1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2 *
3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 * See https://llvm.org/LICENSE.txt for license information.
5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 *
7 *===-----------------------------------------------------------------------===
8 */
9
10 #ifndef __IMMINTRIN_H
11 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
12 #endif
13
14 #ifndef __AVXINTRIN_H
15 #define __AVXINTRIN_H
16
17 typedef double __v4df __attribute__ ((__vector_size__ (32)));
18 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
19 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
20 typedef int __v8si __attribute__ ((__vector_size__ (32)));
21 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
22 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
23
24 /* Unsigned types */
25 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
26 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
27 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
28 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
29
30 /* We need an explicitly signed variant for char. Note that this shouldn't
31 * appear in the interface though. */
32 typedef signed char __v32qs __attribute__((__vector_size__(32)));
33
34 typedef float __m256 __attribute__ ((__vector_size__ (32), __aligned__(32)));
35 typedef double __m256d __attribute__((__vector_size__(32), __aligned__(32)));
36 typedef long long __m256i __attribute__((__vector_size__(32), __aligned__(32)));
37
38 typedef float __m256_u __attribute__ ((__vector_size__ (32), __aligned__(1)));
39 typedef double __m256d_u __attribute__((__vector_size__(32), __aligned__(1)));
40 typedef long long __m256i_u __attribute__((__vector_size__(32), __aligned__(1)));
41
42 #ifdef __SSE2__
43 /* Both _Float16 and __bf16 require SSE2 being enabled. */
44 typedef _Float16 __v16hf __attribute__((__vector_size__(32), __aligned__(32)));
45 typedef _Float16 __m256h __attribute__((__vector_size__(32), __aligned__(32)));
46 typedef _Float16 __m256h_u __attribute__((__vector_size__(32), __aligned__(1)));
47
48 typedef __bf16 __v16bf __attribute__((__vector_size__(32), __aligned__(32)));
49 typedef __bf16 __m256bh __attribute__((__vector_size__(32), __aligned__(32)));
50 #endif
51
52 /* Define the default attributes for the functions in this file. */
53 #if defined(__EVEX512__) && !defined(__AVX10_1_512__)
54 #define __DEFAULT_FN_ATTRS \
55 __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \
56 __min_vector_width__(256)))
57 #define __DEFAULT_FN_ATTRS128 \
58 __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \
59 __min_vector_width__(128)))
60 #else
61 #define __DEFAULT_FN_ATTRS \
62 __attribute__((__always_inline__, __nodebug__, __target__("avx"), \
63 __min_vector_width__(256)))
64 #define __DEFAULT_FN_ATTRS128 \
65 __attribute__((__always_inline__, __nodebug__, __target__("avx"), \
66 __min_vector_width__(128)))
67 #endif
68
69 /* Arithmetic */
70 /// Adds two 256-bit vectors of [4 x double].
71 ///
72 /// \headerfile <x86intrin.h>
73 ///
74 /// This intrinsic corresponds to the <c> VADDPD </c> instruction.
75 ///
76 /// \param __a
77 /// A 256-bit vector of [4 x double] containing one of the source operands.
78 /// \param __b
79 /// A 256-bit vector of [4 x double] containing one of the source operands.
80 /// \returns A 256-bit vector of [4 x double] containing the sums of both
81 /// operands.
82 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_add_pd(__m256d __a,__m256d __b)83 _mm256_add_pd(__m256d __a, __m256d __b)
84 {
85 return (__m256d)((__v4df)__a+(__v4df)__b);
86 }
87
88 /// Adds two 256-bit vectors of [8 x float].
89 ///
90 /// \headerfile <x86intrin.h>
91 ///
92 /// This intrinsic corresponds to the <c> VADDPS </c> instruction.
93 ///
94 /// \param __a
95 /// A 256-bit vector of [8 x float] containing one of the source operands.
96 /// \param __b
97 /// A 256-bit vector of [8 x float] containing one of the source operands.
98 /// \returns A 256-bit vector of [8 x float] containing the sums of both
99 /// operands.
100 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_add_ps(__m256 __a,__m256 __b)101 _mm256_add_ps(__m256 __a, __m256 __b)
102 {
103 return (__m256)((__v8sf)__a+(__v8sf)__b);
104 }
105
106 /// Subtracts two 256-bit vectors of [4 x double].
107 ///
108 /// \headerfile <x86intrin.h>
109 ///
110 /// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
111 ///
112 /// \param __a
113 /// A 256-bit vector of [4 x double] containing the minuend.
114 /// \param __b
115 /// A 256-bit vector of [4 x double] containing the subtrahend.
116 /// \returns A 256-bit vector of [4 x double] containing the differences between
117 /// both operands.
118 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sub_pd(__m256d __a,__m256d __b)119 _mm256_sub_pd(__m256d __a, __m256d __b)
120 {
121 return (__m256d)((__v4df)__a-(__v4df)__b);
122 }
123
124 /// Subtracts two 256-bit vectors of [8 x float].
125 ///
126 /// \headerfile <x86intrin.h>
127 ///
128 /// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
129 ///
130 /// \param __a
131 /// A 256-bit vector of [8 x float] containing the minuend.
132 /// \param __b
133 /// A 256-bit vector of [8 x float] containing the subtrahend.
134 /// \returns A 256-bit vector of [8 x float] containing the differences between
135 /// both operands.
136 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sub_ps(__m256 __a,__m256 __b)137 _mm256_sub_ps(__m256 __a, __m256 __b)
138 {
139 return (__m256)((__v8sf)__a-(__v8sf)__b);
140 }
141
142 /// Adds the even-indexed values and subtracts the odd-indexed values of
143 /// two 256-bit vectors of [4 x double].
144 ///
145 /// \headerfile <x86intrin.h>
146 ///
147 /// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
148 ///
149 /// \param __a
150 /// A 256-bit vector of [4 x double] containing the left source operand.
151 /// \param __b
152 /// A 256-bit vector of [4 x double] containing the right source operand.
153 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
154 /// and differences between both operands.
155 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_addsub_pd(__m256d __a,__m256d __b)156 _mm256_addsub_pd(__m256d __a, __m256d __b)
157 {
158 return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
159 }
160
161 /// Adds the even-indexed values and subtracts the odd-indexed values of
162 /// two 256-bit vectors of [8 x float].
163 ///
164 /// \headerfile <x86intrin.h>
165 ///
166 /// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
167 ///
168 /// \param __a
169 /// A 256-bit vector of [8 x float] containing the left source operand.
170 /// \param __b
171 /// A 256-bit vector of [8 x float] containing the right source operand.
172 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
173 /// differences between both operands.
174 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_addsub_ps(__m256 __a,__m256 __b)175 _mm256_addsub_ps(__m256 __a, __m256 __b)
176 {
177 return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
178 }
179
180 /// Divides two 256-bit vectors of [4 x double].
181 ///
182 /// \headerfile <x86intrin.h>
183 ///
184 /// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
185 ///
186 /// \param __a
187 /// A 256-bit vector of [4 x double] containing the dividend.
188 /// \param __b
189 /// A 256-bit vector of [4 x double] containing the divisor.
190 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
191 /// operands.
192 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_div_pd(__m256d __a,__m256d __b)193 _mm256_div_pd(__m256d __a, __m256d __b)
194 {
195 return (__m256d)((__v4df)__a/(__v4df)__b);
196 }
197
198 /// Divides two 256-bit vectors of [8 x float].
199 ///
200 /// \headerfile <x86intrin.h>
201 ///
202 /// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
203 ///
204 /// \param __a
205 /// A 256-bit vector of [8 x float] containing the dividend.
206 /// \param __b
207 /// A 256-bit vector of [8 x float] containing the divisor.
208 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
209 /// operands.
210 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_div_ps(__m256 __a,__m256 __b)211 _mm256_div_ps(__m256 __a, __m256 __b)
212 {
213 return (__m256)((__v8sf)__a/(__v8sf)__b);
214 }
215
216 /// Compares two 256-bit vectors of [4 x double] and returns the greater
217 /// of each pair of values.
218 ///
219 /// If either value in a comparison is NaN, returns the value from \a __b.
220 ///
221 /// \headerfile <x86intrin.h>
222 ///
223 /// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
224 ///
225 /// \param __a
226 /// A 256-bit vector of [4 x double] containing one of the operands.
227 /// \param __b
228 /// A 256-bit vector of [4 x double] containing one of the operands.
229 /// \returns A 256-bit vector of [4 x double] containing the maximum values
230 /// between both operands.
231 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_max_pd(__m256d __a,__m256d __b)232 _mm256_max_pd(__m256d __a, __m256d __b)
233 {
234 return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
235 }
236
237 /// Compares two 256-bit vectors of [8 x float] and returns the greater
238 /// of each pair of values.
239 ///
240 /// If either value in a comparison is NaN, returns the value from \a __b.
241 ///
242 /// \headerfile <x86intrin.h>
243 ///
244 /// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
245 ///
246 /// \param __a
247 /// A 256-bit vector of [8 x float] containing one of the operands.
248 /// \param __b
249 /// A 256-bit vector of [8 x float] containing one of the operands.
250 /// \returns A 256-bit vector of [8 x float] containing the maximum values
251 /// between both operands.
252 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_max_ps(__m256 __a,__m256 __b)253 _mm256_max_ps(__m256 __a, __m256 __b)
254 {
255 return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
256 }
257
258 /// Compares two 256-bit vectors of [4 x double] and returns the lesser
259 /// of each pair of values.
260 ///
261 /// If either value in a comparison is NaN, returns the value from \a __b.
262 ///
263 /// \headerfile <x86intrin.h>
264 ///
265 /// This intrinsic corresponds to the <c> VMINPD </c> instruction.
266 ///
267 /// \param __a
268 /// A 256-bit vector of [4 x double] containing one of the operands.
269 /// \param __b
270 /// A 256-bit vector of [4 x double] containing one of the operands.
271 /// \returns A 256-bit vector of [4 x double] containing the minimum values
272 /// between both operands.
273 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_min_pd(__m256d __a,__m256d __b)274 _mm256_min_pd(__m256d __a, __m256d __b)
275 {
276 return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
277 }
278
279 /// Compares two 256-bit vectors of [8 x float] and returns the lesser
280 /// of each pair of values.
281 ///
282 /// If either value in a comparison is NaN, returns the value from \a __b.
283 ///
284 /// \headerfile <x86intrin.h>
285 ///
286 /// This intrinsic corresponds to the <c> VMINPS </c> instruction.
287 ///
288 /// \param __a
289 /// A 256-bit vector of [8 x float] containing one of the operands.
290 /// \param __b
291 /// A 256-bit vector of [8 x float] containing one of the operands.
292 /// \returns A 256-bit vector of [8 x float] containing the minimum values
293 /// between both operands.
294 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_min_ps(__m256 __a,__m256 __b)295 _mm256_min_ps(__m256 __a, __m256 __b)
296 {
297 return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
298 }
299
300 /// Multiplies two 256-bit vectors of [4 x double].
301 ///
302 /// \headerfile <x86intrin.h>
303 ///
304 /// This intrinsic corresponds to the <c> VMULPD </c> instruction.
305 ///
306 /// \param __a
307 /// A 256-bit vector of [4 x double] containing one of the operands.
308 /// \param __b
309 /// A 256-bit vector of [4 x double] containing one of the operands.
310 /// \returns A 256-bit vector of [4 x double] containing the products of both
311 /// operands.
312 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_mul_pd(__m256d __a,__m256d __b)313 _mm256_mul_pd(__m256d __a, __m256d __b)
314 {
315 return (__m256d)((__v4df)__a * (__v4df)__b);
316 }
317
318 /// Multiplies two 256-bit vectors of [8 x float].
319 ///
320 /// \headerfile <x86intrin.h>
321 ///
322 /// This intrinsic corresponds to the <c> VMULPS </c> instruction.
323 ///
324 /// \param __a
325 /// A 256-bit vector of [8 x float] containing one of the operands.
326 /// \param __b
327 /// A 256-bit vector of [8 x float] containing one of the operands.
328 /// \returns A 256-bit vector of [8 x float] containing the products of both
329 /// operands.
330 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_mul_ps(__m256 __a,__m256 __b)331 _mm256_mul_ps(__m256 __a, __m256 __b)
332 {
333 return (__m256)((__v8sf)__a * (__v8sf)__b);
334 }
335
336 /// Calculates the square roots of the values in a 256-bit vector of
337 /// [4 x double].
338 ///
339 /// \headerfile <x86intrin.h>
340 ///
341 /// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
342 ///
343 /// \param __a
344 /// A 256-bit vector of [4 x double].
345 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
346 /// values in the operand.
347 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_sqrt_pd(__m256d __a)348 _mm256_sqrt_pd(__m256d __a)
349 {
350 return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
351 }
352
353 /// Calculates the square roots of the values in a 256-bit vector of
354 /// [8 x float].
355 ///
356 /// \headerfile <x86intrin.h>
357 ///
358 /// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
359 ///
360 /// \param __a
361 /// A 256-bit vector of [8 x float].
362 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
363 /// values in the operand.
364 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_sqrt_ps(__m256 __a)365 _mm256_sqrt_ps(__m256 __a)
366 {
367 return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
368 }
369
370 /// Calculates the reciprocal square roots of the values in a 256-bit
371 /// vector of [8 x float].
372 ///
373 /// \headerfile <x86intrin.h>
374 ///
375 /// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
376 ///
377 /// \param __a
378 /// A 256-bit vector of [8 x float].
379 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
380 /// roots of the values in the operand.
381 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rsqrt_ps(__m256 __a)382 _mm256_rsqrt_ps(__m256 __a)
383 {
384 return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
385 }
386
387 /// Calculates the reciprocals of the values in a 256-bit vector of
388 /// [8 x float].
389 ///
390 /// \headerfile <x86intrin.h>
391 ///
392 /// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
393 ///
394 /// \param __a
395 /// A 256-bit vector of [8 x float].
396 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
397 /// values in the operand.
398 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_rcp_ps(__m256 __a)399 _mm256_rcp_ps(__m256 __a)
400 {
401 return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
402 }
403
404 /// Rounds the values in a 256-bit vector of [4 x double] as specified
405 /// by the byte operand. The source values are rounded to integer values and
406 /// returned as 64-bit double-precision floating-point values.
407 ///
408 /// \headerfile <x86intrin.h>
409 ///
410 /// \code
411 /// __m256d _mm256_round_pd(__m256d V, const int M);
412 /// \endcode
413 ///
414 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
415 ///
416 /// \param V
417 /// A 256-bit vector of [4 x double].
418 /// \param M
419 /// An integer value that specifies the rounding operation. \n
420 /// Bits [7:4] are reserved. \n
421 /// Bit [3] is a precision exception value: \n
422 /// 0: A normal PE exception is used. \n
423 /// 1: The PE field is not updated. \n
424 /// Bit [2] is the rounding control source: \n
425 /// 0: Use bits [1:0] of \a M. \n
426 /// 1: Use the current MXCSR setting. \n
427 /// Bits [1:0] contain the rounding control definition: \n
428 /// 00: Nearest. \n
429 /// 01: Downward (toward negative infinity). \n
430 /// 10: Upward (toward positive infinity). \n
431 /// 11: Truncated.
432 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
433 #define _mm256_round_pd(V, M) \
434 ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)))
435
436 /// Rounds the values stored in a 256-bit vector of [8 x float] as
437 /// specified by the byte operand. The source values are rounded to integer
438 /// values and returned as floating-point values.
439 ///
440 /// \headerfile <x86intrin.h>
441 ///
442 /// \code
443 /// __m256 _mm256_round_ps(__m256 V, const int M);
444 /// \endcode
445 ///
446 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
447 ///
448 /// \param V
449 /// A 256-bit vector of [8 x float].
450 /// \param M
451 /// An integer value that specifies the rounding operation. \n
452 /// Bits [7:4] are reserved. \n
453 /// Bit [3] is a precision exception value: \n
454 /// 0: A normal PE exception is used. \n
455 /// 1: The PE field is not updated. \n
456 /// Bit [2] is the rounding control source: \n
457 /// 0: Use bits [1:0] of \a M. \n
458 /// 1: Use the current MXCSR setting. \n
459 /// Bits [1:0] contain the rounding control definition: \n
460 /// 00: Nearest. \n
461 /// 01: Downward (toward negative infinity). \n
462 /// 10: Upward (toward positive infinity). \n
463 /// 11: Truncated.
464 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
465 #define _mm256_round_ps(V, M) \
466 ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)))
467
468 /// Rounds up the values stored in a 256-bit vector of [4 x double]. The
469 /// source values are rounded up to integer values and returned as 64-bit
470 /// double-precision floating-point values.
471 ///
472 /// \headerfile <x86intrin.h>
473 ///
474 /// \code
475 /// __m256d _mm256_ceil_pd(__m256d V);
476 /// \endcode
477 ///
478 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
479 ///
480 /// \param V
481 /// A 256-bit vector of [4 x double].
482 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
483 #define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL)
484
485 /// Rounds down the values stored in a 256-bit vector of [4 x double].
486 /// The source values are rounded down to integer values and returned as
487 /// 64-bit double-precision floating-point values.
488 ///
489 /// \headerfile <x86intrin.h>
490 ///
491 /// \code
492 /// __m256d _mm256_floor_pd(__m256d V);
493 /// \endcode
494 ///
495 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
496 ///
497 /// \param V
498 /// A 256-bit vector of [4 x double].
499 /// \returns A 256-bit vector of [4 x double] containing the rounded down
500 /// values.
501 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
502
503 /// Rounds up the values stored in a 256-bit vector of [8 x float]. The
504 /// source values are rounded up to integer values and returned as
505 /// floating-point values.
506 ///
507 /// \headerfile <x86intrin.h>
508 ///
509 /// \code
510 /// __m256 _mm256_ceil_ps(__m256 V);
511 /// \endcode
512 ///
513 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
514 ///
515 /// \param V
516 /// A 256-bit vector of [8 x float].
517 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
518 #define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL)
519
520 /// Rounds down the values stored in a 256-bit vector of [8 x float]. The
521 /// source values are rounded down to integer values and returned as
522 /// floating-point values.
523 ///
524 /// \headerfile <x86intrin.h>
525 ///
526 /// \code
527 /// __m256 _mm256_floor_ps(__m256 V);
528 /// \endcode
529 ///
530 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
531 ///
532 /// \param V
533 /// A 256-bit vector of [8 x float].
534 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
535 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
536
537 /* Logical */
538 /// Performs a bitwise AND of two 256-bit vectors of [4 x double].
539 ///
540 /// \headerfile <x86intrin.h>
541 ///
542 /// This intrinsic corresponds to the <c> VANDPD </c> instruction.
543 ///
544 /// \param __a
545 /// A 256-bit vector of [4 x double] containing one of the source operands.
546 /// \param __b
547 /// A 256-bit vector of [4 x double] containing one of the source operands.
548 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
549 /// values between both operands.
550 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_and_pd(__m256d __a,__m256d __b)551 _mm256_and_pd(__m256d __a, __m256d __b)
552 {
553 return (__m256d)((__v4du)__a & (__v4du)__b);
554 }
555
556 /// Performs a bitwise AND of two 256-bit vectors of [8 x float].
557 ///
558 /// \headerfile <x86intrin.h>
559 ///
560 /// This intrinsic corresponds to the <c> VANDPS </c> instruction.
561 ///
562 /// \param __a
563 /// A 256-bit vector of [8 x float] containing one of the source operands.
564 /// \param __b
565 /// A 256-bit vector of [8 x float] containing one of the source operands.
566 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
567 /// values between both operands.
568 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_and_ps(__m256 __a,__m256 __b)569 _mm256_and_ps(__m256 __a, __m256 __b)
570 {
571 return (__m256)((__v8su)__a & (__v8su)__b);
572 }
573
574 /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
575 /// the one's complement of the values contained in the first source operand.
576 ///
577 /// \headerfile <x86intrin.h>
578 ///
579 /// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
580 ///
581 /// \param __a
582 /// A 256-bit vector of [4 x double] containing the left source operand. The
583 /// one's complement of this value is used in the bitwise AND.
584 /// \param __b
585 /// A 256-bit vector of [4 x double] containing the right source operand.
586 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
587 /// values of the second operand and the one's complement of the first
588 /// operand.
589 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_andnot_pd(__m256d __a,__m256d __b)590 _mm256_andnot_pd(__m256d __a, __m256d __b)
591 {
592 return (__m256d)(~(__v4du)__a & (__v4du)__b);
593 }
594
595 /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
596 /// the one's complement of the values contained in the first source operand.
597 ///
598 /// \headerfile <x86intrin.h>
599 ///
600 /// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
601 ///
602 /// \param __a
603 /// A 256-bit vector of [8 x float] containing the left source operand. The
604 /// one's complement of this value is used in the bitwise AND.
605 /// \param __b
606 /// A 256-bit vector of [8 x float] containing the right source operand.
607 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
608 /// values of the second operand and the one's complement of the first
609 /// operand.
610 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_andnot_ps(__m256 __a,__m256 __b)611 _mm256_andnot_ps(__m256 __a, __m256 __b)
612 {
613 return (__m256)(~(__v8su)__a & (__v8su)__b);
614 }
615
616 /// Performs a bitwise OR of two 256-bit vectors of [4 x double].
617 ///
618 /// \headerfile <x86intrin.h>
619 ///
620 /// This intrinsic corresponds to the <c> VORPD </c> instruction.
621 ///
622 /// \param __a
623 /// A 256-bit vector of [4 x double] containing one of the source operands.
624 /// \param __b
625 /// A 256-bit vector of [4 x double] containing one of the source operands.
626 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
627 /// values between both operands.
628 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_or_pd(__m256d __a,__m256d __b)629 _mm256_or_pd(__m256d __a, __m256d __b)
630 {
631 return (__m256d)((__v4du)__a | (__v4du)__b);
632 }
633
634 /// Performs a bitwise OR of two 256-bit vectors of [8 x float].
635 ///
636 /// \headerfile <x86intrin.h>
637 ///
638 /// This intrinsic corresponds to the <c> VORPS </c> instruction.
639 ///
640 /// \param __a
641 /// A 256-bit vector of [8 x float] containing one of the source operands.
642 /// \param __b
643 /// A 256-bit vector of [8 x float] containing one of the source operands.
644 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
645 /// values between both operands.
646 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_or_ps(__m256 __a,__m256 __b)647 _mm256_or_ps(__m256 __a, __m256 __b)
648 {
649 return (__m256)((__v8su)__a | (__v8su)__b);
650 }
651
652 /// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
653 ///
654 /// \headerfile <x86intrin.h>
655 ///
656 /// This intrinsic corresponds to the <c> VXORPD </c> instruction.
657 ///
658 /// \param __a
659 /// A 256-bit vector of [4 x double] containing one of the source operands.
660 /// \param __b
661 /// A 256-bit vector of [4 x double] containing one of the source operands.
662 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
663 /// values between both operands.
