->gem_handle; 3418 3419 /* Get the fake offset back... */ 3420 ptr = MAP_FAILED; 3421 if (drmIoctl(bufmgr_gem->fd, 3422 DRM_IOCTL_I915_GEM_MMAP_GTT, 3423 &mmap_arg) == 0) { 3424 /* and mmap it */ 3425 ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, 3426 MAP_SHARED, bufmgr_gem->fd, 3427 mmap_arg.offset); 3428 } 3429 if (ptr == MAP_FAILED) { 3430 if (--bo_gem->map_count == 0) 3431 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3432 ptr = NULL; 3433 } 3434 3435 bo_gem->gtt_virtual = ptr; 3436 } 3437 pthread_mutex_unlock(&bufmgr_gem->lock); 3438 3439 return bo_gem->gtt_virtual; 3440 } 3441 3442 drm_public void *drm_intel_gem_bo_map__cpu(drm_intel_bo *bo) 3443 { 3444 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3445 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3446 3447 if (bo_gem->mem_virtual) 3448 return bo_gem->mem_virtual; 3449 3450 if (bo_gem->is_userptr) { 3451 /* Return the same user ptr */ 3452 return bo_gem->user_virtual; 3453 } 3454 3455 pthread_mutex_lock(&bufmgr_gem->lock); 3456 if (!bo_gem->mem_virtual) { 3457 struct drm_i915_gem_mmap mmap_arg; 3458 3459 if (bo_gem->map_count++ == 0) 3460 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3461 3462 DBG("bo_map: %d (%s), map_count=%d\n", 3463 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3464 3465 memclear(mmap_arg); 3466 mmap_arg.handle = bo_gem->gem_handle; 3467 mmap_arg.size = bo->size; 3468 if (drmIoctl(bufmgr_gem->fd, 3469 DRM_IOCTL_I915_GEM_MMAP, 3470 &mmap_arg)) { 3471 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 3472 __FILE__, __LINE__, bo_gem->gem_handle, 3473 bo_gem->name, strerror(errno)); 3474 if (--bo_gem->map_count == 0) 3475 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3476 } else { 3477 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 3478 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 3479 } 3480 } 3481 pthread_mutex_unlock(&bufmgr_gem->lock); 3482 3483 return bo_gem->mem_virtual; 3484 } 3485 3486 drm_public void *drm_intel_gem_bo_map__wc(drm_intel_bo *bo) 3487 { 3488 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3489 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3490 3491 if (bo_gem->wc_virtual) 3492 return bo_gem->wc_virtual; 3493 3494 if (bo_gem->is_userptr) 3495 return NULL; 3496 3497 pthread_mutex_lock(&bufmgr_gem->lock); 3498 if (!bo_gem->wc_virtual) { 3499 struct drm_i915_gem_mmap mmap_arg; 3500 3501 if (bo_gem->map_count++ == 0) 3502 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3503 3504 DBG("bo_map: %d (%s), map_count=%d\n", 3505 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3506 3507 memclear(mmap_arg); 3508 mmap_arg.handle = bo_gem->gem_handle; 3509 mmap_arg.size = bo->size; 3510 mmap_arg.flags = I915_MMAP_WC; 3511 if (drmIoctl(bufmgr_gem->fd, 3512 DRM_IOCTL_I915_GEM_MMAP, 3513 &mmap_arg)) { 3514 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 3515 __FILE__, __LINE__, bo_gem->gem_handle, 3516 bo_gem->name, strerror(errno)); 3517 if (--bo_gem->map_count == 0) 3518 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3519 } else { 3520 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 3521 bo_gem->wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 3522 } 3523 } 3524 pthread_mutex_unlock(&bufmgr_gem->lock); 3525 3526 return bo_gem->wc_virtual; 3527 } 3528 3529 /** 3530 * Initializes the GEM buffer manager, which uses the kernel to allocate, map, 3531 * and manage map buffer objections. 3532 * 3533 * \param fd File descriptor of the opened DRM device. 