664 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_xor_pd(__m256d __a,__m256d __b)665 _mm256_xor_pd(__m256d __a, __m256d __b)
666 {
667 return (__m256d)((__v4du)__a ^ (__v4du)__b);
668 }
669
670 /// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
671 ///
672 /// \headerfile <x86intrin.h>
673 ///
674 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
675 ///
676 /// \param __a
677 /// A 256-bit vector of [8 x float] containing one of the source operands.
678 /// \param __b
679 /// A 256-bit vector of [8 x float] containing one of the source operands.
680 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
681 /// values between both operands.
682 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_xor_ps(__m256 __a,__m256 __b)683 _mm256_xor_ps(__m256 __a, __m256 __b)
684 {
685 return (__m256)((__v8su)__a ^ (__v8su)__b);
686 }
687
688 /* Horizontal arithmetic */
689 /// Horizontally adds the adjacent pairs of values contained in two
690 /// 256-bit vectors of [4 x double].
691 ///
692 /// \headerfile <x86intrin.h>
693 ///
694 /// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
695 ///
696 /// \param __a
697 /// A 256-bit vector of [4 x double] containing one of the source operands.
698 /// The horizontal sums of the values are returned in the even-indexed
699 /// elements of a vector of [4 x double].
700 /// \param __b
701 /// A 256-bit vector of [4 x double] containing one of the source operands.
702 /// The horizontal sums of the values are returned in the odd-indexed
703 /// elements of a vector of [4 x double].
704 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
705 /// both operands.
706 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hadd_pd(__m256d __a,__m256d __b)707 _mm256_hadd_pd(__m256d __a, __m256d __b)
708 {
709 return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
710 }
711
712 /// Horizontally adds the adjacent pairs of values contained in two
713 /// 256-bit vectors of [8 x float].
714 ///
715 /// \headerfile <x86intrin.h>
716 ///
717 /// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
718 ///
719 /// \param __a
720 /// A 256-bit vector of [8 x float] containing one of the source operands.
721 /// The horizontal sums of the values are returned in the elements with
722 /// index 0, 1, 4, 5 of a vector of [8 x float].
723 /// \param __b
724 /// A 256-bit vector of [8 x float] containing one of the source operands.
725 /// The horizontal sums of the values are returned in the elements with
726 /// index 2, 3, 6, 7 of a vector of [8 x float].
727 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
728 /// both operands.
729 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hadd_ps(__m256 __a,__m256 __b)730 _mm256_hadd_ps(__m256 __a, __m256 __b)
731 {
732 return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
733 }
734
735 /// Horizontally subtracts the adjacent pairs of values contained in two
736 /// 256-bit vectors of [4 x double].
737 ///
738 /// \headerfile <x86intrin.h>
739 ///
740 /// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
741 ///
742 /// \param __a
743 /// A 256-bit vector of [4 x double] containing one of the source operands.
744 /// The horizontal differences between the values are returned in the
745 /// even-indexed elements of a vector of [4 x double].
746 /// \param __b
747 /// A 256-bit vector of [4 x double] containing one of the source operands.
748 /// The horizontal differences between the values are returned in the
749 /// odd-indexed elements of a vector of [4 x double].
750 /// \returns A 256-bit vector of [4 x double] containing the horizontal
751 /// differences of both operands.
752 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_hsub_pd(__m256d __a,__m256d __b)753 _mm256_hsub_pd(__m256d __a, __m256d __b)
754 {
755 return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
756 }
757
758 /// Horizontally subtracts the adjacent pairs of values contained in two
759 /// 256-bit vectors of [8 x float].
760 ///
761 /// \headerfile <x86intrin.h>
762 ///
763 /// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
764 ///
765 /// \param __a
766 /// A 256-bit vector of [8 x float] containing one of the source operands.
767 /// The horizontal differences between the values are returned in the
768 /// elements with index 0, 1, 4, 5 of a vector of [8 x float].
769 /// \param __b
770 /// A 256-bit vector of [8 x float] containing one of the source operands.
771 /// The horizontal differences between the values are returned in the
772 /// elements with index 2, 3, 6, 7 of a vector of [8 x float].
773 /// \returns A 256-bit vector of [8 x float] containing the horizontal
774 /// differences of both operands.
775 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_hsub_ps(__m256 __a,__m256 __b)776 _mm256_hsub_ps(__m256 __a, __m256 __b)
777 {
778 return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
779 }
780
781 /* Vector permutations */
782 /// Copies the values in a 128-bit vector of [2 x double] as specified
783 /// by the 128-bit integer vector operand.
784 ///
785 /// \headerfile <x86intrin.h>
786 ///
787 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
788 ///
789 /// \param __a
790 /// A 128-bit vector of [2 x double].
791 /// \param __c
792 /// A 128-bit integer vector operand specifying how the values are to be
793 /// copied. \n
794 /// Bit [1]: \n
795 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
796 /// vector. \n
797 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
798 /// returned vector. \n
799 /// Bit [65]: \n
800 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
801 /// returned vector. \n
802 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
803 /// returned vector.
804 /// \returns A 128-bit vector of [2 x double] containing the copied values.
805 static __inline __m128d __DEFAULT_FN_ATTRS128
_mm_permutevar_pd(__m128d __a,__m128i __c)806 _mm_permutevar_pd(__m128d __a, __m128i __c)
807 {
808 return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
809 }
810
811 /// Copies the values in a 256-bit vector of [4 x double] as specified
812 /// by the 256-bit integer vector operand.
813 ///
814 /// \headerfile <x86intrin.h>
815 ///
816 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
817 ///
818 /// \param __a
819 /// A 256-bit vector of [4 x double].
820 /// \param __c
821 /// A 256-bit integer vector operand specifying how the values are to be
822 /// copied. \n
823 /// Bit [1]: \n
824 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
825 /// vector. \n
826 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
827 /// returned vector. \n
828 /// Bit [65]: \n
829 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
830 /// returned vector. \n
831 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
832 /// returned vector. \n
833 /// Bit [129]: \n
834 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
835 /// returned vector. \n
836 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
837 /// returned vector. \n
838 /// Bit [193]: \n
839 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
840 /// returned vector. \n
841 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
842 /// returned vector.
843 /// \returns A 256-bit vector of [4 x double] containing the copied values.
844 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_permutevar_pd(__m256d __a,__m256i __c)845 _mm256_permutevar_pd(__m256d __a, __m256i __c)
846 {
847 return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
848 }
849
850 /// Copies the values stored in a 128-bit vector of [4 x float] as
851 /// specified by the 128-bit integer vector operand.
852 ///
853 /// \headerfile <x86intrin.h>
854 ///
855 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
856 ///
857 /// \param __a
858 /// A 128-bit vector of [4 x float].
859 /// \param __c
860 /// A 128-bit integer vector operand specifying how the values are to be
861 /// copied. \n
862 /// Bits [1:0]: \n
863 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
864 /// returned vector. \n
865 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
866 /// returned vector. \n
867 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
868 /// returned vector. \n
869 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
870 /// returned vector. \n
871 /// Bits [33:32]: \n
872 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
873 /// returned vector. \n
874 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
875 /// returned vector. \n
876 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
877 /// returned vector. \n
878 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
879 /// returned vector. \n
880 /// Bits [65:64]: \n
881 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
882 /// returned vector. \n
883 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
884 /// returned vector. \n
885 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
886 /// returned vector. \n
887 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
888 /// returned vector. \n
889 /// Bits [97:96]: \n
890 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
891 /// returned vector. \n
892 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
893 /// returned vector. \n
894 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
895 /// returned vector. \n
896 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
897 /// returned vector.
898 /// \returns A 128-bit vector of [4 x float] containing the copied values.
899 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_permutevar_ps(__m128 __a,__m128i __c)900 _mm_permutevar_ps(__m128 __a, __m128i __c)
901 {
902 return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
903 }
904
905 /// Copies the values stored in a 256-bit vector of [8 x float] as
906 /// specified by the 256-bit integer vector operand.
907 ///
908 /// \headerfile <x86intrin.h>
909 ///
910 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
911 ///
912 /// \param __a
913 /// A 256-bit vector of [8 x float].
914 /// \param __c
915 /// A 256-bit integer vector operand specifying how the values are to be
916 /// copied. \n
917 /// Bits [1:0]: \n
918 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
919 /// returned vector. \n
920 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
921 /// returned vector. \n
922 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
923 /// returned vector. \n
924 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
925 /// returned vector. \n
926 /// Bits [33:32]: \n
927 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
928 /// returned vector. \n
929 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
930 /// returned vector. \n
931 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
932 /// returned vector. \n
933 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
934 /// returned vector. \n
935 /// Bits [65:64]: \n
936 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
937 /// returned vector. \n
938 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
939 /// returned vector. \n
940 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
941 /// returned vector. \n
942 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
943 /// returned vector. \n
944 /// Bits [97:96]: \n
945 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
946 /// returned vector. \n
947 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
948 /// returned vector. \n
949 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
950 /// returned vector. \n
951 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
952 /// returned vector. \n
953 /// Bits [129:128]: \n
954 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
955 /// returned vector. \n
956 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
957 /// returned vector. \n
958 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
959 /// returned vector. \n
960 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
961 /// returned vector. \n
962 /// Bits [161:160]: \n
963 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
964 /// returned vector. \n
965 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
966 /// returned vector. \n
967 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
968 /// returned vector. \n
969 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
970 /// returned vector. \n
971 /// Bits [193:192]: \n
972 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
973 /// returned vector. \n
974 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
975 /// returned vector. \n
976 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
977 /// returned vector. \n
978 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
979 /// returned vector. \n
980 /// Bits [225:224]: \n
981 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
982 /// returned vector. \n
983 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
984 /// returned vector. \n
985 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
986 /// returned vector. \n
987 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
988 /// returned vector.
989 /// \returns A 256-bit vector of [8 x float] containing the copied values.
990 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_permutevar_ps(__m256 __a,__m256i __c)991 _mm256_permutevar_ps(__m256 __a, __m256i __c)
992 {
993 return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
994 }
995
996 /// Copies the values in a 128-bit vector of [2 x double] as specified
997 /// by the immediate integer operand.
998 ///
999 /// \headerfile <x86intrin.h>
1000 ///
1001 /// \code
1002 /// __m128d _mm_permute_pd(__m128d A, const int C);
1003 /// \endcode
1004 ///
1005 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1006 ///
1007 /// \param A
1008 /// A 128-bit vector of [2 x double].
1009 /// \param C
1010 /// An immediate integer operand specifying how the values are to be
1011 /// copied. \n
1012 /// Bit [0]: \n
1013 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1014 /// vector. \n
1015 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1016 /// returned vector. \n
1017 /// Bit [1]: \n
1018 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1019 /// returned vector. \n
1020 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1021 /// returned vector.
1022 /// \returns A 128-bit vector of [2 x double] containing the copied values.
1023 #define _mm_permute_pd(A, C) \
1024 ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C)))
1025
1026 /// Copies the values in a 256-bit vector of [4 x double] as specified by
1027 /// the immediate integer operand.
1028 ///
1029 /// \headerfile <x86intrin.h>
1030 ///
1031 /// \code
1032 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1033 /// \endcode
1034 ///
1035 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1036 ///
1037 /// \param A
1038 /// A 256-bit vector of [4 x double].
1039 /// \param C
1040 /// An immediate integer operand specifying how the values are to be
1041 /// copied. \n
1042 /// Bit [0]: \n
1043 /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1044 /// vector. \n
1045 /// 1: Bits [127:64] of the source are copied to bits [63:0] of the
1046 /// returned vector. \n
1047 /// Bit [1]: \n
1048 /// 0: Bits [63:0] of the source are copied to bits [127:64] of the
1049 /// returned vector. \n
1050 /// 1: Bits [127:64] of the source are copied to bits [127:64] of the
1051 /// returned vector. \n
1052 /// Bit [2]: \n
1053 /// 0: Bits [191:128] of the source are copied to bits [191:128] of the
1054 /// returned vector. \n
1055 /// 1: Bits [255:192] of the source are copied to bits [191:128] of the
1056 /// returned vector. \n
1057 /// Bit [3]: \n
1058 /// 0: Bits [191:128] of the source are copied to bits [255:192] of the
1059 /// returned vector. \n
1060 /// 1: Bits [255:192] of the source are copied to bits [255:192] of the
1061 /// returned vector.
1062 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1063 #define _mm256_permute_pd(A, C) \
1064 ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C)))
1065
1066 /// Copies the values in a 128-bit vector of [4 x float] as specified by
1067 /// the immediate integer operand.
1068 ///
1069 /// \headerfile <x86intrin.h>
1070 ///
1071 /// \code
1072 /// __m128 _mm_permute_ps(__m128 A, const int C);
1073 /// \endcode
1074 ///
1075 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1076 ///
1077 /// \param A
1078 /// A 128-bit vector of [4 x float].
1079 /// \param C
1080 /// An immediate integer operand specifying how the values are to be
1081 /// copied. \n
1082 /// Bits [1:0]: \n
1083 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1084 /// returned vector. \n
1085 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1086 /// returned vector. \n
1087 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1088 /// returned vector. \n
1089 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1090 /// returned vector. \n
1091 /// Bits [3:2]: \n
1092 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1093 /// returned vector. \n
1094 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1095 /// returned vector. \n
1096 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1097 /// returned vector. \n
1098 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1099 /// returned vector. \n
1100 /// Bits [5:4]: \n
1101 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1102 /// returned vector. \n
1103 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1104 /// returned vector. \n
1105 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1106 /// returned vector. \n
1107 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1108 /// returned vector. \n
1109 /// Bits [7:6]: \n
1110 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1111 /// returned vector. \n
1112 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1113 /// returned vector. \n
1114 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1115 /// returned vector. \n
1116 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1117 /// returned vector.
1118 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1119 #define _mm_permute_ps(A, C) \
1120 ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C)))
1121
1122 /// Copies the values in a 256-bit vector of [8 x float] as specified by
1123 /// the immediate integer operand.
1124 ///
1125 /// \headerfile <x86intrin.h>
1126 ///
1127 /// \code
1128 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1129 /// \endcode
1130 ///
1131 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1132 ///
1133 /// \param A
1134 /// A 256-bit vector of [8 x float].
1135 /// \param C
1136 /// An immediate integer operand specifying how the values are to be
1137 /// copied. \n
1138 /// Bits [1:0]: \n
1139 /// 00: Bits [31:0] of the source are copied to bits [31:0] of the
1140 /// returned vector. \n
1141 /// 01: Bits [63:32] of the source are copied to bits [31:0] of the
1142 /// returned vector. \n
1143 /// 10: Bits [95:64] of the source are copied to bits [31:0] of the
1144 /// returned vector. \n
1145 /// 11: Bits [127:96] of the source are copied to bits [31:0] of the
1146 /// returned vector. \n
1147 /// Bits [3:2]: \n
1148 /// 00: Bits [31:0] of the source are copied to bits [63:32] of the
1149 /// returned vector. \n
1150 /// 01: Bits [63:32] of the source are copied to bits [63:32] of the
1151 /// returned vector. \n
1152 /// 10: Bits [95:64] of the source are copied to bits [63:32] of the
1153 /// returned vector. \n
1154 /// 11: Bits [127:96] of the source are copied to bits [63:32] of the
1155 /// returned vector. \n
1156 /// Bits [5:4]: \n
1157 /// 00: Bits [31:0] of the source are copied to bits [95:64] of the
1158 /// returned vector. \n
1159 /// 01: Bits [63:32] of the source are copied to bits [95:64] of the
1160 /// returned vector. \n
1161 /// 10: Bits [95:64] of the source are copied to bits [95:64] of the
1162 /// returned vector. \n
1163 /// 11: Bits [127:96] of the source are copied to bits [95:64] of the
1164 /// returned vector. \n
1165 /// Bits [7:6]: \n
1166 /// 00: Bits [31:0] of the source are copied to bits [127:96] of the
1167 /// returned vector. \n
1168 /// 01: Bits [63:32] of the source are copied to bits [127:96] of the
1169 /// returned vector. \n
1170 /// 10: Bits [95:64] of the source are copied to bits [127:96] of the
1171 /// returned vector. \n
1172 /// 11: Bits [127:96] of the source are copied to bits [127:96] of the
1173 /// returned vector. \n
1174 /// Bits [1:0]: \n
1175 /// 00: Bits [159:128] of the source are copied to bits [159:128] of the
1176 /// returned vector. \n
1177 /// 01: Bits [191:160] of the source are copied to bits [159:128] of the
1178 /// returned vector. \n
1179 /// 10: Bits [223:192] of the source are copied to bits [159:128] of the
1180 /// returned vector. \n
1181 /// 11: Bits [255:224] of the source are copied to bits [159:128] of the
1182 /// returned vector. \n
1183 /// Bits [3:2]: \n
1184 /// 00: Bits [159:128] of the source are copied to bits [191:160] of the
1185 /// returned vector. \n
1186 /// 01: Bits [191:160] of the source are copied to bits [191:160] of the
1187 /// returned vector. \n
1188 /// 10: Bits [223:192] of the source are copied to bits [191:160] of the
1189 /// returned vector. \n
1190 /// 11: Bits [255:224] of the source are copied to bits [191:160] of the
1191 /// returned vector. \n
1192 /// Bits [5:4]: \n
1193 /// 00: Bits [159:128] of the source are copied to bits [223:192] of the
1194 /// returned vector. \n
1195 /// 01: Bits [191:160] of the source are copied to bits [223:192] of the
1196 /// returned vector. \n
1197 /// 10: Bits [223:192] of the source are copied to bits [223:192] of the
1198 /// returned vector. \n
1199 /// 11: Bits [255:224] of the source are copied to bits [223:192] of the
1200 /// returned vector. \n
1201 /// Bits [7:6]: \n
1202 /// 00: Bits [159:128] of the source are copied to bits [255:224] of the
1203 /// returned vector. \n
1204 /// 01: Bits [191:160] of the source are copied to bits [255:224] of the
1205 /// returned vector. \n
1206 /// 10: Bits [223:192] of the source are copied to bits [255:224] of the
1207 /// returned vector. \n
1208 /// 11: Bits [255:224] of the source are copied to bits [255:224] of the
1209 /// returned vector.
1210 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1211 #define _mm256_permute_ps(A, C) \
1212 ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C)))
1213
1214 /// Permutes 128-bit data values stored in two 256-bit vectors of
1215 /// [4 x double], as specified by the immediate integer operand.
1216 ///
1217 /// \headerfile <x86intrin.h>
1218 ///
1219 /// \code
1220 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1221 /// \endcode
1222 ///
1223 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1224 ///
1225 /// \param V1
1226 /// A 256-bit vector of [4 x double].
1227 /// \param V2
1228 /// A 256-bit vector of [4 x double.
1229 /// \param M
1230 /// An immediate integer operand specifying how the values are to be
1231 /// permuted. \n
1232 /// Bits [1:0]: \n
1233 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1234 /// destination. \n
1235 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1236 /// destination. \n
1237 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1238 /// destination. \n
1239 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1240 /// destination. \n
1241 /// Bits [5:4]: \n
1242 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1243 /// destination. \n
1244 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1245 /// destination. \n
1246 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1247 /// destination. \n
1248 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1249 /// destination.
1250 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1251 #define _mm256_permute2f128_pd(V1, V2, M) \
1252 ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1253 (__v4df)(__m256d)(V2), (int)(M)))
1254
1255 /// Permutes 128-bit data values stored in two 256-bit vectors of
1256 /// [8 x float], as specified by the immediate integer operand.
1257 ///
1258 /// \headerfile <x86intrin.h>
1259 ///
1260 /// \code
1261 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1262 /// \endcode
1263 ///
1264 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1265 ///
1266 /// \param V1
1267 /// A 256-bit vector of [8 x float].
1268 /// \param V2
1269 /// A 256-bit vector of [8 x float].
1270 /// \param M
1271 /// An immediate integer operand specifying how the values are to be
1272 /// permuted. \n
1273 /// Bits [1:0]: \n
1274 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1275 /// destination. \n
1276 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1277 /// destination. \n
1278 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1279 /// destination. \n
1280 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1281 /// destination. \n
1282 /// Bits [5:4]: \n
1283 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1284 /// destination. \n
1285 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1286 /// destination. \n
1287 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1288 /// destination. \n
1289 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1290 /// destination.
1291 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1292 #define _mm256_permute2f128_ps(V1, V2, M) \
1293 ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1294 (__v8sf)(__m256)(V2), (int)(M)))
1295
1296 /// Permutes 128-bit data values stored in two 256-bit integer vectors,
1297 /// as specified by the immediate integer operand.
1298 ///
1299 /// \headerfile <x86intrin.h>
1300 ///
1301 /// \code
1302 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1303 /// \endcode
1304 ///
1305 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1306 ///
1307 /// \param V1
1308 /// A 256-bit integer vector.
1309 /// \param V2
1310 /// A 256-bit integer vector.
1311 /// \param M
1312 /// An immediate integer operand specifying how the values are to be copied.
1313 /// Bits [1:0]: \n
1314 /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1315 /// destination. \n
1316 /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1317 /// destination. \n
1318 /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1319 /// destination. \n
1320 /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1321 /// destination. \n
1322 /// Bits [5:4]: \n
1323 /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1324 /// destination. \n
1325 /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1326 /// destination. \n
1327 /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1328 /// destination. \n
1329 /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1330 /// destination.
1331 /// \returns A 256-bit integer vector containing the copied values.
1332 #define _mm256_permute2f128_si256(V1, V2, M) \
1333 ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1334 (__v8si)(__m256i)(V2), (int)(M)))
1335
1336 /* Vector Blend */
1337 /// Merges 64-bit double-precision data values stored in either of the
1338 /// two 256-bit vectors of [4 x double], as specified by the immediate
1339 /// integer operand.
1340 ///
1341 /// \headerfile <x86intrin.h>
1342 ///
1343 /// \code
1344 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1345 /// \endcode
1346 ///
1347 /// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1348 ///
1349 /// \param V1
1350 /// A 256-bit vector of [4 x double].
1351 /// \param V2
1352 /// A 256-bit vector of [4 x double].
1353 /// \param M
1354 /// An immediate integer operand, with mask bits [3:0] specifying how the
1355 /// values are to be copied. The position of the mask bit corresponds to the
1356 /// index of a copied value. When a mask bit is 0, the corresponding 64-bit
1357 /// element in operand \a V1 is copied to the same position in the
1358 /// destination. When a mask bit is 1, the corresponding 64-bit element in
1359 /// operand \a V2 is copied to the same position in the destination.
1360 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1361 #define _mm256_blend_pd(V1, V2, M) \
1362 ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1363 (__v4df)(__m256d)(V2), (int)(M)))
1364
1365 /// Merges 32-bit single-precision data values stored in either of the
1366 /// two 256-bit vectors of [8 x float], as specified by the immediate
1367 /// integer operand.
1368 ///
1369 /// \headerfile <x86intrin.h>
1370 ///
1371 /// \code
1372 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1373 /// \endcode
1374 ///
1375 /// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1376 ///
1377 /// \param V1
1378 /// A 256-bit vector of [8 x float].
1379 /// \param V2
1380 /// A 256-bit vector of [8 x float].
1381 /// \param M
1382 /// An immediate integer operand, with mask bits [7:0] specifying how the
1383 /// values are to be copied. The position of the mask bit corresponds to the
1384 /// index of a copied value. When a mask bit is 0, the corresponding 32-bit
1385 /// element in operand \a V1 is copied to the same position in the
1386 /// destination. When a mask bit is 1, the corresponding 32-bit element in
1387 /// operand \a V2 is copied to the same position in the destination.
1388 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1389 #define _mm256_blend_ps(V1, V2, M) \
1390 ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1391 (__v8sf)(__m256)(V2), (int)(M)))
1392
1393 /// Merges 64-bit double-precision data values stored in either of the
1394 /// two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1395 /// operand.
1396 ///
1397 /// \headerfile <x86intrin.h>
1398 ///
1399 /// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1400 ///
1401 /// \param __a
1402 /// A 256-bit vector of [4 x double].
1403 /// \param __b
1404 /// A 256-bit vector of [4 x double].
1405 /// \param __c
1406 /// A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1407 /// how the values are to be copied. The position of the mask bit corresponds
1408 /// to the most significant bit of a copied value. When a mask bit is 0, the
1409 /// corresponding 64-bit element in operand \a __a is copied to the same
1410 /// position in the destination. When a mask bit is 1, the corresponding
1411 /// 64-bit element in operand \a __b is copied to the same position in the
1412 /// destination.
1413 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1414 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_blendv_pd(__m256d __a,__m256d __b,__m256d __c)1415 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1416 {
1417 return (__m256d)__builtin_ia32_blendvpd256(
1418 (__v4df)__a, (__v4df)__b, (__v4df)__c);
1419 }
1420
1421 /// Merges 32-bit single-precision data values stored in either of the
1422 /// two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1423 /// operand.
1424 ///
1425 /// \headerfile <x86intrin.h>
1426 ///
1427 /// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1428 ///
1429 /// \param __a
1430 /// A 256-bit vector of [8 x float].
1431 /// \param __b
1432 /// A 256-bit vector of [8 x float].
1433 /// \param __c
1434 /// A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1435 /// and 31 specifying how the values are to be copied. The position of the
1436 /// mask bit corresponds to the most significant bit of a copied value. When
1437 /// a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1438 /// copied to the same position in the destination. When a mask bit is 1, the
1439 /// corresponding 32-bit element in operand \a __b is copied to the same
1440 /// position in the destination.
1441 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1442 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_blendv_ps(__m256 __a,__m256 __b,__m256 __c)1443 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1444 {
1445 return (__m256)__builtin_ia32_blendvps256(
1446 (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1447 }
1448
1449 /* Vector Dot Product */
1450 /// Computes two dot products in parallel, using the lower and upper
1451 /// halves of two [8 x float] vectors as input to the two computations, and
1452 /// returning the two dot products in the lower and upper halves of the
1453 /// [8 x float] result.
1454 ///
1455 /// The immediate integer operand controls which input elements will
1456 /// contribute to the dot product, and where the final results are returned.
1457 /// In general, for each dot product, the four corresponding elements of the
1458 /// input vectors are multiplied; the first two and second two products are
1459 /// summed, then the two sums are added to form the final result.
1460 ///
1461 /// \headerfile <x86intrin.h>
1462 ///
1463 /// \code
1464 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1465 /// \endcode
1466 ///
1467 /// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1468 ///
1469 /// \param V1
1470 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1471 /// \param V2
1472 /// A vector of [8 x float] values, treated as two [4 x float] vectors.
1473 /// \param M
1474 /// An immediate integer argument. Bits [7:4] determine which elements of
1475 /// the input vectors are used, with bit [4] corresponding to the lowest
1476 /// element and bit [7] corresponding to the highest element of each [4 x
1477 /// float] subvector. If a bit is set, the corresponding elements from the
1478 /// two input vectors are used as an input for dot product; otherwise that
1479 /// input is treated as zero. Bits [3:0] determine which elements of the
1480 /// result will receive a copy of the final dot product, with bit [0]
1481 /// corresponding to the lowest element and bit [3] corresponding to the
1482 /// highest element of each [4 x float] subvector. If a bit is set, the dot
1483 /// product is returned in the corresponding element; otherwise that element
1484 /// is set to zero. The bitmask is applied in the same way to each of the
1485 /// two parallel dot product computations.
1486 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1487 #define _mm256_dp_ps(V1, V2, M) \
1488 ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1489 (__v8sf)(__m256)(V2), (M)))
1490
1491 /* Vector shuffle */
1492 /// Selects 8 float values from the 256-bit operands of [8 x float], as
1493 /// specified by the immediate value operand.
1494 ///
1495 /// The four selected elements in each operand are copied to the destination
1496 /// according to the bits specified in the immediate operand. The selected
1497 /// elements from the first 256-bit operand are copied to bits [63:0] and
1498 /// bits [191:128] of the destination, and the selected elements from the
1499 /// second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1500 /// the destination. For example, if bits [7:0] of the immediate operand
1501 /// contain a value of 0xFF, the 256-bit destination vector would contain the
1502 /// following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1503 ///
1504 /// \headerfile <x86intrin.h>
1505 ///
1506 /// \code
1507 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1508 /// \endcode
1509 ///
1510 /// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1511 ///
1512 /// \param a
1513 /// A 256-bit vector of [8 x float]. The four selected elements in this
1514 /// operand are copied to bits [63:0] and bits [191:128] in the destination,
1515 /// according to the bits specified in the immediate operand.
1516 /// \param b
1517 /// A 256-bit vector of [8 x float]. The four selected elements in this
1518 /// operand are copied to bits [127:64] and bits [255:192] in the
1519 /// destination, according to the bits specified in the immediate operand.
1520 /// \param mask
1521 /// An immediate value containing an 8-bit value specifying which elements to
1522 /// copy from \a a and \a b \n.
1523 /// Bits [3:0] specify the values copied from operand \a a. \n
1524 /// Bits [7:4] specify the values copied from operand \a b. \n
1525 /// The destinations within the 256-bit destination are assigned values as
1526 /// follows, according to the bit value assignments described below: \n
1527 /// Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1528 /// destination. \n
1529 /// Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1530 /// destination. \n
1531 /// Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1532 /// destination. \n
1533 /// Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1534 /// the destination. \n
1535 /// Bit value assignments: \n
1536 /// 00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1537 /// 01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1538 /// 10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1539 /// 11: Bits [127:96] and [255:224] are copied from the selected operand. \n
1540 /// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
1541 /// <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
1542 /// <c>[b6, b4, b2, b0]</c>.
1543 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1544 #define _mm256_shuffle_ps(a, b, mask) \
1545 ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1546 (__v8sf)(__m256)(b), (int)(mask)))
1547
1548 /// Selects four double-precision values from the 256-bit operands of
1549 /// [4 x double], as specified by the immediate value operand.
1550 ///
1551 /// The selected elements from the first 256-bit operand are copied to bits
1552 /// [63:0] and bits [191:128] in the destination, and the selected elements
1553 /// from the second 256-bit operand are copied to bits [127:64] and bits
1554 /// [255:192] in the destination. For example, if bits [3:0] of the immediate
1555 /// operand contain a value of 0xF, the 256-bit destination vector would
1556 /// contain the following values: b[3], a[3], b[1], a[1].
1557 ///
1558 /// \headerfile <x86intrin.h>
1559 ///
1560 /// \code
1561 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1562 /// \endcode
1563 ///
1564 /// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1565 ///
1566 /// \param a
1567 /// A 256-bit vector of [4 x double].
1568 /// \param b
1569 /// A 256-bit vector of [4 x double].
1570 /// \param mask
1571 /// An immediate value containing 8-bit values specifying which elements to
1572 /// copy from \a a and \a b: \n
1573 /// Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1574 /// destination. \n
1575 /// Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1576 /// destination. \n
1577 /// Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1578 /// destination. \n
1579 /// Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1580 /// destination. \n
1581 /// Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1582 /// destination. \n
1583 /// Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1584 /// destination. \n
1585 /// Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1586 /// destination. \n
1587 /// Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1588 /// destination.
1589 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1590 #define _mm256_shuffle_pd(a, b, mask) \
1591 ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1592 (__v4df)(__m256d)(b), (int)(mask)))
1593
1594 /* Compare */
1595 #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */
1596 #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unordered, signaling) */
1597 #define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */
1598 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */
1599 #define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */
1600 #define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */
1601 #define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */
1602 #define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */
1603 #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */
1604 #define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */
1605 #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */
1606 #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */
1607 #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */
1608 #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */
1609 #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unordered, non-signaling) */
1610 #define _CMP_ORD_S 0x17 /* Ordered (signaling) */
1611 #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */
1612 #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unordered, non-signaling) */
1613 #define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */
1614 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */
1615 #define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */
1616 #define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */
1617 #define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */
1618 #define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */
1619
1620 /* Below intrinsic defined in emmintrin.h can be used for AVX */
1621 /// Compares each of the corresponding double-precision values of two
1622 /// 128-bit vectors of [2 x double], using the operation specified by the
1623 /// immediate integer operand.
1624 ///
1625 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1626 /// If either value in a comparison is NaN, comparisons that are ordered
1627 /// return false, and comparisons that are unordered return true.
1628 ///
1629 /// \headerfile <x86intrin.h>
1630 ///
1631 /// \code
1632 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1633 /// \endcode
1634 ///
1635 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1636 ///
1637 /// \param a
1638 /// A 128-bit vector of [2 x double].
1639 /// \param b
1640 /// A 128-bit vector of [2 x double].
1641 /// \param c
1642 /// An immediate integer operand, with bits [4:0] specifying which comparison
1643 /// operation to use: \n
1644 /// 0x00: Equal (ordered, non-signaling) \n
1645 /// 0x01: Less-than (ordered, signaling) \n
1646 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1647 /// 0x03: Unordered (non-signaling) \n
1648 /// 0x04: Not-equal (unordered, non-signaling) \n
1649 /// 0x05: Not-less-than (unordered, signaling) \n
1650 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1651 /// 0x07: Ordered (non-signaling) \n
1652 /// 0x08: Equal (unordered, non-signaling) \n
1653 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1654 /// 0x0A: Not-greater-than (unordered, signaling) \n
1655 /// 0x0B: False (ordered, non-signaling) \n
1656 /// 0x0C: Not-equal (ordered, non-signaling) \n
1657 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1658 /// 0x0E: Greater-than (ordered, signaling) \n
1659 /// 0x0F: True (unordered, non-signaling) \n
1660 /// 0x10: Equal (ordered, signaling) \n
1661 /// 0x11: Less-than (ordered, non-signaling) \n
1662 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1663 /// 0x13: Unordered (signaling) \n
1664 /// 0x14: Not-equal (unordered, signaling) \n
1665 /// 0x15: Not-less-than (unordered, non-signaling) \n
1666 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1667 /// 0x17: Ordered (signaling) \n
1668 /// 0x18: Equal (unordered, signaling) \n
1669 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1670 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1671 /// 0x1B: False (ordered, signaling) \n
1672 /// 0x1C: Not-equal (ordered, signaling) \n
1673 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1674 /// 0x1E: Greater-than (ordered, non-signaling) \n
1675 /// 0x1F: True (unordered, signaling)
1676 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1677 /// \fn __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c)
1678
1679 /* Below intrinsic defined in xmmintrin.h can be used for AVX */
1680 /// Compares each of the corresponding values of two 128-bit vectors of
1681 /// [4 x float], using the operation specified by the immediate integer
1682 /// operand.
1683 ///
1684 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1685 /// If either value in a comparison is NaN, comparisons that are ordered
1686 /// return false, and comparisons that are unordered return true.
1687 ///
1688 /// \headerfile <x86intrin.h>
1689 ///
1690 /// \code
1691 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1692 /// \endcode
1693 ///
1694 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1695 ///
1696 /// \param a
1697 /// A 128-bit vector of [4 x float].
1698 /// \param b
1699 /// A 128-bit vector of [4 x float].
1700 /// \param c
1701 /// An immediate integer operand, with bits [4:0] specifying which comparison
1702 /// operation to use: \n
1703 /// 0x00: Equal (ordered, non-signaling) \n
1704 /// 0x01: Less-than (ordered, signaling) \n
1705 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1706 /// 0x03: Unordered (non-signaling) \n
1707 /// 0x04: Not-equal (unordered, non-signaling) \n
1708 /// 0x05: Not-less-than (unordered, signaling) \n
1709 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1710 /// 0x07: Ordered (non-signaling) \n
1711 /// 0x08: Equal (unordered, non-signaling) \n
1712 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1713 /// 0x0A: Not-greater-than (unordered, signaling) \n
1714 /// 0x0B: False (ordered, non-signaling) \n
1715 /// 0x0C: Not-equal (ordered, non-signaling) \n
1716 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1717 /// 0x0E: Greater-than (ordered, signaling) \n
1718 /// 0x0F: True (unordered, non-signaling) \n
1719 /// 0x10: Equal (ordered, signaling) \n
1720 /// 0x11: Less-than (ordered, non-signaling) \n
1721 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1722 /// 0x13: Unordered (signaling) \n
1723 /// 0x14: Not-equal (unordered, signaling) \n
1724 /// 0x15: Not-less-than (unordered, non-signaling) \n
1725 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1726 /// 0x17: Ordered (signaling) \n
1727 /// 0x18: Equal (unordered, signaling) \n
1728 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1729 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1730 /// 0x1B: False (ordered, signaling) \n
1731 /// 0x1C: Not-equal (ordered, signaling) \n
1732 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1733 /// 0x1E: Greater-than (ordered, non-signaling) \n
1734 /// 0x1F: True (unordered, signaling)
1735 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1736 /// \fn __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c)
1737
1738 /// Compares each of the corresponding double-precision values of two
1739 /// 256-bit vectors of [4 x double], using the operation specified by the
1740 /// immediate integer operand.
1741 ///
1742 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1743 /// If either value in a comparison is NaN, comparisons that are ordered
1744 /// return false, and comparisons that are unordered return true.
1745 ///
1746 /// \headerfile <x86intrin.h>
1747 ///
1748 /// \code
1749 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1750 /// \endcode
1751 ///
1752 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1753 ///
1754 /// \param a
1755 /// A 256-bit vector of [4 x double].
1756 /// \param b
1757 /// A 256-bit vector of [4 x double].
1758 /// \param c
1759 /// An immediate integer operand, with bits [4:0] specifying which comparison
1760 /// operation to use: \n
1761 /// 0x00: Equal (ordered, non-signaling) \n
1762 /// 0x01: Less-than (ordered, signaling) \n
1763 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1764 /// 0x03: Unordered (non-signaling) \n
1765 /// 0x04: Not-equal (unordered, non-signaling) \n
1766 /// 0x05: Not-less-than (unordered, signaling) \n
1767 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1768 /// 0x07: Ordered (non-signaling) \n
1769 /// 0x08: Equal (unordered, non-signaling) \n
1770 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1771 /// 0x0A: Not-greater-than (unordered, signaling) \n
1772 /// 0x0B: False (ordered, non-signaling) \n
1773 /// 0x0C: Not-equal (ordered, non-signaling) \n
1774 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1775 /// 0x0E: Greater-than (ordered, signaling) \n
1776 /// 0x0F: True (unordered, non-signaling) \n
1777 /// 0x10: Equal (ordered, signaling) \n
1778 /// 0x11: Less-than (ordered, non-signaling) \n
1779 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1780 /// 0x13: Unordered (signaling) \n
1781 /// 0x14: Not-equal (unordered, signaling) \n
1782 /// 0x15: Not-less-than (unordered, non-signaling) \n
1783 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1784 /// 0x17: Ordered (signaling) \n
1785 /// 0x18: Equal (unordered, signaling) \n
1786 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1787 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1788 /// 0x1B: False (ordered, signaling) \n
1789 /// 0x1C: Not-equal (ordered, signaling) \n
1790 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1791 /// 0x1E: Greater-than (ordered, non-signaling) \n
1792 /// 0x1F: True (unordered, signaling)
1793 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1794 #define _mm256_cmp_pd(a, b, c) \
1795 ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1796 (__v4df)(__m256d)(b), (c)))
1797
1798 /// Compares each of the corresponding values of two 256-bit vectors of
1799 /// [8 x float], using the operation specified by the immediate integer
1800 /// operand.
1801 ///
1802 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1803 /// If either value in a comparison is NaN, comparisons that are ordered
1804 /// return false, and comparisons that are unordered return true.
1805 ///
1806 /// \headerfile <x86intrin.h>
1807 ///
1808 /// \code
1809 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1810 /// \endcode
1811 ///
1812 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1813 ///
1814 /// \param a
1815 /// A 256-bit vector of [8 x float].
1816 /// \param b
1817 /// A 256-bit vector of [8 x float].
1818 /// \param c
1819 /// An immediate integer operand, with bits [4:0] specifying which comparison
1820 /// operation to use: \n
1821 /// 0x00: Equal (ordered, non-signaling) \n
1822 /// 0x01: Less-than (ordered, signaling) \n
1823 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1824 /// 0x03: Unordered (non-signaling) \n
1825 /// 0x04: Not-equal (unordered, non-signaling) \n
1826 /// 0x05: Not-less-than (unordered, signaling) \n
1827 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1828 /// 0x07: Ordered (non-signaling) \n
1829 /// 0x08: Equal (unordered, non-signaling) \n
1830 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1831 /// 0x0A: Not-greater-than (unordered, signaling) \n
1832 /// 0x0B: False (ordered, non-signaling) \n
1833 /// 0x0C: Not-equal (ordered, non-signaling) \n
1834 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1835 /// 0x0E: Greater-than (ordered, signaling) \n
1836 /// 0x0F: True (unordered, non-signaling) \n
1837 /// 0x10: Equal (ordered, signaling) \n
1838 /// 0x11: Less-than (ordered, non-signaling) \n
1839 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1840 /// 0x13: Unordered (signaling) \n
1841 /// 0x14: Not-equal (unordered, signaling) \n
1842 /// 0x15: Not-less-than (unordered, non-signaling) \n
1843 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1844 /// 0x17: Ordered (signaling) \n
1845 /// 0x18: Equal (unordered, signaling) \n
1846 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1847 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1848 /// 0x1B: False (ordered, signaling) \n
1849 /// 0x1C: Not-equal (ordered, signaling) \n
1850 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1851 /// 0x1E: Greater-than (ordered, non-signaling) \n
1852 /// 0x1F: True (unordered, signaling)
1853 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1854 #define _mm256_cmp_ps(a, b, c) \
1855 ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1856 (__v8sf)(__m256)(b), (c)))
1857
1858 /* Below intrinsic defined in emmintrin.h can be used for AVX */
1859 /// Compares each of the corresponding scalar double-precision values of
1860 /// two 128-bit vectors of [2 x double], using the operation specified by the
1861 /// immediate integer operand.
1862 ///
1863 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1864 /// If either value in a comparison is NaN, comparisons that are ordered
1865 /// return false, and comparisons that are unordered return true.
1866 ///
1867 /// \headerfile <x86intrin.h>
1868 ///
1869 /// \code
1870 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1871 /// \endcode
1872 ///
1873 /// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1874 ///
1875 /// \param a
1876 /// A 128-bit vector of [2 x double].
1877 /// \param b
1878 /// A 128-bit vector of [2 x double].
1879 /// \param c
1880 /// An immediate integer operand, with bits [4:0] specifying which comparison
1881 /// operation to use: \n
1882 /// 0x00: Equal (ordered, non-signaling) \n
1883 /// 0x01: Less-than (ordered, signaling) \n
1884 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1885 /// 0x03: Unordered (non-signaling) \n
1886 /// 0x04: Not-equal (unordered, non-signaling) \n
1887 /// 0x05: Not-less-than (unordered, signaling) \n
1888 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1889 /// 0x07: Ordered (non-signaling) \n
1890 /// 0x08: Equal (unordered, non-signaling) \n
1891 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1892 /// 0x0A: Not-greater-than (unordered, signaling) \n
1893 /// 0x0B: False (ordered, non-signaling) \n
1894 /// 0x0C: Not-equal (ordered, non-signaling) \n
1895 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1896 /// 0x0E: Greater-than (ordered, signaling) \n
1897 /// 0x0F: True (unordered, non-signaling) \n
1898 /// 0x10: Equal (ordered, signaling) \n
1899 /// 0x11: Less-than (ordered, non-signaling) \n
1900 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1901 /// 0x13: Unordered (signaling) \n
1902 /// 0x14: Not-equal (unordered, signaling) \n
1903 /// 0x15: Not-less-than (unordered, non-signaling) \n
1904 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1905 /// 0x17: Ordered (signaling) \n
1906 /// 0x18: Equal (unordered, signaling) \n
1907 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1908 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1909 /// 0x1B: False (ordered, signaling) \n
1910 /// 0x1C: Not-equal (ordered, signaling) \n
1911 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1912 /// 0x1E: Greater-than (ordered, non-signaling) \n
1913 /// 0x1F: True (unordered, signaling)
1914 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1915 /// \fn __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c)
1916
1917 /* Below intrinsic defined in xmmintrin.h can be used for AVX */
1918 /// Compares each of the corresponding scalar values of two 128-bit
1919 /// vectors of [4 x float], using the operation specified by the immediate
1920 /// integer operand.
1921 ///
1922 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1923 /// If either value in a comparison is NaN, comparisons that are ordered
1924 /// return false, and comparisons that are unordered return true.
1925 ///
1926 /// \headerfile <x86intrin.h>
1927 ///
1928 /// \code
1929 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1930 /// \endcode
1931 ///
1932 /// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1933 ///
1934 /// \param a
1935 /// A 128-bit vector of [4 x float].
1936 /// \param b
1937 /// A 128-bit vector of [4 x float].
1938 /// \param c
1939 /// An immediate integer operand, with bits [4:0] specifying which comparison
1940 /// operation to use: \n
1941 /// 0x00: Equal (ordered, non-signaling) \n
1942 /// 0x01: Less-than (ordered, signaling) \n
1943 /// 0x02: Less-than-or-equal (ordered, signaling) \n
1944 /// 0x03: Unordered (non-signaling) \n
1945 /// 0x04: Not-equal (unordered, non-signaling) \n
1946 /// 0x05: Not-less-than (unordered, signaling) \n
1947 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n
1948 /// 0x07: Ordered (non-signaling) \n
1949 /// 0x08: Equal (unordered, non-signaling) \n
1950 /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n
1951 /// 0x0A: Not-greater-than (unordered, signaling) \n
1952 /// 0x0B: False (ordered, non-signaling) \n
1953 /// 0x0C: Not-equal (ordered, non-signaling) \n
1954 /// 0x0D: Greater-than-or-equal (ordered, signaling) \n
1955 /// 0x0E: Greater-than (ordered, signaling) \n
1956 /// 0x0F: True (unordered, non-signaling) \n
1957 /// 0x10: Equal (ordered, signaling) \n
1958 /// 0x11: Less-than (ordered, non-signaling) \n
1959 /// 0x12: Less-than-or-equal (ordered, non-signaling) \n
1960 /// 0x13: Unordered (signaling) \n
1961 /// 0x14: Not-equal (unordered, signaling) \n
1962 /// 0x15: Not-less-than (unordered, non-signaling) \n
1963 /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1964 /// 0x17: Ordered (signaling) \n
1965 /// 0x18: Equal (unordered, signaling) \n
1966 /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1967 /// 0x1A: Not-greater-than (unordered, non-signaling) \n
1968 /// 0x1B: False (ordered, signaling) \n
1969 /// 0x1C: Not-equal (ordered, signaling) \n
1970 /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1971 /// 0x1E: Greater-than (ordered, non-signaling) \n
1972 /// 0x1F: True (unordered, signaling)
1973 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1974 /// \fn __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c)
1975
1976 /// Takes a [8 x i32] vector and returns the vector element value
1977 /// indexed by the immediate constant operand.