3534 */ 3535 drm_public drm_intel_bufmgr * 3536 drm_intel_bufmgr_gem_init(int fd, int batch_size) 3537 { 3538 drm_intel_bufmgr_gem *bufmgr_gem; 3539 struct drm_i915_gem_get_aperture aperture; 3540 drm_i915_getparam_t gp; 3541 int ret, tmp; 3542 3543 pthread_mutex_lock(&bufmgr_list_mutex); 3544 3545 bufmgr_gem = drm_intel_bufmgr_gem_find(fd); 3546 if (bufmgr_gem) 3547 goto exit; 3548 3549 bufmgr_gem = calloc(1, sizeof(*bufmgr_gem)); 3550 if (bufmgr_gem == NULL) 3551 goto exit; 3552 3553 bufmgr_gem->fd = fd; 3554 atomic_set(&bufmgr_gem->refcount, 1); 3555 3556 if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) { 3557 free(bufmgr_gem); 3558 bufmgr_gem = NULL; 3559 goto exit; 3560 } 3561 3562 memclear(aperture); 3563 ret = drmIoctl(bufmgr_gem->fd, 3564 DRM_IOCTL_I915_GEM_GET_APERTURE, 3565 &aperture); 3566 3567 if (ret == 0) 3568 bufmgr_gem->gtt_size = aperture.aper_available_size; 3569 else { 3570 fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n", 3571 strerror(errno)); 3572 bufmgr_gem->gtt_size = 128 * 1024 * 1024; 3573 fprintf(stderr, "Assuming %dkB available aperture size.\n" 3574 "May lead to reduced performance or incorrect " 3575 "rendering.\n", 3576 (int)bufmgr_gem->gtt_size / 1024); 3577 } 3578 3579 bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem); 3580 3581 if (IS_GEN2(bufmgr_gem->pci_device)) 3582 bufmgr_gem->gen = 2; 3583 else if (IS_GEN3(bufmgr_gem->pci_device)) 3584 bufmgr_gem->gen = 3; 3585 else if (IS_GEN4(bufmgr_gem->pci_device)) 3586 bufmgr_gem->gen = 4; 3587 else if (IS_GEN5(bufmgr_gem->pci_device)) 3588 bufmgr_gem->gen = 5; 3589 else if (IS_GEN6(bufmgr_gem->pci_device)) 3590 bufmgr_gem->gen = 6; 3591 else if (IS_GEN7(bufmgr_gem->pci_device)) 3592 bufmgr_gem->gen = 7; 3593 else 3594 /* Treat all further unmatched platforms the same as gen8 */ 3595 bufmgr_gem->gen = 8; 3596 3597 if (IS_GEN3(bufmgr_gem->pci_device) && 3598 bufmgr_gem->gtt_size > 256*1024*1024) { 3599 /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't 3600 * be used for tiled blits. To simplify the accounting, just 3601 * subtract the unmappable part (fixed to 256MB on all known 3602 * gen3 devices) if the kernel advertises it. */ 3603 bufmgr_gem->gtt_size -= 256*1024*1024; 3604 } 3605 3606 memclear(gp); 3607 gp.value = &tmp; 3608 3609 gp.param = I915_PARAM_HAS_EXECBUF2; 3610 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3611 if (ret) { 3612 fprintf(stderr, "i915 does not support EXECBUFER2\n"); 3613 free(bufmgr_gem); 3614 bufmgr_gem = NULL; 3615 goto exit; 3616 } 3617 3618 gp.param = I915_PARAM_HAS_BSD; 3619 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3620 bufmgr_gem->has_bsd = ret == 0; 3621 3622 gp.param = I915_PARAM_HAS_BLT; 3623 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3624 bufmgr_gem->has_blt = ret == 0; 3625 3626 gp.param = I915_PARAM_HAS_RELAXED_FENCING; 3627 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3628 bufmgr_gem->has_relaxed_fencing = ret == 0; 3629 3630 gp.param = I915_PARAM_HAS_EXEC_ASYNC; 3631 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3632 bufmgr_gem->has_exec_async = ret == 0; 3633 3634 bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr; 3635 3636 gp.param = I915_PARAM_HAS_WAIT_TIMEOUT; 3637 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3638 bufmgr_gem->has_wait_timeout = ret == 0; 3639 3640 gp.param = I915_PARAM_HAS_LLC; 3641 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3642 if (ret != 0) { 3643 /* Kernel does not supports HAS_LLC query, fallback to GPU 3644 * generation detection and assume that we have LLC on GEN6/7 3645 */ 3646 bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) | 3647 IS_GEN7(bufmgr_gem->pci_device)); 3648 } else 3649 bufmgr_gem->has_llc = *gp.value; 3650 3651 gp.param = I915_PARAM_HAS_VEBOX; 3652 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3653 bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0); 3654 3655 gp.param = I915_PARAM_HAS_EXEC_SOFTPIN; 3656 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3657 if (ret == 0 && *gp.value > 0) 3658 bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset; 3659 3660 if (bufmgr_gem->gen < 4) { 3661 gp.param = I915_PARAM_NUM_FENCES_AVAIL; 3662 gp.value = &bufmgr_gem->available_fences; 3663 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3664 if (ret) { 3665 fprintf(stderr, "get fences failed: %d [%d]\n", ret, 3666 errno); 3667 fprintf(stderr, "param: %d, val: %d\n", gp.param, 3668 *gp.value); 3669 bufmgr_gem->available_fences = 0; 3670 } else { 3671 /* XXX The kernel reports the total number of fences, 3672 * including any that may be pinned. 3673 * 3674 * We presume that there will be at least one pinned 3675 * fence for the scanout buffer, but there may be more 3676 * than one scanout and the user may be manually 3677 * pinning buffers. Let's move to execbuffer2 and 3678 * thereby forget the insanity of using fences... 3679 */ 3680 bufmgr_gem->available_fences -= 2; 3681 if (bufmgr_gem->available_fences < 0) 3682 bufmgr_gem->available_fences = 0; 3683 } 3684 } 3685 3686 if (bufmgr_gem->gen >= 8) { 3687 gp.param = I915_PARAM_HAS_ALIASING_PPGTT; 3688 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3689 if (ret == 0 && *gp.value == 3) 3690 bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range; 3691 } 3692 3693 /* Let's go with one relocation per every 2 dwords (but round down a bit 3694 * since a power of two will mean an extra page allocation for the reloc 3695 * buffer). 3696 * 3697 * Every 4 was too few for the blender benchmark. 3698 */ 3699 bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2; 3700 3701 bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc; 3702 bufmgr_gem->bufmgr.bo_alloc_for_render = 3703 drm_intel_gem_bo_alloc_for_render; 3704 bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled; 3705 bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference; 3706 bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference; 3707 bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map; 3708 bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap; 3709 bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata; 3710 bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata; 3711 bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering; 3712 bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc; 3713 bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence; 3714 bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin; 3715 bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin; 3716 bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling; 3717 bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling; 3718 bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink; 3719 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2; 3720 bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2; 3721 bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy; 3722 bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise; 3723 bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref; 3724 bufmgr_gem->bufmgr.debug = 0; 3725 bufmgr_gem->bufmgr.check_aperture_space = 3726 drm_intel_gem_check_aperture_space; 3727 bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse; 3728 bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable; 3729 bufmgr_gem->bufmgr.get_pipe_from_crtc_id = 3730 drm_intel_gem_get_pipe_from_crtc_id; 3731 bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references; 3732 3733 init_cache_buckets(bufmgr_gem); 3734 3735 DRMINITLISTHEAD(&bufmgr_gem->vma_cache); 3736 bufmgr_gem->vma_max = -1; /* unlimited by default */ 3737 3738 DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list); 3739 3740 exit: 3741 pthread_mutex_unlock(&bufmgr_list_mutex); 3742 3743 return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL; 3744 } 3745