1978 ///
1979 /// \headerfile <x86intrin.h>
1980 ///
1981 /// \code
1982 /// int _mm256_extract_epi32(__m256i X, const int N);
1983 /// \endcode
1984 ///
1985 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1986 /// instruction.
1987 ///
1988 /// \param X
1989 /// A 256-bit vector of [8 x i32].
1990 /// \param N
1991 /// An immediate integer operand with bits [2:0] determining which vector
1992 /// element is extracted and returned.
1993 /// \returns A 32-bit integer containing the extracted 32 bits of extended
1994 /// packed data.
1995 #define _mm256_extract_epi32(X, N) \
1996 ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N)))
1997
1998 /// Takes a [16 x i16] vector and returns the vector element value
1999 /// indexed by the immediate constant operand.
2000 ///
2001 /// \headerfile <x86intrin.h>
2002 ///
2003 /// \code
2004 /// int _mm256_extract_epi16(__m256i X, const int N);
2005 /// \endcode
2006 ///
2007 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2008 /// instruction.
2009 ///
2010 /// \param X
2011 /// A 256-bit integer vector of [16 x i16].
2012 /// \param N
2013 /// An immediate integer operand with bits [3:0] determining which vector
2014 /// element is extracted and returned.
2015 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
2016 /// packed data.
2017 #define _mm256_extract_epi16(X, N) \
2018 ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
2019 (int)(N)))
2020
2021 /// Takes a [32 x i8] vector and returns the vector element value
2022 /// indexed by the immediate constant operand.
2023 ///
2024 /// \headerfile <x86intrin.h>
2025 ///
2026 /// \code
2027 /// int _mm256_extract_epi8(__m256i X, const int N);
2028 /// \endcode
2029 ///
2030 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2031 /// instruction.
2032 ///
2033 /// \param X
2034 /// A 256-bit integer vector of [32 x i8].
2035 /// \param N
2036 /// An immediate integer operand with bits [4:0] determining which vector
2037 /// element is extracted and returned.
2038 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2039 /// packed data.
2040 #define _mm256_extract_epi8(X, N) \
2041 ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2042 (int)(N)))
2043
2044 #ifdef __x86_64__
2045 /// Takes a [4 x i64] vector and returns the vector element value
2046 /// indexed by the immediate constant operand.
2047 ///
2048 /// \headerfile <x86intrin.h>
2049 ///
2050 /// \code
2051 /// long long _mm256_extract_epi64(__m256i X, const int N);
2052 /// \endcode
2053 ///
2054 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2055 /// instruction.
2056 ///
2057 /// \param X
2058 /// A 256-bit integer vector of [4 x i64].
2059 /// \param N
2060 /// An immediate integer operand with bits [1:0] determining which vector
2061 /// element is extracted and returned.
2062 /// \returns A 64-bit integer containing the extracted 64 bits of extended
2063 /// packed data.
2064 #define _mm256_extract_epi64(X, N) \
2065 ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N)))
2066 #endif
2067
2068 /// Takes a [8 x i32] vector and replaces the vector element value
2069 /// indexed by the immediate constant operand by a new value. Returns the
2070 /// modified vector.
2071 ///
2072 /// \headerfile <x86intrin.h>
2073 ///
2074 /// \code
2075 /// __m256i _mm256_insert_epi32(__m256i X, int I, const int N);
2076 /// \endcode
2077 ///
2078 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2079 /// instruction.
2080 ///
2081 /// \param X
2082 /// A vector of [8 x i32] to be used by the insert operation.
2083 /// \param I
2084 /// An integer value. The replacement value for the insert operation.
2085 /// \param N
2086 /// An immediate integer specifying the index of the vector element to be
2087 /// replaced.
2088 /// \returns A copy of vector \a X, after replacing its element indexed by
2089 /// \a N with \a I.
2090 #define _mm256_insert_epi32(X, I, N) \
2091 ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2092 (int)(I), (int)(N)))
2093
2094
2095 /// Takes a [16 x i16] vector and replaces the vector element value
2096 /// indexed by the immediate constant operand with a new value. Returns the
2097 /// modified vector.
2098 ///
2099 /// \headerfile <x86intrin.h>
2100 ///
2101 /// \code
2102 /// __m256i _mm256_insert_epi16(__m256i X, int I, const int N);
2103 /// \endcode
2104 ///
2105 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2106 /// instruction.
2107 ///
2108 /// \param X
2109 /// A vector of [16 x i16] to be used by the insert operation.
2110 /// \param I
2111 /// An i16 integer value. The replacement value for the insert operation.
2112 /// \param N
2113 /// An immediate integer specifying the index of the vector element to be
2114 /// replaced.
2115 /// \returns A copy of vector \a X, after replacing its element indexed by
2116 /// \a N with \a I.
2117 #define _mm256_insert_epi16(X, I, N) \
2118 ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2119 (int)(I), (int)(N)))
2120
2121 /// Takes a [32 x i8] vector and replaces the vector element value
2122 /// indexed by the immediate constant operand with a new value. Returns the
2123 /// modified vector.
2124 ///
2125 /// \headerfile <x86intrin.h>
2126 ///
2127 /// \code
2128 /// __m256i _mm256_insert_epi8(__m256i X, int I, const int N);
2129 /// \endcode
2130 ///
2131 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2132 /// instruction.
2133 ///
2134 /// \param X
2135 /// A vector of [32 x i8] to be used by the insert operation.
2136 /// \param I
2137 /// An i8 integer value. The replacement value for the insert operation.
2138 /// \param N
2139 /// An immediate integer specifying the index of the vector element to be
2140 /// replaced.
2141 /// \returns A copy of vector \a X, after replacing its element indexed by
2142 /// \a N with \a I.
2143 #define _mm256_insert_epi8(X, I, N) \
2144 ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2145 (int)(I), (int)(N)))
2146
2147 #ifdef __x86_64__
2148 /// Takes a [4 x i64] vector and replaces the vector element value
2149 /// indexed by the immediate constant operand with a new value. Returns the
2150 /// modified vector.
2151 ///
2152 /// \headerfile <x86intrin.h>
2153 ///
2154 /// \code
2155 /// __m256i _mm256_insert_epi64(__m256i X, int I, const int N);
2156 /// \endcode
2157 ///
2158 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2159 /// instruction.
2160 ///
2161 /// \param X
2162 /// A vector of [4 x i64] to be used by the insert operation.
2163 /// \param I
2164 /// A 64-bit integer value. The replacement value for the insert operation.
2165 /// \param N
2166 /// An immediate integer specifying the index of the vector element to be
2167 /// replaced.
2168 /// \returns A copy of vector \a X, after replacing its element indexed by
2169 /// \a N with \a I.
2170 #define _mm256_insert_epi64(X, I, N) \
2171 ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2172 (long long)(I), (int)(N)))
2173 #endif
2174
2175 /* Conversion */
2176 /// Converts a vector of [4 x i32] into a vector of [4 x double].
2177 ///
2178 /// \headerfile <x86intrin.h>
2179 ///
2180 /// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2181 ///
2182 /// \param __a
2183 /// A 128-bit integer vector of [4 x i32].
2184 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2185 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtepi32_pd(__m128i __a)2186 _mm256_cvtepi32_pd(__m128i __a)
2187 {
2188 return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2189 }
2190
2191 /// Converts a vector of [8 x i32] into a vector of [8 x float].
2192 ///
2193 /// \headerfile <x86intrin.h>
2194 ///
2195 /// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2196 ///
2197 /// \param __a
2198 /// A 256-bit integer vector.
2199 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2200 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_cvtepi32_ps(__m256i __a)2201 _mm256_cvtepi32_ps(__m256i __a)
2202 {
2203 return (__m256)__builtin_convertvector((__v8si)__a, __v8sf);
2204 }
2205
2206 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2207 /// [4 x float].
2208 ///
2209 /// \headerfile <x86intrin.h>
2210 ///
2211 /// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2212 ///
2213 /// \param __a
2214 /// A 256-bit vector of [4 x double].
2215 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2216 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_cvtpd_ps(__m256d __a)2217 _mm256_cvtpd_ps(__m256d __a)
2218 {
2219 return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2220 }
2221
2222 /// Converts a vector of [8 x float] into a vector of [8 x i32].
2223 ///
2224 /// If a converted value does not fit in a 32-bit integer, raises a
2225 /// floating-point invalid exception. If the exception is masked, returns
2226 /// the most negative integer.
2227 ///
2228 /// \headerfile <x86intrin.h>
2229 ///
2230 /// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2231 ///
2232 /// \param __a
2233 /// A 256-bit vector of [8 x float].
2234 /// \returns A 256-bit integer vector containing the converted values.
2235 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvtps_epi32(__m256 __a)2236 _mm256_cvtps_epi32(__m256 __a)
2237 {
2238 return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2239 }
2240
2241 /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2242 /// x double].
2243 ///
2244 /// \headerfile <x86intrin.h>
2245 ///
2246 /// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2247 ///
2248 /// \param __a
2249 /// A 128-bit vector of [4 x float].
2250 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2251 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_cvtps_pd(__m128 __a)2252 _mm256_cvtps_pd(__m128 __a)
2253 {
2254 return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2255 }
2256
2257 /// Converts a 256-bit vector of [4 x double] into four signed truncated
2258 /// (rounded toward zero) 32-bit integers returned in a 128-bit vector of
2259 /// [4 x i32].
2260 ///
2261 /// If a converted value does not fit in a 32-bit integer, raises a
2262 /// floating-point invalid exception. If the exception is masked, returns
2263 /// the most negative integer.
2264 ///
2265 /// \headerfile <x86intrin.h>
2266 ///
2267 /// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2268 ///
2269 /// \param __a
2270 /// A 256-bit vector of [4 x double].
2271 /// \returns A 128-bit integer vector containing the converted values.
2272 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvttpd_epi32(__m256d __a)2273 _mm256_cvttpd_epi32(__m256d __a)
2274 {
2275 return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2276 }
2277
2278 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2279 /// [4 x i32].
2280 ///
2281 /// If a converted value does not fit in a 32-bit integer, raises a
2282 /// floating-point invalid exception. If the exception is masked, returns
2283 /// the most negative integer.
2284 ///
2285 /// \headerfile <x86intrin.h>
2286 ///
2287 /// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2288 ///
2289 /// \param __a
2290 /// A 256-bit vector of [4 x double].
2291 /// \returns A 128-bit integer vector containing the converted values.
2292 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_cvtpd_epi32(__m256d __a)2293 _mm256_cvtpd_epi32(__m256d __a)
2294 {
2295 return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2296 }
2297
2298 /// Converts a vector of [8 x float] into eight signed truncated (rounded
2299 /// toward zero) 32-bit integers returned in a vector of [8 x i32].
2300 ///
2301 /// If a converted value does not fit in a 32-bit integer, raises a
2302 /// floating-point invalid exception. If the exception is masked, returns
2303 /// the most negative integer.
2304 ///
2305 /// \headerfile <x86intrin.h>
2306 ///
2307 /// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2308 ///
2309 /// \param __a
2310 /// A 256-bit vector of [8 x float].
2311 /// \returns A 256-bit integer vector containing the converted values.
2312 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_cvttps_epi32(__m256 __a)2313 _mm256_cvttps_epi32(__m256 __a)
2314 {
2315 return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2316 }
2317
2318 /// Returns the first element of the input vector of [4 x double].
2319 ///
2320 /// \headerfile <x86intrin.h>
2321 ///
2322 /// This intrinsic is a utility function and does not correspond to a specific
2323 /// instruction.
2324 ///
2325 /// \param __a
2326 /// A 256-bit vector of [4 x double].
2327 /// \returns A 64 bit double containing the first element of the input vector.
2328 static __inline double __DEFAULT_FN_ATTRS
_mm256_cvtsd_f64(__m256d __a)2329 _mm256_cvtsd_f64(__m256d __a)
2330 {
2331 return __a[0];
2332 }
2333
2334 /// Returns the first element of the input vector of [8 x i32].
2335 ///
2336 /// \headerfile <x86intrin.h>
2337 ///
2338 /// This intrinsic is a utility function and does not correspond to a specific
2339 /// instruction.
2340 ///
2341 /// \param __a
2342 /// A 256-bit vector of [8 x i32].
2343 /// \returns A 32 bit integer containing the first element of the input vector.
2344 static __inline int __DEFAULT_FN_ATTRS
_mm256_cvtsi256_si32(__m256i __a)2345 _mm256_cvtsi256_si32(__m256i __a)
2346 {
2347 __v8si __b = (__v8si)__a;
2348 return __b[0];
2349 }
2350
2351 /// Returns the first element of the input vector of [8 x float].
2352 ///
2353 /// \headerfile <x86intrin.h>
2354 ///
2355 /// This intrinsic is a utility function and does not correspond to a specific
2356 /// instruction.
2357 ///
2358 /// \param __a
2359 /// A 256-bit vector of [8 x float].
2360 /// \returns A 32 bit float containing the first element of the input vector.
2361 static __inline float __DEFAULT_FN_ATTRS
_mm256_cvtss_f32(__m256 __a)2362 _mm256_cvtss_f32(__m256 __a)
2363 {
2364 return __a[0];
2365 }
2366
2367 /* Vector replicate */
2368 /// Moves and duplicates odd-indexed values from a 256-bit vector of
2369 /// [8 x float] to float values in a 256-bit vector of [8 x float].
2370 ///
2371 /// \headerfile <x86intrin.h>
2372 ///
2373 /// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2374 ///
2375 /// \param __a
2376 /// A 256-bit vector of [8 x float]. \n
2377 /// Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2378 /// the return value. \n
2379 /// Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2380 /// the return value. \n
2381 /// Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2382 /// return value. \n
2383 /// Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2384 /// return value.
2385 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2386 /// values.
2387 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_movehdup_ps(__m256 __a)2388 _mm256_movehdup_ps(__m256 __a)
2389 {
2390 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2391 }
2392
2393 /// Moves and duplicates even-indexed values from a 256-bit vector of
2394 /// [8 x float] to float values in a 256-bit vector of [8 x float].
2395 ///
2396 /// \headerfile <x86intrin.h>
2397 ///
2398 /// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2399 ///
2400 /// \param __a
2401 /// A 256-bit vector of [8 x float]. \n
2402 /// Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2403 /// the return value. \n
2404 /// Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2405 /// the return value. \n
2406 /// Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2407 /// return value. \n
2408 /// Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2409 /// return value.
2410 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2411 /// values.
2412 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_moveldup_ps(__m256 __a)2413 _mm256_moveldup_ps(__m256 __a)
2414 {
2415 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2416 }
2417
2418 /// Moves and duplicates double-precision floating point values from a
2419 /// 256-bit vector of [4 x double] to double-precision values in a 256-bit
2420 /// vector of [4 x double].
2421 ///
2422 /// \headerfile <x86intrin.h>
2423 ///
2424 /// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2425 ///
2426 /// \param __a
2427 /// A 256-bit vector of [4 x double]. \n
2428 /// Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2429 /// return value. \n
2430 /// Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2431 /// the return value.
2432 /// \returns A 256-bit vector of [4 x double] containing the moved and
2433 /// duplicated values.
2434 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_movedup_pd(__m256d __a)2435 _mm256_movedup_pd(__m256d __a)
2436 {
2437 return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2438 }
2439
2440 /* Unpack and Interleave */
2441 /// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2442 /// [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2443 ///
2444 /// \headerfile <x86intrin.h>
2445 ///
2446 /// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2447 ///
2448 /// \param __a
2449 /// A 256-bit floating-point vector of [4 x double]. \n
2450 /// Bits [127:64] are written to bits [63:0] of the return value. \n
2451 /// Bits [255:192] are written to bits [191:128] of the return value. \n
2452 /// \param __b
2453 /// A 256-bit floating-point vector of [4 x double]. \n
2454 /// Bits [127:64] are written to bits [127:64] of the return value. \n
2455 /// Bits [255:192] are written to bits [255:192] of the return value. \n
2456 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2457 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpackhi_pd(__m256d __a,__m256d __b)2458 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
2459 {
2460 return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2461 }
2462
2463 /// Unpacks the even-indexed vector elements from two 256-bit vectors of
2464 /// [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2465 ///
2466 /// \headerfile <x86intrin.h>
2467 ///
2468 /// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2469 ///
2470 /// \param __a
2471 /// A 256-bit floating-point vector of [4 x double]. \n
2472 /// Bits [63:0] are written to bits [63:0] of the return value. \n
2473 /// Bits [191:128] are written to bits [191:128] of the return value.
2474 /// \param __b
2475 /// A 256-bit floating-point vector of [4 x double]. \n
2476 /// Bits [63:0] are written to bits [127:64] of the return value. \n
2477 /// Bits [191:128] are written to bits [255:192] of the return value. \n
2478 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2479 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_unpacklo_pd(__m256d __a,__m256d __b)2480 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
2481 {
2482 return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2483 }
2484
2485 /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2486 /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2487 /// vector of [8 x float].
2488 ///
2489 /// \headerfile <x86intrin.h>
2490 ///
2491 /// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2492 ///
2493 /// \param __a
2494 /// A 256-bit vector of [8 x float]. \n
2495 /// Bits [95:64] are written to bits [31:0] of the return value. \n
2496 /// Bits [127:96] are written to bits [95:64] of the return value. \n
2497 /// Bits [223:192] are written to bits [159:128] of the return value. \n
2498 /// Bits [255:224] are written to bits [223:192] of the return value.
2499 /// \param __b
2500 /// A 256-bit vector of [8 x float]. \n
2501 /// Bits [95:64] are written to bits [63:32] of the return value. \n
2502 /// Bits [127:96] are written to bits [127:96] of the return value. \n
2503 /// Bits [223:192] are written to bits [191:160] of the return value. \n
2504 /// Bits [255:224] are written to bits [255:224] of the return value.
2505 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2506 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpackhi_ps(__m256 __a,__m256 __b)2507 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
2508 {
2509 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2510 }
2511
2512 /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2513 /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2514 /// vector of [8 x float].
2515 ///
2516 /// \headerfile <x86intrin.h>
2517 ///
2518 /// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2519 ///
2520 /// \param __a
2521 /// A 256-bit vector of [8 x float]. \n
2522 /// Bits [31:0] are written to bits [31:0] of the return value. \n
2523 /// Bits [63:32] are written to bits [95:64] of the return value. \n
2524 /// Bits [159:128] are written to bits [159:128] of the return value. \n
2525 /// Bits [191:160] are written to bits [223:192] of the return value.
2526 /// \param __b
2527 /// A 256-bit vector of [8 x float]. \n
2528 /// Bits [31:0] are written to bits [63:32] of the return value. \n
2529 /// Bits [63:32] are written to bits [127:96] of the return value. \n
2530 /// Bits [159:128] are written to bits [191:160] of the return value. \n
2531 /// Bits [191:160] are written to bits [255:224] of the return value.
2532 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2533 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_unpacklo_ps(__m256 __a,__m256 __b)2534 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
2535 {
2536 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2537 }
2538
2539 /* Bit Test */
2540 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2541 /// element-by-element comparison of the double-precision element in the
2542 /// first source vector and the corresponding element in the second source
2543 /// vector.
2544 ///
2545 /// The EFLAGS register is updated as follows: \n
2546 /// If there is at least one pair of double-precision elements where the
2547 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2548 /// ZF flag is set to 1. \n
2549 /// If there is at least one pair of double-precision elements where the
2550 /// sign-bit of the first element is 0 and the sign-bit of the second element
2551 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2552 /// This intrinsic returns the value of the ZF flag.
2553 ///
2554 /// \headerfile <x86intrin.h>
2555 ///
2556 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2557 ///
2558 /// \param __a
2559 /// A 128-bit vector of [2 x double].
2560 /// \param __b
2561 /// A 128-bit vector of [2 x double].
2562 /// \returns the ZF flag in the EFLAGS register.
2563 static __inline int __DEFAULT_FN_ATTRS128
_mm_testz_pd(__m128d __a,__m128d __b)2564 _mm_testz_pd(__m128d __a, __m128d __b)
2565 {
2566 return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2567 }
2568
2569 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2570 /// element-by-element comparison of the double-precision element in the
2571 /// first source vector and the corresponding element in the second source
2572 /// vector.
2573 ///
2574 /// The EFLAGS register is updated as follows: \n
2575 /// If there is at least one pair of double-precision elements where the
2576 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2577 /// ZF flag is set to 1. \n
2578 /// If there is at least one pair of double-precision elements where the
2579 /// sign-bit of the first element is 0 and the sign-bit of the second element
2580 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2581 /// This intrinsic returns the value of the CF flag.
2582 ///
2583 /// \headerfile <x86intrin.h>
2584 ///
2585 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2586 ///
2587 /// \param __a
2588 /// A 128-bit vector of [2 x double].
2589 /// \param __b
2590 /// A 128-bit vector of [2 x double].
2591 /// \returns the CF flag in the EFLAGS register.
2592 static __inline int __DEFAULT_FN_ATTRS128
_mm_testc_pd(__m128d __a,__m128d __b)2593 _mm_testc_pd(__m128d __a, __m128d __b)
2594 {
2595 return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2596 }
2597
2598 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2599 /// element-by-element comparison of the double-precision element in the
2600 /// first source vector and the corresponding element in the second source
2601 /// vector.
2602 ///
2603 /// The EFLAGS register is updated as follows: \n
2604 /// If there is at least one pair of double-precision elements where the
2605 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2606 /// ZF flag is set to 1. \n
2607 /// If there is at least one pair of double-precision elements where the
2608 /// sign-bit of the first element is 0 and the sign-bit of the second element
2609 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2610 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2611 /// otherwise it returns 0.
2612 ///
2613 /// \headerfile <x86intrin.h>
2614 ///
2615 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2616 ///
2617 /// \param __a
2618 /// A 128-bit vector of [2 x double].
2619 /// \param __b
2620 /// A 128-bit vector of [2 x double].
2621 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2622 static __inline int __DEFAULT_FN_ATTRS128
_mm_testnzc_pd(__m128d __a,__m128d __b)2623 _mm_testnzc_pd(__m128d __a, __m128d __b)
2624 {
2625 return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2626 }
2627
2628 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2629 /// element-by-element comparison of the single-precision element in the
2630 /// first source vector and the corresponding element in the second source
2631 /// vector.
2632 ///
2633 /// The EFLAGS register is updated as follows: \n
2634 /// If there is at least one pair of single-precision elements where the
2635 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2636 /// ZF flag is set to 1. \n
2637 /// If there is at least one pair of single-precision elements where the
2638 /// sign-bit of the first element is 0 and the sign-bit of the second element
2639 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2640 /// This intrinsic returns the value of the ZF flag.
2641 ///
2642 /// \headerfile <x86intrin.h>
2643 ///
2644 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2645 ///
2646 /// \param __a
2647 /// A 128-bit vector of [4 x float].
2648 /// \param __b
2649 /// A 128-bit vector of [4 x float].
2650 /// \returns the ZF flag.
2651 static __inline int __DEFAULT_FN_ATTRS128
_mm_testz_ps(__m128 __a,__m128 __b)2652 _mm_testz_ps(__m128 __a, __m128 __b)
2653 {
2654 return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2655 }
2656
2657 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2658 /// element-by-element comparison of the single-precision element in the
2659 /// first source vector and the corresponding element in the second source
2660 /// vector.
2661 ///
2662 /// The EFLAGS register is updated as follows: \n
2663 /// If there is at least one pair of single-precision elements where the
2664 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2665 /// ZF flag is set to 1. \n
2666 /// If there is at least one pair of single-precision elements where the
2667 /// sign-bit of the first element is 0 and the sign-bit of the second element
2668 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2669 /// This intrinsic returns the value of the CF flag.
2670 ///
2671 /// \headerfile <x86intrin.h>
2672 ///
2673 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2674 ///
2675 /// \param __a
2676 /// A 128-bit vector of [4 x float].
2677 /// \param __b
2678 /// A 128-bit vector of [4 x float].
2679 /// \returns the CF flag.
2680 static __inline int __DEFAULT_FN_ATTRS128
_mm_testc_ps(__m128 __a,__m128 __b)2681 _mm_testc_ps(__m128 __a, __m128 __b)
2682 {
2683 return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2684 }
2685
2686 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2687 /// element-by-element comparison of the single-precision element in the
2688 /// first source vector and the corresponding element in the second source
2689 /// vector.
2690 ///
2691 /// The EFLAGS register is updated as follows: \n
2692 /// If there is at least one pair of single-precision elements where the
2693 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2694 /// ZF flag is set to 1. \n
2695 /// If there is at least one pair of single-precision elements where the
2696 /// sign-bit of the first element is 0 and the sign-bit of the second element
2697 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2698 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2699 /// otherwise it returns 0.
2700 ///
2701 /// \headerfile <x86intrin.h>
2702 ///
2703 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2704 ///
2705 /// \param __a
2706 /// A 128-bit vector of [4 x float].
2707 /// \param __b
2708 /// A 128-bit vector of [4 x float].
2709 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2710 static __inline int __DEFAULT_FN_ATTRS128
_mm_testnzc_ps(__m128 __a,__m128 __b)2711 _mm_testnzc_ps(__m128 __a, __m128 __b)
2712 {
2713 return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2714 }
2715
2716 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2717 /// element-by-element comparison of the double-precision elements in the
2718 /// first source vector and the corresponding elements in the second source
2719 /// vector.
2720 ///
2721 /// The EFLAGS register is updated as follows: \n
2722 /// If there is at least one pair of double-precision elements where the
2723 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2724 /// ZF flag is set to 1. \n
2725 /// If there is at least one pair of double-precision elements where the
2726 /// sign-bit of the first element is 0 and the sign-bit of the second element
2727 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2728 /// This intrinsic returns the value of the ZF flag.
2729 ///
2730 /// \headerfile <x86intrin.h>
2731 ///
2732 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2733 ///
2734 /// \param __a
2735 /// A 256-bit vector of [4 x double].
2736 /// \param __b
2737 /// A 256-bit vector of [4 x double].
2738 /// \returns the ZF flag.
2739 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_pd(__m256d __a,__m256d __b)2740 _mm256_testz_pd(__m256d __a, __m256d __b)
2741 {
2742 return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2743 }
2744
2745 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2746 /// element-by-element comparison of the double-precision elements in the
2747 /// first source vector and the corresponding elements in the second source
2748 /// vector.
2749 ///
2750 /// The EFLAGS register is updated as follows: \n
2751 /// If there is at least one pair of double-precision elements where the
2752 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2753 /// ZF flag is set to 1. \n
2754 /// If there is at least one pair of double-precision elements where the
2755 /// sign-bit of the first element is 0 and the sign-bit of the second element
2756 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2757 /// This intrinsic returns the value of the CF flag.
2758 ///
2759 /// \headerfile <x86intrin.h>
2760 ///
2761 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2762 ///
2763 /// \param __a
2764 /// A 256-bit vector of [4 x double].
2765 /// \param __b
2766 /// A 256-bit vector of [4 x double].
2767 /// \returns the CF flag.
2768 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_pd(__m256d __a,__m256d __b)2769 _mm256_testc_pd(__m256d __a, __m256d __b)
2770 {
2771 return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2772 }
2773
2774 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2775 /// element-by-element comparison of the double-precision elements in the
2776 /// first source vector and the corresponding elements in the second source
2777 /// vector.
2778 ///
2779 /// The EFLAGS register is updated as follows: \n
2780 /// If there is at least one pair of double-precision elements where the
2781 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2782 /// ZF flag is set to 1. \n
2783 /// If there is at least one pair of double-precision elements where the
2784 /// sign-bit of the first element is 0 and the sign-bit of the second element
2785 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2786 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2787 /// otherwise it returns 0.
2788 ///
2789 /// \headerfile <x86intrin.h>
2790 ///
2791 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2792 ///
2793 /// \param __a
2794 /// A 256-bit vector of [4 x double].
2795 /// \param __b
2796 /// A 256-bit vector of [4 x double].
2797 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2798 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_pd(__m256d __a,__m256d __b)2799 _mm256_testnzc_pd(__m256d __a, __m256d __b)
2800 {
2801 return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2802 }
2803
2804 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2805 /// element-by-element comparison of the single-precision element in the
2806 /// first source vector and the corresponding element in the second source
2807 /// vector.
2808 ///
2809 /// The EFLAGS register is updated as follows: \n
2810 /// If there is at least one pair of single-precision elements where the
2811 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2812 /// ZF flag is set to 1. \n
2813 /// If there is at least one pair of single-precision elements where the
2814 /// sign-bit of the first element is 0 and the sign-bit of the second element
2815 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2816 /// This intrinsic returns the value of the ZF flag.
2817 ///
2818 /// \headerfile <x86intrin.h>
2819 ///
2820 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2821 ///
2822 /// \param __a
2823 /// A 256-bit vector of [8 x float].
2824 /// \param __b
2825 /// A 256-bit vector of [8 x float].
2826 /// \returns the ZF flag.
2827 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_ps(__m256 __a,__m256 __b)2828 _mm256_testz_ps(__m256 __a, __m256 __b)
2829 {
2830 return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2831 }
2832
2833 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2834 /// element-by-element comparison of the single-precision element in the
2835 /// first source vector and the corresponding element in the second source
2836 /// vector.
2837 ///
2838 /// The EFLAGS register is updated as follows: \n
2839 /// If there is at least one pair of single-precision elements where the
2840 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2841 /// ZF flag is set to 1. \n
2842 /// If there is at least one pair of single-precision elements where the
2843 /// sign-bit of the first element is 0 and the sign-bit of the second element
2844 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2845 /// This intrinsic returns the value of the CF flag.
2846 ///
2847 /// \headerfile <x86intrin.h>
2848 ///
2849 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2850 ///
2851 /// \param __a
2852 /// A 256-bit vector of [8 x float].
2853 /// \param __b
2854 /// A 256-bit vector of [8 x float].
2855 /// \returns the CF flag.
2856 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_ps(__m256 __a,__m256 __b)2857 _mm256_testc_ps(__m256 __a, __m256 __b)
2858 {
2859 return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2860 }
2861
2862 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2863 /// element-by-element comparison of the single-precision elements in the
2864 /// first source vector and the corresponding elements in the second source
2865 /// vector.
2866 ///
2867 /// The EFLAGS register is updated as follows: \n
2868 /// If there is at least one pair of single-precision elements where the
2869 /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2870 /// ZF flag is set to 1. \n
2871 /// If there is at least one pair of single-precision elements where the
2872 /// sign-bit of the first element is 0 and the sign-bit of the second element
2873 /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2874 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2875 /// otherwise it returns 0.
2876 ///
2877 /// \headerfile <x86intrin.h>
2878 ///
2879 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2880 ///
2881 /// \param __a
2882 /// A 256-bit vector of [8 x float].
2883 /// \param __b
2884 /// A 256-bit vector of [8 x float].
2885 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2886 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_ps(__m256 __a,__m256 __b)2887 _mm256_testnzc_ps(__m256 __a, __m256 __b)
2888 {
2889 return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2890 }
2891
2892 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2893 /// of the two source vectors.
2894 ///
2895 /// The EFLAGS register is updated as follows: \n
2896 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2897 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2898 /// If there is at least one pair of bits where the bit from the first source
2899 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2900 /// is set to 0. Otherwise the CF flag is set to 1. \n
2901 /// This intrinsic returns the value of the ZF flag.
2902 ///
2903 /// \headerfile <x86intrin.h>
2904 ///
2905 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2906 ///
2907 /// \param __a
2908 /// A 256-bit integer vector.
2909 /// \param __b
2910 /// A 256-bit integer vector.
2911 /// \returns the ZF flag.
2912 static __inline int __DEFAULT_FN_ATTRS
_mm256_testz_si256(__m256i __a,__m256i __b)2913 _mm256_testz_si256(__m256i __a, __m256i __b)
2914 {
2915 return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2916 }
2917
2918 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2919 /// of the two source vectors.
2920 ///
2921 /// The EFLAGS register is updated as follows: \n
2922 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2923 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2924 /// If there is at least one pair of bits where the bit from the first source
2925 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2926 /// is set to 0. Otherwise the CF flag is set to 1. \n
2927 /// This intrinsic returns the value of the CF flag.
2928 ///
2929 /// \headerfile <x86intrin.h>
2930 ///
2931 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2932 ///
2933 /// \param __a
2934 /// A 256-bit integer vector.
2935 /// \param __b
2936 /// A 256-bit integer vector.
2937 /// \returns the CF flag.
2938 static __inline int __DEFAULT_FN_ATTRS
_mm256_testc_si256(__m256i __a,__m256i __b)2939 _mm256_testc_si256(__m256i __a, __m256i __b)
2940 {
2941 return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2942 }
2943
2944 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2945 /// of the two source vectors.
2946 ///
2947 /// The EFLAGS register is updated as follows: \n
2948 /// If there is at least one pair of bits where both bits are 1, the ZF flag
2949 /// is set to 0. Otherwise the ZF flag is set to 1. \n
2950 /// If there is at least one pair of bits where the bit from the first source
2951 /// vector is 0 and the bit from the second source vector is 1, the CF flag
2952 /// is set to 0. Otherwise the CF flag is set to 1. \n
2953 /// This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2954 /// otherwise it returns 0.
2955 ///
2956 /// \headerfile <x86intrin.h>
2957 ///
2958 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2959 ///
2960 /// \param __a
2961 /// A 256-bit integer vector.
2962 /// \param __b
2963 /// A 256-bit integer vector.
2964 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2965 static __inline int __DEFAULT_FN_ATTRS
_mm256_testnzc_si256(__m256i __a,__m256i __b)2966 _mm256_testnzc_si256(__m256i __a, __m256i __b)
2967 {
2968 return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2969 }
2970
2971 /* Vector extract sign mask */
2972 /// Extracts the sign bits of double-precision floating point elements
2973 /// in a 256-bit vector of [4 x double] and writes them to the lower order
2974 /// bits of the return value.
2975 ///
2976 /// \headerfile <x86intrin.h>
2977 ///
2978 /// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2979 ///
2980 /// \param __a
2981 /// A 256-bit vector of [4 x double] containing the double-precision
2982 /// floating point values with sign bits to be extracted.
2983 /// \returns The sign bits from the operand, written to bits [3:0].
2984 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_pd(__m256d __a)2985 _mm256_movemask_pd(__m256d __a)
2986 {
2987 return __builtin_ia32_movmskpd256((__v4df)__a);
2988 }
2989
2990 /// Extracts the sign bits of single-precision floating point elements
2991 /// in a 256-bit vector of [8 x float] and writes them to the lower order
2992 /// bits of the return value.
2993 ///
2994 /// \headerfile <x86intrin.h>
2995 ///
2996 /// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
2997 ///
2998 /// \param __a
2999 /// A 256-bit vector of [8 x float] containing the single-precision floating
3000 /// point values with sign bits to be extracted.
3001 /// \returns The sign bits from the operand, written to bits [7:0].
3002 static __inline int __DEFAULT_FN_ATTRS
_mm256_movemask_ps(__m256 __a)3003 _mm256_movemask_ps(__m256 __a)
3004 {
3005 return __builtin_ia32_movmskps256((__v8sf)__a);
3006 }
3007
3008 /* Vector __zero */
3009 /// Zeroes the contents of all XMM or YMM registers.
3010 ///
3011 /// \headerfile <x86intrin.h>
3012 ///
3013 /// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
3014 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
_mm256_zeroall(void)3015 _mm256_zeroall(void)
3016 {
3017 __builtin_ia32_vzeroall();
3018 }
3019
3020 /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
3021 ///
3022 /// \headerfile <x86intrin.h>
3023 ///
3024 /// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
3025 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
_mm256_zeroupper(void)3026 _mm256_zeroupper(void)
3027 {
3028 __builtin_ia32_vzeroupper();
3029 }
3030
3031 /* Vector load with broadcast */
3032 /// Loads a scalar single-precision floating point value from the
3033 /// specified address pointed to by \a __a and broadcasts it to the elements
3034 /// of a [4 x float] vector.
3035 ///
3036 /// \headerfile <x86intrin.h>
3037 ///
3038 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3039 ///
3040 /// \param __a
3041 /// The single-precision floating point value to be broadcast.
3042 /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
3043 /// equal to the broadcast value.
3044 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_broadcast_ss(float const * __a)3045 _mm_broadcast_ss(float const *__a)
3046 {
3047 struct __mm_broadcast_ss_struct {
3048 float __f;
3049 } __attribute__((__packed__, __may_alias__));
3050 float __f = ((const struct __mm_broadcast_ss_struct*)__a)->__f;
3051 return __extension__ (__m128){ __f, __f, __f, __f };
3052 }
3053
3054 /// Loads a scalar double-precision floating point value from the
3055 /// specified address pointed to by \a __a and broadcasts it to the elements
3056 /// of a [4 x double] vector.
3057 ///
3058 /// \headerfile <x86intrin.h>
3059 ///
3060 /// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
3061 ///
3062 /// \param __a
3063 /// The double-precision floating point value to be broadcast.
3064 /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3065 /// equal to the broadcast value.
3066 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_sd(double const * __a)3067 _mm256_broadcast_sd(double const *__a)
3068 {
3069 struct __mm256_broadcast_sd_struct {
3070 double __d;
3071 } __attribute__((__packed__, __may_alias__));
3072 double __d = ((const struct __mm256_broadcast_sd_struct*)__a)->__d;
3073 return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d };
3074 }
3075
3076 /// Loads a scalar single-precision floating point value from the
3077 /// specified address pointed to by \a __a and broadcasts it to the elements
3078 /// of a [8 x float] vector.
3079 ///
3080 /// \headerfile <x86intrin.h>
3081 ///
3082 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3083 ///
3084 /// \param __a
3085 /// The single-precision floating point value to be broadcast.
3086 /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3087 /// equal to the broadcast value.
3088 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ss(float const * __a)3089 _mm256_broadcast_ss(float const *__a)
3090 {
3091 struct __mm256_broadcast_ss_struct {
3092 float __f;
3093 } __attribute__((__packed__, __may_alias__));
3094 float __f = ((const struct __mm256_broadcast_ss_struct*)__a)->__f;
3095 return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
3096 }
3097
3098 /// Loads the data from a 128-bit vector of [2 x double] from the
3099 /// specified address pointed to by \a __a and broadcasts it to 128-bit
3100 /// elements in a 256-bit vector of [4 x double].
3101 ///
3102 /// \headerfile <x86intrin.h>
3103 ///
3104 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3105 ///
3106 /// \param __a
3107 /// The 128-bit vector of [2 x double] to be broadcast.
3108 /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3109 /// equal to the broadcast value.
3110 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_broadcast_pd(__m128d const * __a)3111 _mm256_broadcast_pd(__m128d const *__a)
3112 {
3113 __m128d __b = _mm_loadu_pd((const double *)__a);
3114 return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b,
3115 0, 1, 0, 1);
3116 }
3117
3118 /// Loads the data from a 128-bit vector of [4 x float] from the
3119 /// specified address pointed to by \a __a and broadcasts it to 128-bit
3120 /// elements in a 256-bit vector of [8 x float].
3121 ///
3122 /// \headerfile <x86intrin.h>
3123 ///
3124 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3125 ///
3126 /// \param __a
3127 /// The 128-bit vector of [4 x float] to be broadcast.
3128 /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3129 /// equal to the broadcast value.
3130 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_broadcast_ps(__m128 const * __a)3131 _mm256_broadcast_ps(__m128 const *__a)
3132 {
3133 __m128 __b = _mm_loadu_ps((const float *)__a);
3134 return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b,
3135 0, 1, 2, 3, 0, 1, 2, 3);
3136 }
3137
3138 /* SIMD load ops */
3139 /// Loads 4 double-precision floating point values from a 32-byte aligned
3140 /// memory location pointed to by \a __p into a vector of [4 x double].
3141 ///
3142 /// \headerfile <x86intrin.h>
3143 ///
3144 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3145 ///
3146 /// \param __p
3147 /// A 32-byte aligned pointer to a memory location containing
3148 /// double-precision floating point values.
3149 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3150 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_load_pd(double const * __p)3151 _mm256_load_pd(double const *__p)
3152 {
3153 return *(const __m256d *)__p;
3154 }
3155
3156 /// Loads 8 single-precision floating point values from a 32-byte aligned
3157 /// memory location pointed to by \a __p into a vector of [8 x float].
3158 ///
3159 /// \headerfile <x86intrin.h>
3160 ///
3161 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3162 ///
3163 /// \param __p
3164 /// A 32-byte aligned pointer to a memory location containing float values.
3165 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3166 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_load_ps(float const * __p)3167 _mm256_load_ps(float const *__p)
3168 {
3169 return *(const __m256 *)__p;
3170 }
3171
3172 /// Loads 4 double-precision floating point values from an unaligned
3173 /// memory location pointed to by \a __p into a vector of [4 x double].
3174 ///
3175 /// \headerfile <x86intrin.h>
3176 ///
3177 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3178 ///
3179 /// \param __p
3180 /// A pointer to a memory location containing double-precision floating
3181 /// point values.
3182 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3183 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu_pd(double const * __p)3184 _mm256_loadu_pd(double const *__p)
3185 {
3186 struct __loadu_pd {
3187 __m256d_u __v;
3188 } __attribute__((__packed__, __may_alias__));
3189 return ((const struct __loadu_pd*)__p)->__v;
3190 }
3191
3192 /// Loads 8 single-precision floating point values from an unaligned
3193 /// memory location pointed to by \a __p into a vector of [8 x float].
3194 ///
3195 /// \headerfile <x86intrin.h>
3196 ///
3197 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3198 ///
3199 /// \param __p
3200 /// A pointer to a memory location containing single-precision floating
3201 /// point values.
3202 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3203 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu_ps(float const * __p)3204 _mm256_loadu_ps(float const *__p)
3205 {
3206 struct __loadu_ps {
3207 __m256_u __v;
3208 } __attribute__((__packed__, __may_alias__));
3209 return ((const struct __loadu_ps*)__p)->__v;
3210 }
3211
3212 /// Loads 256 bits of integer data from a 32-byte aligned memory
3213 /// location pointed to by \a __p into elements of a 256-bit integer vector.
3214 ///
3215 /// \headerfile <x86intrin.h>
3216 ///
3217 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3218 ///
3219 /// \param __p
3220 /// A 32-byte aligned pointer to a 256-bit integer vector containing integer
3221 /// values.
3222 /// \returns A 256-bit integer vector containing the moved values.
3223 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_load_si256(__m256i const * __p)3224 _mm256_load_si256(__m256i const *__p)
3225 {
3226 return *__p;
3227 }
3228
3229 /// Loads 256 bits of integer data from an unaligned memory location
3230 /// pointed to by \a __p into a 256-bit integer vector.
3231 ///
3232 /// \headerfile <x86intrin.h>
3233 ///
3234 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3235 ///
3236 /// \param __p
3237 /// A pointer to a 256-bit integer vector containing integer values.
3238 /// \returns A 256-bit integer vector containing the moved values.
3239 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu_si256(__m256i_u const * __p)3240 _mm256_loadu_si256(__m256i_u const *__p)
3241 {
3242 struct __loadu_si256 {
3243 __m256i_u __v;
3244 } __attribute__((__packed__, __may_alias__));
3245 return ((const struct __loadu_si256*)__p)->__v;
3246 }
3247
3248 /// Loads 256 bits of integer data from an unaligned memory location
3249 /// pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3250 /// perform better than \c _mm256_loadu_si256 when the data crosses a cache
3251 /// line boundary.
3252 ///
3253 /// \headerfile <x86intrin.h>
3254 ///
3255 /// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3256 ///
3257 /// \param __p
3258 /// A pointer to a 256-bit integer vector containing integer values.
3259 /// \returns A 256-bit integer vector containing the moved values.
3260 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_lddqu_si256(__m256i_u const * __p)3261 _mm256_lddqu_si256(__m256i_u const *__p)
3262 {
3263 return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
3264 }
3265
3266 /* SIMD store ops */
3267 /// Stores double-precision floating point values from a 256-bit vector
3268 /// of [4 x double] to a 32-byte aligned memory location pointed to by
3269 /// \a __p.
3270 ///
3271 /// \headerfile <x86intrin.h>
3272 ///
3273 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3274 ///
3275 /// \param __p
3276 /// A 32-byte aligned pointer to a memory location that will receive the
3277 /// double-precision floaing point values.
3278 /// \param __a
3279 /// A 256-bit vector of [4 x double] containing the values to be moved.
3280 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_pd(double * __p,__m256d __a)3281 _mm256_store_pd(double *__p, __m256d __a)
3282 {
3283 *(__m256d *)__p = __a;
3284 }
3285
3286 /// Stores single-precision floating point values from a 256-bit vector
3287 /// of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3288 ///
3289 /// \headerfile <x86intrin.h>
3290 ///
3291 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3292 ///
3293 /// \param __p
3294 /// A 32-byte aligned pointer to a memory location that will receive the
3295 /// float values.
3296 /// \param __a
3297 /// A 256-bit vector of [8 x float] containing the values to be moved.
3298 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_ps(float * __p,__m256 __a)3299 _mm256_store_ps(float *__p, __m256 __a)
3300 {
3301 *(__m256 *)__p = __a;
3302 }
3303
3304 /// Stores double-precision floating point values from a 256-bit vector
3305 /// of [4 x double] to an unaligned memory location pointed to by \a __p.
3306 ///
3307 /// \headerfile <x86intrin.h>
3308 ///
3309 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3310 ///
3311 /// \param __p
3312 /// A pointer to a memory location that will receive the double-precision
3313 /// floating point values.
3314 /// \param __a
3315 /// A 256-bit vector of [4 x double] containing the values to be moved.
3316 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_pd(double * __p,__m256d __a)3317 _mm256_storeu_pd(double *__p, __m256d __a)
3318 {
3319 struct __storeu_pd {
3320 __m256d_u __v;
3321 } __attribute__((__packed__, __may_alias__));
3322 ((struct __storeu_pd*)__p)->__v = __a;
3323 }
3324
3325 /// Stores single-precision floating point values from a 256-bit vector
3326 /// of [8 x float] to an unaligned memory location pointed to by \a __p.
3327 ///
3328 /// \headerfile <x86intrin.h>
3329 ///
3330 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3331 ///
3332 /// \param __p
3333 /// A pointer to a memory location that will receive the float values.
3334 /// \param __a
3335 /// A 256-bit vector of [8 x float] containing the values to be moved.
3336 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_ps(float * __p,__m256 __a)3337 _mm256_storeu_ps(float *__p, __m256 __a)
3338 {
3339 struct __storeu_ps {
3340 __m256_u __v;
3341 } __attribute__((__packed__, __may_alias__));
3342 ((struct __storeu_ps*)__p)->__v = __a;
3343 }
3344
3345 /// Stores integer values from a 256-bit integer vector to a 32-byte
3346 /// aligned memory location pointed to by \a __p.
3347 ///
3348 /// \headerfile <x86intrin.h>
3349 ///
3350 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3351 ///
3352 /// \param __p
3353 /// A 32-byte aligned pointer to a memory location that will receive the
3354 /// integer values.
3355 /// \param __a
3356 /// A 256-bit integer vector containing the values to be moved.
3357 static __inline void __DEFAULT_FN_ATTRS
_mm256_store_si256(__m256i * __p,__m256i __a)3358 _mm256_store_si256(__m256i *__p, __m256i __a)
3359 {
3360 *__p = __a;
3361 }
3362
3363 /// Stores integer values from a 256-bit integer vector to an unaligned
3364 /// memory location pointed to by \a __p.
3365 ///
3366 /// \headerfile <x86intrin.h>
3367 ///
3368 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3369 ///
3370 /// \param __p
3371 /// A pointer to a memory location that will receive the integer values.
3372 /// \param __a
3373 /// A 256-bit integer vector containing the values to be moved.
3374 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu_si256(__m256i_u * __p,__m256i __a)3375 _mm256_storeu_si256(__m256i_u *__p, __m256i __a)
3376 {
3377 struct __storeu_si256 {
3378 __m256i_u __v;
3379 } __attribute__((__packed__, __may_alias__));
3380 ((struct __storeu_si256*)__p)->__v = __a;
3381 }
3382
3383 /* Conditional load ops */
3384 /// Conditionally loads double-precision floating point elements from a
3385 /// memory location pointed to by \a __p into a 128-bit vector of
3386 /// [2 x double], depending on the mask bits associated with each data
3387 /// element.
3388 ///
3389 /// \headerfile <x86intrin.h>
3390 ///
3391 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3392 ///
3393 /// \param __p
3394 /// A pointer to a memory location that contains the double-precision
3395 /// floating point values.
3396 /// \param __m
3397 /// A 128-bit integer vector containing the mask. The most significant bit of
3398 /// each data element represents the mask bits. If a mask bit is zero, the
3399 /// corresponding value in the memory location is not loaded and the
3400 /// corresponding field in the return value is set to zero.
3401 /// \returns A 128-bit vector of [2 x double] containing the loaded values.
3402 static __inline __m128d __DEFAULT_FN_ATTRS128
_mm_maskload_pd(double const * __p,__m128i __m)3403 _mm_maskload_pd(double const *__p, __m128i __m)
3404 {
3405 return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
3406 }
3407
3408 /// Conditionally loads double-precision floating point elements from a
3409 /// memory location pointed to by \a __p into a 256-bit vector of
3410 /// [4 x double], depending on the mask bits associated with each data
3411 /// element.
3412 ///
3413 /// \headerfile <x86intrin.h>
3414 ///
3415 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3416 ///
3417 /// \param __p
3418 /// A pointer to a memory location that contains the double-precision
3419 /// floating point values.
3420 /// \param __m
3421 /// A 256-bit integer vector of [4 x quadword] containing the mask. The most
3422 /// significant bit of each quadword element represents the mask bits. If a
3423 /// mask bit is zero, the corresponding value in the memory location is not
3424 /// loaded and the corresponding field in the return value is set to zero.
3425 /// \returns A 256-bit vector of [4 x double] containing the loaded values.
3426 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_maskload_pd(double const * __p,__m256i __m)3427 _mm256_maskload_pd(double const *__p, __m256i __m)
3428 {
3429 return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
3430 (__v4di)__m);
3431 }
3432
3433 /// Conditionally loads single-precision floating point elements from a
3434 /// memory location pointed to by \a __p into a 128-bit vector of
3435 /// [4 x float], depending on the mask bits associated with each data
3436 /// element.
3437 ///
3438 /// \headerfile <x86intrin.h>
3439 ///
3440 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3441 ///
3442 /// \param __p
3443 /// A pointer to a memory location that contains the single-precision
3444 /// floating point values.
3445 /// \param __m
3446 /// A 128-bit integer vector containing the mask. The most significant bit of
3447 /// each data element represents the mask bits. If a mask bit is zero, the
3448 /// corresponding value in the memory location is not loaded and the
3449 /// corresponding field in the return value is set to zero.
3450 /// \returns A 128-bit vector of [4 x float] containing the loaded values.
3451 static __inline __m128 __DEFAULT_FN_ATTRS128
_mm_maskload_ps(float const * __p,__m128i __m)3452 _mm_maskload_ps(float const *__p, __m128i __m)
3453 {
3454 return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
3455 }
3456
3457 /// Conditionally loads single-precision floating point elements from a
3458 /// memory location pointed to by \a __p into a 256-bit vector of
3459 /// [8 x float], depending on the mask bits associated with each data
3460 /// element.
3461 ///
3462 /// \headerfile <x86intrin.h>
3463 ///
3464 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3465 ///
3466 /// \param __p
3467 /// A pointer to a memory location that contains the single-precision
3468 /// floating point values.
3469 /// \param __m
3470 /// A 256-bit integer vector of [8 x dword] containing the mask. The most
3471 /// significant bit of each dword element represents the mask bits. If a mask
3472 /// bit is zero, the corresponding value in the memory location is not loaded
3473 /// and the corresponding field in the return value is set to zero.
3474 /// \returns A 256-bit vector of [8 x float] containing the loaded values.
3475 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_maskload_ps(float const * __p,__m256i __m)3476 _mm256_maskload_ps(float const *__p, __m256i __m)
3477 {
3478 return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
3479 }
3480
3481 /* Conditional store ops */
3482 /// Moves single-precision floating point values from a 256-bit vector
3483 /// of [8 x float] to a memory location pointed to by \a __p, according to
3484 /// the specified mask.
3485 ///
3486 /// \headerfile <x86intrin.h>
3487 ///
3488 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3489 ///
3490 /// \param __p
3491 /// A pointer to a memory location that will receive the float values.
3492 /// \param __m
3493 /// A 256-bit integer vector of [8 x dword] containing the mask. The most
3494 /// significant bit of each dword element in the mask vector represents the
3495 /// mask bits. If a mask bit is zero, the corresponding value from vector
3496 /// \a __a is not stored and the corresponding field in the memory location
3497 /// pointed to by \a __p is not changed.
3498 /// \param __a
3499 /// A 256-bit vector of [8 x float] containing the values to be stored.
3500 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_ps(float * __p,__m256i __m,__m256 __a)3501 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
3502 {
3503 __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
3504 }
3505
3506 /// Moves double-precision values from a 128-bit vector of [2 x double]
3507 /// to a memory location pointed to by \a __p, according to the specified
3508 /// mask.
3509 ///
3510 /// \headerfile <x86intrin.h>
3511 ///
3512 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3513 ///
3514 /// \param __p
3515 /// A pointer to a memory location that will receive the float values.
3516 /// \param __m
3517 /// A 128-bit integer vector containing the mask. The most significant bit of
3518 /// each field in the mask vector represents the mask bits. If a mask bit is
3519 /// zero, the corresponding value from vector \a __a is not stored and the
3520 /// corresponding field in the memory location pointed to by \a __p is not
3521 /// changed.
3522 /// \param __a
3523 /// A 128-bit vector of [2 x double] containing the values to be stored.
3524 static __inline void __DEFAULT_FN_ATTRS128
_mm_maskstore_pd(double * __p,__m128i __m,__m128d __a)3525 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
3526 {
3527 __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
3528 }
3529
3530 /// Moves double-precision values from a 256-bit vector of [4 x double]
3531 /// to a memory location pointed to by \a __p, according to the specified
3532 /// mask.
3533 ///
3534 /// \headerfile <x86intrin.h>
3535 ///
3536 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3537 ///
3538 /// \param __p
3539 /// A pointer to a memory location that will receive the float values.
3540 /// \param __m
3541 /// A 256-bit integer vector of [4 x quadword] containing the mask. The most
3542 /// significant bit of each quadword element in the mask vector represents
3543 /// the mask bits. If a mask bit is zero, the corresponding value from vector
3544 /// __a is not stored and the corresponding field in the memory location
3545 /// pointed to by \a __p is not changed.
3546 /// \param __a
3547 /// A 256-bit vector of [4 x double] containing the values to be stored.
3548 static __inline void __DEFAULT_FN_ATTRS
_mm256_maskstore_pd(double * __p,__m256i __m,__m256d __a)3549 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
3550 {
3551 __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
3552 }
3553
3554 /// Moves single-precision floating point values from a 128-bit vector
3555 /// of [4 x float] to a memory location pointed to by \a __p, according to
3556 /// the specified mask.
3557 ///
3558 /// \headerfile <x86intrin.h>
3559 ///
3560 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3561 ///
3562 /// \param __p
3563 /// A pointer to a memory location that will receive the float values.
3564 /// \param __m
3565 /// A 128-bit integer vector containing the mask. The most significant bit of
3566 /// each field in the mask vector represents the mask bits. If a mask bit is
3567 /// zero, the corresponding value from vector __a is not stored and the
3568 /// corresponding field in the memory location pointed to by \a __p is not
3569 /// changed.
3570 /// \param __a
3571 /// A 128-bit vector of [4 x float] containing the values to be stored.
3572 static __inline void __DEFAULT_FN_ATTRS128
_mm_maskstore_ps(float * __p,__m128i __m,__m128 __a)3573 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
3574 {
3575 __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
3576 }
3577
3578 /* Cacheability support ops */
3579 /// Moves integer data from a 256-bit integer vector to a 32-byte
3580 /// aligned memory location. To minimize caching, the data is flagged as
3581 /// non-temporal (unlikely to be used again soon).
3582 ///
3583 /// \headerfile <x86intrin.h>
3584 ///
3585 /// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3586 ///
3587 /// \param __a
3588 /// A pointer to a 32-byte aligned memory location that will receive the
3589 /// integer values.
3590 /// \param __b
3591 /// A 256-bit integer vector containing the values to be moved.
3592 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_si256(void * __a,__m256i __b)3593 _mm256_stream_si256(void *__a, __m256i __b)
3594 {
3595 typedef __v4di __v4di_aligned __attribute__((aligned(32)));
3596 __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a);
3597 }
3598
3599 /// Moves double-precision values from a 256-bit vector of [4 x double]
3600 /// to a 32-byte aligned memory location. To minimize caching, the data is
3601 /// flagged as non-temporal (unlikely to be used again soon).
3602 ///
3603 /// \headerfile <x86intrin.h>
3604 ///
3605 /// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3606 ///
3607 /// \param __a
3608 /// A pointer to a 32-byte aligned memory location that will receive the
3609 /// double-precision floating-point values.
3610 /// \param __b
3611 /// A 256-bit vector of [4 x double] containing the values to be moved.
3612 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_pd(void * __a,__m256d __b)3613 _mm256_stream_pd(void *__a, __m256d __b)
3614 {
3615 typedef __v4df __v4df_aligned __attribute__((aligned(32)));
3616 __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a);
3617 }
3618
3619 /// Moves single-precision floating point values from a 256-bit vector
3620 /// of [8 x float] to a 32-byte aligned memory location. To minimize
3621 /// caching, the data is flagged as non-temporal (unlikely to be used again
3622 /// soon).
3623 ///
3624 /// \headerfile <x86intrin.h>
3625 ///
3626 /// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3627 ///
3628 /// \param __p
3629 /// A pointer to a 32-byte aligned memory location that will receive the
3630 /// single-precision floating point values.
3631 /// \param __a
3632 /// A 256-bit vector of [8 x float] containing the values to be moved.
3633 static __inline void __DEFAULT_FN_ATTRS
_mm256_stream_ps(void * __p,__m256 __a)3634 _mm256_stream_ps(void *__p, __m256 __a)
3635 {
3636 typedef __v8sf __v8sf_aligned __attribute__((aligned(32)));
3637 __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p);
3638 }
3639
3640 /* Create vectors */
3641 /// Create a 256-bit vector of [4 x double] with undefined values.
3642 ///
3643 /// \headerfile <x86intrin.h>
3644 ///
3645 /// This intrinsic has no corresponding instruction.
3646 ///
3647 /// \returns A 256-bit vector of [4 x double] containing undefined values.
3648 static __inline__ __m256d __DEFAULT_FN_ATTRS
_mm256_undefined_pd(void)3649 _mm256_undefined_pd(void)
3650 {
3651 return (__m256d)__builtin_ia32_undef256();
3652 }
3653
3654 /// Create a 256-bit vector of [8 x float] with undefined values.
3655 ///
3656 /// \headerfile <x86intrin.h>
3657 ///
3658 /// This intrinsic has no corresponding instruction.
3659 ///
3660 /// \returns A 256-bit vector of [8 x float] containing undefined values.
3661 static __inline__ __m256 __DEFAULT_FN_ATTRS
_mm256_undefined_ps(void)3662 _mm256_undefined_ps(void)
3663 {
3664 return (__m256)__builtin_ia32_undef256();
3665 }
3666
3667 /// Create a 256-bit integer vector with undefined values.
3668 ///
3669 /// \headerfile <x86intrin.h>
3670 ///
3671 /// This intrinsic has no corresponding instruction.
3672 ///
3673 /// \returns A 256-bit integer vector containing undefined values.
3674 static __inline__ __m256i __DEFAULT_FN_ATTRS
_mm256_undefined_si256(void)3675 _mm256_undefined_si256(void)
3676 {
3677 return (__m256i)__builtin_ia32_undef256();
3678 }
3679
3680 /// Constructs a 256-bit floating-point vector of [4 x double]
3681 /// initialized with the specified double-precision floating-point values.
3682 ///
3683 /// \headerfile <x86intrin.h>
3684 ///
3685 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3686 /// instruction.
3687 ///
3688 /// \param __a
3689 /// A double-precision floating-point value used to initialize bits [255:192]
3690 /// of the result.
3691 /// \param __b
3692 /// A double-precision floating-point value used to initialize bits [191:128]
3693 /// of the result.
3694 /// \param __c
3695 /// A double-precision floating-point value used to initialize bits [127:64]
3696 /// of the result.
3697 /// \param __d
3698 /// A double-precision floating-point value used to initialize bits [63:0]
3699 /// of the result.
3700 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3701 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_pd(double __a,double __b,double __c,double __d)3702 _mm256_set_pd(double __a, double __b, double __c, double __d)
3703 {
3704 return __extension__ (__m256d){ __d, __c, __b, __a };
3705 }
3706
3707 /// Constructs a 256-bit floating-point vector of [8 x float] initialized
3708 /// with the specified single-precision floating-point values.
3709 ///
3710 /// \headerfile <x86intrin.h>
3711 ///
3712 /// This intrinsic is a utility function and does not correspond to a specific
3713 /// instruction.
3714 ///
3715 /// \param __a
3716 /// A single-precision floating-point value used to initialize bits [255:224]
3717 /// of the result.
3718 /// \param __b
3719 /// A single-precision floating-point value used to initialize bits [223:192]
3720 /// of the result.
3721 /// \param __c
3722 /// A single-precision floating-point value used to initialize bits [191:160]
3723 /// of the result.
3724 /// \param __d
3725 /// A single-precision floating-point value used to initialize bits [159:128]
3726 /// of the result.
3727 /// \param __e
3728 /// A single-precision floating-point value used to initialize bits [127:96]
3729 /// of the result.
3730 /// \param __f
3731 /// A single-precision floating-point value used to initialize bits [95:64]
3732 /// of the result.
3733 /// \param __g
3734 /// A single-precision floating-point value used to initialize bits [63:32]
3735 /// of the result.
3736 /// \param __h
3737 /// A single-precision floating-point value used to initialize bits [31:0]
3738 /// of the result.
3739 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3740 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)3741 _mm256_set_ps(float __a, float __b, float __c, float __d,
3742 float __e, float __f, float __g, float __h)
3743 {
3744 return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
3745 }
3746
3747 /// Constructs a 256-bit integer vector initialized with the specified
3748 /// 32-bit integral values.
3749 ///
3750 /// \headerfile <x86intrin.h>
3751 ///
3752 /// This intrinsic is a utility function and does not correspond to a specific
3753 /// instruction.
3754 ///
3755 /// \param __i0
3756 /// A 32-bit integral value used to initialize bits [255:224] of the result.
3757 /// \param __i1
3758 /// A 32-bit integral value used to initialize bits [223:192] of the result.
3759 /// \param __i2
3760 /// A 32-bit integral value used to initialize bits [191:160] of the result.
3761 /// \param __i3
3762 /// A 32-bit integral value used to initialize bits [159:128] of the result.
3763 /// \param __i4
3764 /// A 32-bit integral value used to initialize bits [127:96] of the result.
3765 /// \param __i5
3766 /// A 32-bit integral value used to initialize bits [95:64] of the result.
3767 /// \param __i6
3768 /// A 32-bit integral value used to initialize bits [63:32] of the result.
3769 /// \param __i7
3770 /// A 32-bit integral value used to initialize bits [31:0] of the result.
3771 /// \returns An initialized 256-bit integer vector.
3772 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)3773 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
3774 int __i4, int __i5, int __i6, int __i7)
3775 {
3776 return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
3777 }
3778
3779 /// Constructs a 256-bit integer vector initialized with the specified
3780 /// 16-bit integral values.
3781 ///
3782 /// \headerfile <x86intrin.h>
3783 ///
3784 /// This intrinsic is a utility function and does not correspond to a specific
3785 /// instruction.
3786 ///
3787 /// \param __w15
3788 /// A 16-bit integral value used to initialize bits [255:240] of the result.
3789 /// \param __w14
3790 /// A 16-bit integral value used to initialize bits [239:224] of the result.
3791 /// \param __w13
3792 /// A 16-bit integral value used to initialize bits [223:208] of the result.
3793 /// \param __w12
3794 /// A 16-bit integral value used to initialize bits [207:192] of the result.
3795 /// \param __w11
3796 /// A 16-bit integral value used to initialize bits [191:176] of the result.
3797 /// \param __w10
3798 /// A 16-bit integral value used to initialize bits [175:160] of the result.
3799 /// \param __w09
3800 /// A 16-bit integral value used to initialize bits [159:144] of the result.
3801 /// \param __w08
3802 /// A 16-bit integral value used to initialize bits [143:128] of the result.
3803 /// \param __w07
3804 /// A 16-bit integral value used to initialize bits [127:112] of the result.
3805 /// \param __w06
3806 /// A 16-bit integral value used to initialize bits [111:96] of the result.
3807 /// \param __w05
3808 /// A 16-bit integral value used to initialize bits [95:80] of the result.
3809 /// \param __w04
3810 /// A 16-bit integral value used to initialize bits [79:64] of the result.
3811 /// \param __w03
3812 /// A 16-bit integral value used to initialize bits [63:48] of the result.
3813 /// \param __w02
3814 /// A 16-bit integral value used to initialize bits [47:32] of the result.
3815 /// \param __w01
3816 /// A 16-bit integral value used to initialize bits [31:16] of the result.
3817 /// \param __w00
3818 /// A 16-bit integral value used to initialize bits [15:0] of the result.
3819 /// \returns An initialized 256-bit integer vector.
3820 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)3821 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
3822 short __w11, short __w10, short __w09, short __w08,
3823 short __w07, short __w06, short __w05, short __w04,
3824 short __w03, short __w02, short __w01, short __w00)
3825 {
3826 return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
3827 __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
3828 }
3829
3830 /// Constructs a 256-bit integer vector initialized with the specified
3831 /// 8-bit integral values.
3832 ///
3833 /// \headerfile <x86intrin.h>
3834 ///
3835 /// This intrinsic is a utility function and does not correspond to a specific
3836 /// instruction.
3837 ///
3838 /// \param __b31
3839 /// An 8-bit integral value used to initialize bits [255:248] of the result.
3840 /// \param __b30
3841 /// An 8-bit integral value used to initialize bits [247:240] of the result.
3842 /// \param __b29
3843 /// An 8-bit integral value used to initialize bits [239:232] of the result.
3844 /// \param __b28
3845 /// An 8-bit integral value used to initialize bits [231:224] of the result.
3846 /// \param __b27
3847 /// An 8-bit integral value used to initialize bits [223:216] of the result.
3848 /// \param __b26
3849 /// An 8-bit integral value used to initialize bits [215:208] of the result.
3850 /// \param __b25
3851 /// An 8-bit integral value used to initialize bits [207:200] of the result.
3852 /// \param __b24
3853 /// An 8-bit integral value used to initialize bits [199:192] of the result.
3854 /// \param __b23
3855 /// An 8-bit integral value used to initialize bits [191:184] of the result.
3856 /// \param __b22
3857 /// An 8-bit integral value used to initialize bits [183:176] of the result.
3858 /// \param __b21
3859 /// An 8-bit integral value used to initialize bits [175:168] of the result.
3860 /// \param __b20
3861 /// An 8-bit integral value used to initialize bits [167:160] of the result.
3862 /// \param __b19
3863 /// An 8-bit integral value used to initialize bits [159:152] of the result.
3864 /// \param __b18
3865 /// An 8-bit integral value used to initialize bits [151:144] of the result.
3866 /// \param __b17
3867 /// An 8-bit integral value used to initialize bits [143:136] of the result.
3868 /// \param __b16
3869 /// An 8-bit integral value used to initialize bits [135:128] of the result.
3870 /// \param __b15
3871 /// An 8-bit integral value used to initialize bits [127:120] of the result.
3872 /// \param __b14
3873 /// An 8-bit integral value used to initialize bits [119:112] of the result.
3874 /// \param __b13
3875 /// An 8-bit integral value used to initialize bits [111:104] of the result.
3876 /// \param __b12
3877 /// An 8-bit integral value used to initialize bits [103:96] of the result.
3878 /// \param __b11
3879 /// An 8-bit integral value used to initialize bits [95:88] of the result.
3880 /// \param __b10
3881 /// An 8-bit integral value used to initialize bits [87:80] of the result.
3882 /// \param __b09
3883 /// An 8-bit integral value used to initialize bits [79:72] of the result.
3884 /// \param __b08
3885 /// An 8-bit integral value used to initialize bits [71:64] of the result.
3886 /// \param __b07
3887 /// An 8-bit integral value used to initialize bits [63:56] of the result.
3888 /// \param __b06
3889 /// An 8-bit integral value used to initialize bits [55:48] of the result.
3890 /// \param __b05
3891 /// An 8-bit integral value used to initialize bits [47:40] of the result.
3892 /// \param __b04
3893 /// An 8-bit integral value used to initialize bits [39:32] of the result.
3894 /// \param __b03
3895 /// An 8-bit integral value used to initialize bits [31:24] of the result.
3896 /// \param __b02
3897 /// An 8-bit integral value used to initialize bits [23:16] of the result.
3898 /// \param __b01
3899 /// An 8-bit integral value used to initialize bits [15:8] of the result.
3900 /// \param __b00
3901 /// An 8-bit integral value used to initialize bits [7:0] of the result.
3902 /// \returns An initialized 256-bit integer vector.
3903 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)3904 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
3905 char __b27, char __b26, char __b25, char __b24,
3906 char __b23, char __b22, char __b21, char __b20,
3907 char __b19, char __b18, char __b17, char __b16,
3908 char __b15, char __b14, char __b13, char __b12,
3909 char __b11, char __b10, char __b09, char __b08,
3910 char __b07, char __b06, char __b05, char __b04,
3911 char __b03, char __b02, char __b01, char __b00)
3912 {
3913 return __extension__ (__m256i)(__v32qi){
3914 __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
3915 __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
3916 __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
3917 __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
3918 };
3919 }
3920
3921 /// Constructs a 256-bit integer vector initialized with the specified
3922 /// 64-bit integral values.
3923 ///
3924 /// \headerfile <x86intrin.h>
3925 ///
3926 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3927 /// instruction.
3928 ///
3929 /// \param __a
3930 /// A 64-bit integral value used to initialize bits [255:192] of the result.
3931 /// \param __b
3932 /// A 64-bit integral value used to initialize bits [191:128] of the result.
3933 /// \param __c
3934 /// A 64-bit integral value used to initialize bits [127:64] of the result.
3935 /// \param __d
3936 /// A 64-bit integral value used to initialize bits [63:0] of the result.
3937 /// \returns An initialized 256-bit integer vector.
3938 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_epi64x(long long __a,long long __b,long long __c,long long __d)3939 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
3940 {
3941 return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a };
3942 }
3943
3944 /* Create vectors with elements in reverse order */
3945 /// Constructs a 256-bit floating-point vector of [4 x double],
3946 /// initialized in reverse order with the specified double-precision
3947 /// floating-point values.
3948 ///
3949 /// \headerfile <x86intrin.h>
3950 ///
3951 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3952 /// instruction.
3953 ///
3954 /// \param __a
3955 /// A double-precision floating-point value used to initialize bits [63:0]
3956 /// of the result.
3957 /// \param __b
3958 /// A double-precision floating-point value used to initialize bits [127:64]
3959 /// of the result.
3960 /// \param __c
3961 /// A double-precision floating-point value used to initialize bits [191:128]
3962 /// of the result.
3963 /// \param __d
3964 /// A double-precision floating-point value used to initialize bits [255:192]
3965 /// of the result.
3966 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3967 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_pd(double __a,double __b,double __c,double __d)3968 _mm256_setr_pd(double __a, double __b, double __c, double __d)
3969 {
3970 return _mm256_set_pd(__d, __c, __b, __a);
3971 }
3972
3973 /// Constructs a 256-bit floating-point vector of [8 x float],
3974 /// initialized in reverse order with the specified single-precision
3975 /// float-point values.
3976 ///
3977 /// \headerfile <x86intrin.h>
3978 ///
3979 /// This intrinsic is a utility function and does not correspond to a specific
3980 /// instruction.
3981 ///
3982 /// \param __a
3983 /// A single-precision floating-point value used to initialize bits [31:0]
3984 /// of the result.
3985 /// \param __b
3986 /// A single-precision floating-point value used to initialize bits [63:32]
3987 /// of the result.
3988 /// \param __c
3989 /// A single-precision floating-point value used to initialize bits [95:64]
3990 /// of the result.
3991 /// \param __d
3992 /// A single-precision floating-point value used to initialize bits [127:96]
3993 /// of the result.
3994 /// \param __e
3995 /// A single-precision floating-point value used to initialize bits [159:128]
3996 /// of the result.
3997 /// \param __f
3998 /// A single-precision floating-point value used to initialize bits [191:160]
3999 /// of the result.
4000 /// \param __g
4001 /// A single-precision floating-point value used to initialize bits [223:192]
4002 /// of the result.
4003 /// \param __h
4004 /// A single-precision floating-point value used to initialize bits [255:224]
4005 /// of the result.
4006 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4007 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_ps(float __a,float __b,float __c,float __d,float __e,float __f,float __g,float __h)4008 _mm256_setr_ps(float __a, float __b, float __c, float __d,
4009 float __e, float __f, float __g, float __h)
4010 {
4011 return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a);
4012 }
4013
4014 /// Constructs a 256-bit integer vector, initialized in reverse order
4015 /// with the specified 32-bit integral values.
4016 ///
4017 /// \headerfile <x86intrin.h>
4018 ///
4019 /// This intrinsic is a utility function and does not correspond to a specific
4020 /// instruction.
4021 ///
4022 /// \param __i0
4023 /// A 32-bit integral value used to initialize bits [31:0] of the result.
4024 /// \param __i1
4025 /// A 32-bit integral value used to initialize bits [63:32] of the result.
4026 /// \param __i2
4027 /// A 32-bit integral value used to initialize bits [95:64] of the result.
4028 /// \param __i3
4029 /// A 32-bit integral value used to initialize bits [127:96] of the result.
4030 /// \param __i4
4031 /// A 32-bit integral value used to initialize bits [159:128] of the result.
4032 /// \param __i5
4033 /// A 32-bit integral value used to initialize bits [191:160] of the result.
4034 /// \param __i6
4035 /// A 32-bit integral value used to initialize bits [223:192] of the result.
4036 /// \param __i7
4037 /// A 32-bit integral value used to initialize bits [255:224] of the result.
4038 /// \returns An initialized 256-bit integer vector.
4039 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi32(int __i0,int __i1,int __i2,int __i3,int __i4,int __i5,int __i6,int __i7)4040 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
4041 int __i4, int __i5, int __i6, int __i7)
4042 {
4043 return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0);
4044 }
4045
4046 /// Constructs a 256-bit integer vector, initialized in reverse order
4047 /// with the specified 16-bit integral values.
4048 ///
4049 /// \headerfile <x86intrin.h>
4050 ///
4051 /// This intrinsic is a utility function and does not correspond to a specific
4052 /// instruction.
4053 ///
4054 /// \param __w15
4055 /// A 16-bit integral value used to initialize bits [15:0] of the result.
4056 /// \param __w14
4057 /// A 16-bit integral value used to initialize bits [31:16] of the result.
4058 /// \param __w13
4059 /// A 16-bit integral value used to initialize bits [47:32] of the result.
4060 /// \param __w12
4061 /// A 16-bit integral value used to initialize bits [63:48] of the result.
4062 /// \param __w11
4063 /// A 16-bit integral value used to initialize bits [79:64] of the result.
4064 /// \param __w10
4065 /// A 16-bit integral value used to initialize bits [95:80] of the result.
4066 /// \param __w09
4067 /// A 16-bit integral value used to initialize bits [111:96] of the result.
4068 /// \param __w08
4069 /// A 16-bit integral value used to initialize bits [127:112] of the result.
4070 /// \param __w07
4071 /// A 16-bit integral value used to initialize bits [143:128] of the result.
4072 /// \param __w06
4073 /// A 16-bit integral value used to initialize bits [159:144] of the result.
4074 /// \param __w05
4075 /// A 16-bit integral value used to initialize bits [175:160] of the result.
4076 /// \param __w04
4077 /// A 16-bit integral value used to initialize bits [191:176] of the result.
4078 /// \param __w03
4079 /// A 16-bit integral value used to initialize bits [207:192] of the result.
4080 /// \param __w02
4081 /// A 16-bit integral value used to initialize bits [223:208] of the result.
4082 /// \param __w01
4083 /// A 16-bit integral value used to initialize bits [239:224] of the result.
4084 /// \param __w00
4085 /// A 16-bit integral value used to initialize bits [255:240] of the result.
4086 /// \returns An initialized 256-bit integer vector.
4087 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi16(short __w15,short __w14,short __w13,short __w12,short __w11,short __w10,short __w09,short __w08,short __w07,short __w06,short __w05,short __w04,short __w03,short __w02,short __w01,short __w00)4088 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
4089 short __w11, short __w10, short __w09, short __w08,
4090 short __w07, short __w06, short __w05, short __w04,
4091 short __w03, short __w02, short __w01, short __w00)
4092 {
4093 return _mm256_set_epi16(__w00, __w01, __w02, __w03,
4094 __w04, __w05, __w06, __w07,
4095 __w08, __w09, __w10, __w11,
4096 __w12, __w13, __w14, __w15);
4097 }
4098
4099 /// Constructs a 256-bit integer vector, initialized in reverse order
4100 /// with the specified 8-bit integral values.
4101 ///
4102 /// \headerfile <x86intrin.h>
4103 ///
4104 /// This intrinsic is a utility function and does not correspond to a specific
4105 /// instruction.
4106 ///
4107 /// \param __b31
4108 /// An 8-bit integral value used to initialize bits [7:0] of the result.
4109 /// \param __b30
4110 /// An 8-bit integral value used to initialize bits [15:8] of the result.
4111 /// \param __b29
4112 /// An 8-bit integral value used to initialize bits [23:16] of the result.
4113 /// \param __b28
4114 /// An 8-bit integral value used to initialize bits [31:24] of the result.
4115 /// \param __b27
4116 /// An 8-bit integral value used to initialize bits [39:32] of the result.
4117 /// \param __b26
4118 /// An 8-bit integral value used to initialize bits [47:40] of the result.
4119 /// \param __b25
4120 /// An 8-bit integral value used to initialize bits [55:48] of the result.
4121 /// \param __b24
4122 /// An 8-bit integral value used to initialize bits [63:56] of the result.
4123 /// \param __b23
4124 /// An 8-bit integral value used to initialize bits [71:64] of the result.
4125 /// \param __b22
4126 /// An 8-bit integral value used to initialize bits [79:72] of the result.
4127 /// \param __b21
4128 /// An 8-bit integral value used to initialize bits [87:80] of the result.
4129 /// \param __b20
4130 /// An 8-bit integral value used to initialize bits [95:88] of the result.
4131 /// \param __b19
4132 /// An 8-bit integral value used to initialize bits [103:96] of the result.
4133 /// \param __b18
4134 /// An 8-bit integral value used to initialize bits [111:104] of the result.
4135 /// \param __b17
4136 /// An 8-bit integral value used to initialize bits [119:112] of the result.
4137 /// \param __b16
4138 /// An 8-bit integral value used to initialize bits [127:120] of the result.
4139 /// \param __b15
4140 /// An 8-bit integral value used to initialize bits [135:128] of the result.
4141 /// \param __b14
4142 /// An 8-bit integral value used to initialize bits [143:136] of the result.
4143 /// \param __b13
4144 /// An 8-bit integral value used to initialize bits [151:144] of the result.
4145 /// \param __b12
4146 /// An 8-bit integral value used to initialize bits [159:152] of the result.
4147 /// \param __b11
4148 /// An 8-bit integral value used to initialize bits [167:160] of the result.
4149 /// \param __b10
4150 /// An 8-bit integral value used to initialize bits [175:168] of the result.
4151 /// \param __b09
4152 /// An 8-bit integral value used to initialize bits [183:176] of the result.
4153 /// \param __b08
4154 /// An 8-bit integral value used to initialize bits [191:184] of the result.
4155 /// \param __b07
4156 /// An 8-bit integral value used to initialize bits [199:192] of the result.
4157 /// \param __b06
4158 /// An 8-bit integral value used to initialize bits [207:200] of the result.
4159 /// \param __b05
4160 /// An 8-bit integral value used to initialize bits [215:208] of the result.
4161 /// \param __b04
4162 /// An 8-bit integral value used to initialize bits [223:216] of the result.
4163 /// \param __b03
4164 /// An 8-bit integral value used to initialize bits [231:224] of the result.
4165 /// \param __b02
4166 /// An 8-bit integral value used to initialize bits [239:232] of the result.
4167 /// \param __b01
4168 /// An 8-bit integral value used to initialize bits [247:240] of the result.
4169 /// \param __b00
4170 /// An 8-bit integral value used to initialize bits [255:248] of the result.
4171 /// \returns An initialized 256-bit integer vector.
4172 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi8(char __b31,char __b30,char __b29,char __b28,char __b27,char __b26,char __b25,char __b24,char __b23,char __b22,char __b21,char __b20,char __b19,char __b18,char __b17,char __b16,char __b15,char __b14,char __b13,char __b12,char __b11,char __b10,char __b09,char __b08,char __b07,char __b06,char __b05,char __b04,char __b03,char __b02,char __b01,char __b00)4173 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
4174 char __b27, char __b26, char __b25, char __b24,
4175 char __b23, char __b22, char __b21, char __b20,
4176 char __b19, char __b18, char __b17, char __b16,
4177 char __b15, char __b14, char __b13, char __b12,
4178 char __b11, char __b10, char __b09, char __b08,
4179 char __b07, char __b06, char __b05, char __b04,
4180 char __b03, char __b02, char __b01, char __b00)
4181 {
4182 return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
4183 __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
4184 __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
4185 __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31);
4186 }
4187
4188 /// Constructs a 256-bit integer vector, initialized in reverse order
4189 /// with the specified 64-bit integral values.
4190 ///
4191 /// \headerfile <x86intrin.h>
4192 ///
4193 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4194 /// instruction.
4195 ///
4196 /// \param __a
4197 /// A 64-bit integral value used to initialize bits [63:0] of the result.
4198 /// \param __b
4199 /// A 64-bit integral value used to initialize bits [127:64] of the result.
4200 /// \param __c
4201 /// A 64-bit integral value used to initialize bits [191:128] of the result.
4202 /// \param __d
4203 /// A 64-bit integral value used to initialize bits [255:192] of the result.
4204 /// \returns An initialized 256-bit integer vector.
4205 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_epi64x(long long __a,long long __b,long long __c,long long __d)4206 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
4207 {
4208 return _mm256_set_epi64x(__d, __c, __b, __a);
4209 }
4210
4211 /* Create vectors with repeated elements */
4212 /// Constructs a 256-bit floating-point vector of [4 x double], with each
4213 /// of the four double-precision floating-point vector elements set to the
4214 /// specified double-precision floating-point value.
4215 ///
4216 /// \headerfile <x86intrin.h>
4217 ///
4218 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4219 ///
4220 /// \param __w
4221 /// A double-precision floating-point value used to initialize each vector
4222 /// element of the result.
4223 /// \returns An initialized 256-bit floating-point vector of [4 x double].
4224 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set1_pd(double __w)4225 _mm256_set1_pd(double __w)
4226 {
4227 return _mm256_set_pd(__w, __w, __w, __w);
4228 }
4229
4230 /// Constructs a 256-bit floating-point vector of [8 x float], with each
4231 /// of the eight single-precision floating-point vector elements set to the
4232 /// specified single-precision floating-point value.
4233 ///
4234 /// \headerfile <x86intrin.h>
4235 ///
4236 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4237 /// instruction.
4238 ///
4239 /// \param __w
4240 /// A single-precision floating-point value used to initialize each vector
4241 /// element of the result.
4242 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4243 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set1_ps(float __w)4244 _mm256_set1_ps(float __w)
4245 {
4246 return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w);
4247 }
4248
4249 /// Constructs a 256-bit integer vector of [8 x i32], with each of the
4250 /// 32-bit integral vector elements set to the specified 32-bit integral
4251 /// value.
4252 ///
4253 /// \headerfile <x86intrin.h>
4254 ///
4255 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4256 /// instruction.
4257 ///
4258 /// \param __i
4259 /// A 32-bit integral value used to initialize each vector element of the
4260 /// result.
4261 /// \returns An initialized 256-bit integer vector of [8 x i32].
4262 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi32(int __i)4263 _mm256_set1_epi32(int __i)
4264 {
4265 return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i);
4266 }
4267
4268 /// Constructs a 256-bit integer vector of [16 x i16], with each of the
4269 /// 16-bit integral vector elements set to the specified 16-bit integral
4270 /// value.
4271 ///
4272 /// \headerfile <x86intrin.h>
4273 ///
4274 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4275 ///
4276 /// \param __w
4277 /// A 16-bit integral value used to initialize each vector element of the
4278 /// result.
4279 /// \returns An initialized 256-bit integer vector of [16 x i16].
4280 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi16(short __w)4281 _mm256_set1_epi16(short __w)
4282 {
4283 return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w,
4284 __w, __w, __w, __w, __w, __w, __w, __w);
4285 }
4286
4287 /// Constructs a 256-bit integer vector of [32 x i8], with each of the
4288 /// 8-bit integral vector elements set to the specified 8-bit integral value.
4289 ///
4290 /// \headerfile <x86intrin.h>
4291 ///
4292 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4293 ///
4294 /// \param __b
4295 /// An 8-bit integral value used to initialize each vector element of the
4296 /// result.
4297 /// \returns An initialized 256-bit integer vector of [32 x i8].
4298 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi8(char __b)4299 _mm256_set1_epi8(char __b)
4300 {
4301 return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b,
4302 __b, __b, __b, __b, __b, __b, __b, __b,
4303 __b, __b, __b, __b, __b, __b, __b, __b,
4304 __b, __b, __b, __b, __b, __b, __b, __b);
4305 }
4306
4307 /// Constructs a 256-bit integer vector of [4 x i64], with each of the
4308 /// 64-bit integral vector elements set to the specified 64-bit integral
4309 /// value.
4310 ///
4311 /// \headerfile <x86intrin.h>
4312 ///
4313 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4314 ///
4315 /// \param __q
4316 /// A 64-bit integral value used to initialize each vector element of the
4317 /// result.
4318 /// \returns An initialized 256-bit integer vector of [4 x i64].
4319 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set1_epi64x(long long __q)4320 _mm256_set1_epi64x(long long __q)
4321 {
4322 return _mm256_set_epi64x(__q, __q, __q, __q);
4323 }
4324
4325 /* Create __zeroed vectors */
4326 /// Constructs a 256-bit floating-point vector of [4 x double] with all
4327 /// vector elements initialized to zero.
4328 ///
4329 /// \headerfile <x86intrin.h>
4330 ///
4331 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4332 ///
4333 /// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4334 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setzero_pd(void)4335 _mm256_setzero_pd(void)
4336 {
4337 return __extension__ (__m256d){ 0.0, 0.0, 0.0, 0.0 };
4338 }
4339
4340 /// Constructs a 256-bit floating-point vector of [8 x float] with all
4341 /// vector elements initialized to zero.
4342 ///
4343 /// \headerfile <x86intrin.h>
4344 ///
4345 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4346 ///
4347 /// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4348 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setzero_ps(void)4349 _mm256_setzero_ps(void)
4350 {
4351 return __extension__ (__m256){ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
4352 }
4353
4354 /// Constructs a 256-bit integer vector initialized to zero.
4355 ///
4356 /// \headerfile <x86intrin.h>
4357 ///
4358 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4359 ///
4360 /// \returns A 256-bit integer vector initialized to zero.
4361 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setzero_si256(void)4362 _mm256_setzero_si256(void)
4363 {
4364 return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 };
4365 }
4366
4367 /* Cast between vector types */
4368 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4369 /// floating-point vector of [8 x float].
4370 ///
4371 /// \headerfile <x86intrin.h>
4372 ///
4373 /// This intrinsic has no corresponding instruction.
4374 ///
4375 /// \param __a
4376 /// A 256-bit floating-point vector of [4 x double].
4377 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4378 /// bitwise pattern as the parameter.
4379 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castpd_ps(__m256d __a)4380 _mm256_castpd_ps(__m256d __a)
4381 {
4382 return (__m256)__a;
4383 }
4384
4385 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4386 /// integer vector.
4387 ///
4388 /// \headerfile <x86intrin.h>
4389 ///
4390 /// This intrinsic has no corresponding instruction.
4391 ///
4392 /// \param __a
4393 /// A 256-bit floating-point vector of [4 x double].
4394 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4395 /// parameter.
4396 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castpd_si256(__m256d __a)4397 _mm256_castpd_si256(__m256d __a)
4398 {
4399 return (__m256i)__a;
4400 }
4401
4402 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4403 /// floating-point vector of [4 x double].
4404 ///
4405 /// \headerfile <x86intrin.h>
4406 ///
4407 /// This intrinsic has no corresponding instruction.
4408 ///
4409 /// \param __a
4410 /// A 256-bit floating-point vector of [8 x float].
4411 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4412 /// bitwise pattern as the parameter.
4413 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castps_pd(__m256 __a)4414 _mm256_castps_pd(__m256 __a)
4415 {
4416 return (__m256d)__a;
4417 }
4418
4419 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4420 /// integer vector.
4421 ///
4422 /// \headerfile <x86intrin.h>
4423 ///
4424 /// This intrinsic has no corresponding instruction.
4425 ///
4426 /// \param __a
4427 /// A 256-bit floating-point vector of [8 x float].
4428 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4429 /// parameter.
4430 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castps_si256(__m256 __a)4431 _mm256_castps_si256(__m256 __a)
4432 {
4433 return (__m256i)__a;
4434 }
4435
4436 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4437 /// of [8 x float].
4438 ///
4439 /// \headerfile <x86intrin.h>
4440 ///
4441 /// This intrinsic has no corresponding instruction.
4442 ///
4443 /// \param __a
4444 /// A 256-bit integer vector.
4445 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4446 /// bitwise pattern as the parameter.
4447 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castsi256_ps(__m256i __a)4448 _mm256_castsi256_ps(__m256i __a)
4449 {
4450 return (__m256)__a;
4451 }
4452
4453 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4454 /// of [4 x double].
4455 ///
4456 /// \headerfile <x86intrin.h>
4457 ///
4458 /// This intrinsic has no corresponding instruction.
4459 ///
4460 /// \param __a
4461 /// A 256-bit integer vector.
4462 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4463 /// bitwise pattern as the parameter.
4464 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castsi256_pd(__m256i __a)4465 _mm256_castsi256_pd(__m256i __a)
4466 {
4467 return (__m256d)__a;
4468 }
4469
4470 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4471 /// [4 x double] as a 128-bit floating-point vector of [2 x double].
4472 ///
4473 /// \headerfile <x86intrin.h>
4474 ///
4475 /// This intrinsic has no corresponding instruction.
4476 ///
4477 /// \param __a
4478 /// A 256-bit floating-point vector of [4 x double].
4479 /// \returns A 128-bit floating-point vector of [2 x double] containing the
4480 /// lower 128 bits of the parameter.
4481 static __inline __m128d __DEFAULT_FN_ATTRS
_mm256_castpd256_pd128(__m256d __a)4482 _mm256_castpd256_pd128(__m256d __a)
4483 {
4484 return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
4485 }
4486
4487 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4488 /// [8 x float] as a 128-bit floating-point vector of [4 x float].
4489 ///
4490 /// \headerfile <x86intrin.h>
4491 ///
4492 /// This intrinsic has no corresponding instruction.
4493 ///
4494 /// \param __a
4495 /// A 256-bit floating-point vector of [8 x float].
4496 /// \returns A 128-bit floating-point vector of [4 x float] containing the
4497 /// lower 128 bits of the parameter.
4498 static __inline __m128 __DEFAULT_FN_ATTRS
_mm256_castps256_ps128(__m256 __a)4499 _mm256_castps256_ps128(__m256 __a)
4500 {
4501 return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
4502 }
4503
4504 /// Truncates a 256-bit integer vector into a 128-bit integer vector.
4505 ///
4506 /// \headerfile <x86intrin.h>
4507 ///
4508 /// This intrinsic has no corresponding instruction.
4509 ///
4510 /// \param __a
4511 /// A 256-bit integer vector.
4512 /// \returns A 128-bit integer vector containing the lower 128 bits of the
4513 /// parameter.
4514 static __inline __m128i __DEFAULT_FN_ATTRS
_mm256_castsi256_si128(__m256i __a)4515 _mm256_castsi256_si128(__m256i __a)
4516 {
4517 return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
4518 }
4519
4520 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4521 /// 128-bit floating-point vector of [2 x double].
4522 ///
4523 /// The lower 128 bits contain the value of the source vector. The contents
4524 /// of the upper 128 bits are undefined.
4525 ///
4526 /// \headerfile <x86intrin.h>
4527 ///
4528 /// This intrinsic has no corresponding instruction.
4529 ///
4530 /// \param __a
4531 /// A 128-bit vector of [2 x double].
4532 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4533 /// contain the value of the parameter. The contents of the upper 128 bits
4534 /// are undefined.
4535 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_castpd128_pd256(__m128d __a)4536 _mm256_castpd128_pd256(__m128d __a)
4537 {
4538 return __builtin_shufflevector(
4539 (__v2df)__a, (__v2df)__builtin_nondeterministic_value(__a), 0, 1, 2, 3);
4540 }
4541
4542 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4543 /// 128-bit floating-point vector of [4 x float].
4544 ///
4545 /// The lower 128 bits contain the value of the source vector. The contents
4546 /// of the upper 128 bits are undefined.
4547 ///
4548 /// \headerfile <x86intrin.h>
4549 ///
4550 /// This intrinsic has no corresponding instruction.
4551 ///
4552 /// \param __a
4553 /// A 128-bit vector of [4 x float].
4554 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4555 /// contain the value of the parameter. The contents of the upper 128 bits
4556 /// are undefined.
4557 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_castps128_ps256(__m128 __a)4558 _mm256_castps128_ps256(__m128 __a)
4559 {
4560 return __builtin_shufflevector((__v4sf)__a,
4561 (__v4sf)__builtin_nondeterministic_value(__a),
4562 0, 1, 2, 3, 4, 5, 6, 7);
4563 }
4564
4565 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4566 ///
4567 /// The lower 128 bits contain the value of the source vector. The contents
4568 /// of the upper 128 bits are undefined.
4569 ///
4570 /// \headerfile <x86intrin.h>
4571 ///
4572 /// This intrinsic has no corresponding instruction.
4573 ///
4574 /// \param __a
4575 /// A 128-bit integer vector.
4576 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4577 /// the parameter. The contents of the upper 128 bits are undefined.
4578 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_castsi128_si256(__m128i __a)4579 _mm256_castsi128_si256(__m128i __a)
4580 {
4581 return __builtin_shufflevector(
4582 (__v2di)__a, (__v2di)__builtin_nondeterministic_value(__a), 0, 1, 2, 3);
4583 }
4584
4585 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4586 /// 128-bit floating-point vector of [2 x double]. The lower 128 bits
4587 /// contain the value of the source vector. The upper 128 bits are set
4588 /// to zero.
4589 ///
4590 /// \headerfile <x86intrin.h>
4591 ///
4592 /// This intrinsic has no corresponding instruction.
4593 ///
4594 /// \param __a
4595 /// A 128-bit vector of [2 x double].
4596 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4597 /// contain the value of the parameter. The upper 128 bits are set to zero.
4598 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_zextpd128_pd256(__m128d __a)4599 _mm256_zextpd128_pd256(__m128d __a)
4600 {
4601 return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3);
4602 }
4603
4604 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4605 /// 128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4606 /// the value of the source vector. The upper 128 bits are set to zero.
4607 ///
4608 /// \headerfile <x86intrin.h>
4609 ///
4610 /// This intrinsic has no corresponding instruction.
4611 ///
4612 /// \param __a
4613 /// A 128-bit vector of [4 x float].
4614 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4615 /// contain the value of the parameter. The upper 128 bits are set to zero.
4616 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_zextps128_ps256(__m128 __a)4617 _mm256_zextps128_ps256(__m128 __a)
4618 {
4619 return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4620 }
4621
4622 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4623 /// The lower 128 bits contain the value of the source vector. The upper
4624 /// 128 bits are set to zero.
4625 ///
4626 /// \headerfile <x86intrin.h>
4627 ///
4628 /// This intrinsic has no corresponding instruction.
4629 ///
4630 /// \param __a
4631 /// A 128-bit integer vector.
4632 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4633 /// the parameter. The upper 128 bits are set to zero.
4634 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_zextsi128_si256(__m128i __a)4635 _mm256_zextsi128_si256(__m128i __a)
4636 {
4637 return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3);
4638 }
4639
4640 /*
4641 Vector insert.
4642 We use macros rather than inlines because we only want to accept
4643 invocations where the immediate M is a constant expression.
4644 */
4645 /// Constructs a new 256-bit vector of [8 x float] by first duplicating
4646 /// a 256-bit vector of [8 x float] given in the first parameter, and then
4647 /// replacing either the upper or the lower 128 bits with the contents of a
4648 /// 128-bit vector of [4 x float] in the second parameter.
4649 ///
4650 /// The immediate integer parameter determines between the upper or the lower
4651 /// 128 bits.
4652 ///
4653 /// \headerfile <x86intrin.h>
4654 ///
4655 /// \code
4656 /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4657 /// \endcode
4658 ///
4659 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4660 ///
4661 /// \param V1
4662 /// A 256-bit vector of [8 x float]. This vector is copied to the result
4663 /// first, and then either the upper or the lower 128 bits of the result will
4664 /// be replaced by the contents of \a V2.
4665 /// \param V2
4666 /// A 128-bit vector of [4 x float]. The contents of this parameter are
4667 /// written to either the upper or the lower 128 bits of the result depending
4668 /// on the value of parameter \a M.
4669 /// \param M
4670 /// An immediate integer. The least significant bit determines how the values
4671 /// from the two parameters are interleaved: \n
4672 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4673 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4674 /// result. \n
4675 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4676 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4677 /// result.
4678 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4679 #define _mm256_insertf128_ps(V1, V2, M) \
4680 ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4681 (__v4sf)(__m128)(V2), (int)(M)))
4682
4683 /// Constructs a new 256-bit vector of [4 x double] by first duplicating
4684 /// a 256-bit vector of [4 x double] given in the first parameter, and then
4685 /// replacing either the upper or the lower 128 bits with the contents of a
4686 /// 128-bit vector of [2 x double] in the second parameter.
4687 ///
4688 /// The immediate integer parameter determines between the upper or the lower
4689 /// 128 bits.
4690 ///
4691 /// \headerfile <x86intrin.h>
4692 ///
4693 /// \code
4694 /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4695 /// \endcode
4696 ///
4697 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4698 ///
4699 /// \param V1
4700 /// A 256-bit vector of [4 x double]. This vector is copied to the result
4701 /// first, and then either the upper or the lower 128 bits of the result will
4702 /// be replaced by the contents of \a V2.
4703 /// \param V2
4704 /// A 128-bit vector of [2 x double]. The contents of this parameter are
4705 /// written to either the upper or the lower 128 bits of the result depending
4706 /// on the value of parameter \a M.
4707 /// \param M
4708 /// An immediate integer. The least significant bit determines how the values
4709 /// from the two parameters are interleaved: \n
4710 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4711 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4712 /// result. \n
4713 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4714 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4715 /// result.
4716 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4717 #define _mm256_insertf128_pd(V1, V2, M) \
4718 ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4719 (__v2df)(__m128d)(V2), (int)(M)))
4720
4721 /// Constructs a new 256-bit integer vector by first duplicating a
4722 /// 256-bit integer vector given in the first parameter, and then replacing
4723 /// either the upper or the lower 128 bits with the contents of a 128-bit
4724 /// integer vector in the second parameter.
4725 ///
4726 /// The immediate integer parameter determines between the upper or the lower
4727 /// 128 bits.
4728 ///
4729 /// \headerfile <x86intrin.h>
4730 ///
4731 /// \code
4732 /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4733 /// \endcode
4734 ///
4735 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4736 ///
4737 /// \param V1
4738 /// A 256-bit integer vector. This vector is copied to the result first, and
4739 /// then either the upper or the lower 128 bits of the result will be
4740 /// replaced by the contents of \a V2.
4741 /// \param V2
4742 /// A 128-bit integer vector. The contents of this parameter are written to
4743 /// either the upper or the lower 128 bits of the result depending on the
4744 /// value of parameter \a M.
4745 /// \param M
4746 /// An immediate integer. The least significant bit determines how the values
4747 /// from the two parameters are interleaved: \n
4748 /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4749 /// and bits [255:128] of \a V1 are copied to bits [255:128] of the
4750 /// result. \n
4751 /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4752 /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4753 /// result.
4754 /// \returns A 256-bit integer vector containing the interleaved values.
4755 #define _mm256_insertf128_si256(V1, V2, M) \
4756 ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4757 (__v4si)(__m128i)(V2), (int)(M)))
4758
4759 /*
4760 Vector extract.
4761 We use macros rather than inlines because we only want to accept
4762 invocations where the immediate M is a constant expression.
4763 */
4764 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4765 /// of [8 x float], as determined by the immediate integer parameter, and
4766 /// returns the extracted bits as a 128-bit vector of [4 x float].
4767 ///
4768 /// \headerfile <x86intrin.h>
4769 ///
4770 /// \code
4771 /// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4772 /// \endcode
4773 ///
4774 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4775 ///
4776 /// \param V
4777 /// A 256-bit vector of [8 x float].
4778 /// \param M
4779 /// An immediate integer. The least significant bit determines which bits are
4780 /// extracted from the first parameter: \n
4781 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4782 /// result. \n
4783 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4784 /// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4785 #define _mm256_extractf128_ps(V, M) \
4786 ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M)))
4787
4788 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4789 /// of [4 x double], as determined by the immediate integer parameter, and
4790 /// returns the extracted bits as a 128-bit vector of [2 x double].
4791 ///
4792 /// \headerfile <x86intrin.h>
4793 ///
4794 /// \code
4795 /// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4796 /// \endcode
4797 ///
4798 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4799 ///
4800 /// \param V
4801 /// A 256-bit vector of [4 x double].
4802 /// \param M
4803 /// An immediate integer. The least significant bit determines which bits are
4804 /// extracted from the first parameter: \n
4805 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4806 /// result. \n
4807 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4808 /// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4809 #define _mm256_extractf128_pd(V, M) \
4810 ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M)))
4811
4812 /// Extracts either the upper or the lower 128 bits from a 256-bit
4813 /// integer vector, as determined by the immediate integer parameter, and
4814 /// returns the extracted bits as a 128-bit integer vector.
4815 ///
4816 /// \headerfile <x86intrin.h>
4817 ///
4818 /// \code
4819 /// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4820 /// \endcode
4821 ///
4822 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4823 ///
4824 /// \param V
4825 /// A 256-bit integer vector.
4826 /// \param M
4827 /// An immediate integer. The least significant bit determines which bits are
4828 /// extracted from the first parameter: \n
4829 /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4830 /// result. \n
4831 /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4832 /// \returns A 128-bit integer vector containing the extracted bits.
4833 #define _mm256_extractf128_si256(V, M) \
4834 ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M)))
4835
4836 /// Constructs a 256-bit floating-point vector of [8 x float] by
4837 /// concatenating two 128-bit floating-point vectors of [4 x float].
4838 ///
4839 /// \headerfile <x86intrin.h>
4840 ///
4841 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4842 ///
4843 /// \param __hi
4844 /// A 128-bit floating-point vector of [4 x float] to be copied to the upper
4845 /// 128 bits of the result.
4846 /// \param __lo
4847 /// A 128-bit floating-point vector of [4 x float] to be copied to the lower
4848 /// 128 bits of the result.
4849 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4850 /// concatenated result.
4851 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_set_m128(__m128 __hi,__m128 __lo)4852 _mm256_set_m128 (__m128 __hi, __m128 __lo)
4853 {
4854 return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
4855 }
4856
4857 /// Constructs a 256-bit floating-point vector of [4 x double] by
4858 /// concatenating two 128-bit floating-point vectors of [2 x double].
4859 ///
4860 /// \headerfile <x86intrin.h>
4861 ///
4862 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4863 ///
4864 /// \param __hi
4865 /// A 128-bit floating-point vector of [2 x double] to be copied to the upper
4866 /// 128 bits of the result.
4867 /// \param __lo
4868 /// A 128-bit floating-point vector of [2 x double] to be copied to the lower
4869 /// 128 bits of the result.
4870 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4871 /// concatenated result.
4872 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_set_m128d(__m128d __hi,__m128d __lo)4873 _mm256_set_m128d (__m128d __hi, __m128d __lo)
4874 {
4875 return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3);
4876 }
4877
4878 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4879 /// integer vectors.
4880 ///
4881 /// \headerfile <x86intrin.h>
4882 ///
4883 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4884 ///
4885 /// \param __hi
4886 /// A 128-bit integer vector to be copied to the upper 128 bits of the
4887 /// result.
4888 /// \param __lo
4889 /// A 128-bit integer vector to be copied to the lower 128 bits of the
4890 /// result.
4891 /// \returns A 256-bit integer vector containing the concatenated result.
4892 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_set_m128i(__m128i __hi,__m128i __lo)4893 _mm256_set_m128i (__m128i __hi, __m128i __lo)
4894 {
4895 return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3);
4896 }
4897
4898 /// Constructs a 256-bit floating-point vector of [8 x float] by
4899 /// concatenating two 128-bit floating-point vectors of [4 x float]. This is
4900 /// similar to _mm256_set_m128, but the order of the input parameters is
4901 /// swapped.
4902 ///
4903 /// \headerfile <x86intrin.h>
4904 ///
4905 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4906 ///
4907 /// \param __lo
4908 /// A 128-bit floating-point vector of [4 x float] to be copied to the lower
4909 /// 128 bits of the result.
4910 /// \param __hi
4911 /// A 128-bit floating-point vector of [4 x float] to be copied to the upper
4912 /// 128 bits of the result.
4913 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4914 /// concatenated result.
4915 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_setr_m128(__m128 __lo,__m128 __hi)4916 _mm256_setr_m128 (__m128 __lo, __m128 __hi)
4917 {
4918 return _mm256_set_m128(__hi, __lo);
4919 }
4920
4921 /// Constructs a 256-bit floating-point vector of [4 x double] by
4922 /// concatenating two 128-bit floating-point vectors of [2 x double]. This is
4923 /// similar to _mm256_set_m128d, but the order of the input parameters is
4924 /// swapped.
4925 ///
4926 /// \headerfile <x86intrin.h>
4927 ///
4928 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4929 ///
4930 /// \param __lo
4931 /// A 128-bit floating-point vector of [2 x double] to be copied to the lower
4932 /// 128 bits of the result.
4933 /// \param __hi
4934 /// A 128-bit floating-point vector of [2 x double] to be copied to the upper
4935 /// 128 bits of the result.
4936 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4937 /// concatenated result.
4938 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_setr_m128d(__m128d __lo,__m128d __hi)4939 _mm256_setr_m128d (__m128d __lo, __m128d __hi)
4940 {
4941 return (__m256d)_mm256_set_m128d(__hi, __lo);
4942 }
4943
4944 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4945 /// integer vectors. This is similar to _mm256_set_m128i, but the order of
4946 /// the input parameters is swapped.
4947 ///
4948 /// \headerfile <x86intrin.h>
4949 ///
4950 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4951 ///
4952 /// \param __lo
4953 /// A 128-bit integer vector to be copied to the lower 128 bits of the
4954 /// result.
4955 /// \param __hi
4956 /// A 128-bit integer vector to be copied to the upper 128 bits of the
4957 /// result.
4958 /// \returns A 256-bit integer vector containing the concatenated result.
4959 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_setr_m128i(__m128i __lo,__m128i __hi)4960 _mm256_setr_m128i (__m128i __lo, __m128i __hi)
4961 {
4962 return (__m256i)_mm256_set_m128i(__hi, __lo);
4963 }
4964
4965 /* SIMD load ops (unaligned) */
4966 /// Loads two 128-bit floating-point vectors of [4 x float] from
4967 /// unaligned memory locations and constructs a 256-bit floating-point vector
4968 /// of [8 x float] by concatenating the two 128-bit vectors.
4969 ///
4970 /// \headerfile <x86intrin.h>
4971 ///
4972 /// This intrinsic corresponds to load instructions followed by the
4973 /// <c> VINSERTF128 </c> instruction.
4974 ///
4975 /// \param __addr_hi
4976 /// A pointer to a 128-bit memory location containing 4 consecutive
4977 /// single-precision floating-point values. These values are to be copied to
4978 /// bits[255:128] of the result. The address of the memory location does not
4979 /// have to be aligned.
4980 /// \param __addr_lo
4981 /// A pointer to a 128-bit memory location containing 4 consecutive
4982 /// single-precision floating-point values. These values are to be copied to
4983 /// bits[127:0] of the result. The address of the memory location does not
4984 /// have to be aligned.
4985 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4986 /// concatenated result.
4987 static __inline __m256 __DEFAULT_FN_ATTRS
_mm256_loadu2_m128(float const * __addr_hi,float const * __addr_lo)4988 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
4989 {
4990 return _mm256_set_m128(_mm_loadu_ps(__addr_hi), _mm_loadu_ps(__addr_lo));
4991 }
4992
4993 /// Loads two 128-bit floating-point vectors of [2 x double] from
4994 /// unaligned memory locations and constructs a 256-bit floating-point vector
4995 /// of [4 x double] by concatenating the two 128-bit vectors.
4996 ///
4997 /// \headerfile <x86intrin.h>
4998 ///
4999 /// This intrinsic corresponds to load instructions followed by the
5000 /// <c> VINSERTF128 </c> instruction.
5001 ///
5002 /// \param __addr_hi
5003 /// A pointer to a 128-bit memory location containing two consecutive
5004 /// double-precision floating-point values. These values are to be copied to
5005 /// bits[255:128] of the result. The address of the memory location does not
5006 /// have to be aligned.
5007 /// \param __addr_lo
5008 /// A pointer to a 128-bit memory location containing two consecutive
5009 /// double-precision floating-point values. These values are to be copied to
5010 /// bits[127:0] of the result. The address of the memory location does not
5011 /// have to be aligned.
5012 /// \returns A 256-bit floating-point vector of [4 x double] containing the
5013 /// concatenated result.
5014 static __inline __m256d __DEFAULT_FN_ATTRS
_mm256_loadu2_m128d(double const * __addr_hi,double const * __addr_lo)5015 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
5016 {
5017 return _mm256_set_m128d(_mm_loadu_pd(__addr_hi), _mm_loadu_pd(__addr_lo));
5018 }
5019
5020 /// Loads two 128-bit integer vectors from unaligned memory locations and
5021 /// constructs a 256-bit integer vector by concatenating the two 128-bit
5022 /// vectors.
5023 ///
5024 /// \headerfile <x86intrin.h>
5025 ///
5026 /// This intrinsic corresponds to load instructions followed by the
5027 /// <c> VINSERTF128 </c> instruction.
5028 ///
5029 /// \param __addr_hi
5030 /// A pointer to a 128-bit memory location containing a 128-bit integer
5031 /// vector. This vector is to be copied to bits[255:128] of the result. The
5032 /// address of the memory location does not have to be aligned.
5033 /// \param __addr_lo
5034 /// A pointer to a 128-bit memory location containing a 128-bit integer
5035 /// vector. This vector is to be copied to bits[127:0] of the result. The
5036 /// address of the memory location does not have to be aligned.
5037 /// \returns A 256-bit integer vector containing the concatenated result.
5038 static __inline __m256i __DEFAULT_FN_ATTRS
_mm256_loadu2_m128i(__m128i_u const * __addr_hi,__m128i_u const * __addr_lo)5039 _mm256_loadu2_m128i(__m128i_u const *__addr_hi, __m128i_u const *__addr_lo)
5040 {
5041 return _mm256_set_m128i(_mm_loadu_si128(__addr_hi), _mm_loadu_si128(__addr_lo));
5042 }
5043
5044 /* SIMD store ops (unaligned) */
5045 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5046 /// vector of [8 x float] into two different unaligned memory locations.
5047 ///
5048 /// \headerfile <x86intrin.h>
5049 ///
5050 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5051 /// store instructions.
5052 ///
5053 /// \param __addr_hi
5054 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5055 /// copied to this memory location. The address of this memory location does
5056 /// not have to be aligned.
5057 /// \param __addr_lo
5058 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5059 /// copied to this memory location. The address of this memory location does
5060 /// not have to be aligned.
5061 /// \param __a
5062 /// A 256-bit floating-point vector of [8 x float].
5063 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128(float * __addr_hi,float * __addr_lo,__m256 __a)5064 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
5065 {
5066 __m128 __v128;
5067
5068 __v128 = _mm256_castps256_ps128(__a);
5069 _mm_storeu_ps(__addr_lo, __v128);
5070 __v128 = _mm256_extractf128_ps(__a, 1);
5071 _mm_storeu_ps(__addr_hi, __v128);
5072 }
5073
5074 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5075 /// vector of [4 x double] into two different unaligned memory locations.
5076 ///
5077 /// \headerfile <x86intrin.h>
5078 ///
5079 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5080 /// store instructions.
5081 ///
5082 /// \param __addr_hi
5083 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5084 /// copied to this memory location. The address of this memory location does
5085 /// not have to be aligned.
5086 /// \param __addr_lo
5087 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5088 /// copied to this memory location. The address of this memory location does
5089 /// not have to be aligned.
5090 /// \param __a
5091 /// A 256-bit floating-point vector of [4 x double].
5092 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128d(double * __addr_hi,double * __addr_lo,__m256d __a)5093 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
5094 {
5095 __m128d __v128;
5096
5097 __v128 = _mm256_castpd256_pd128(__a);
5098 _mm_storeu_pd(__addr_lo, __v128);
5099 __v128 = _mm256_extractf128_pd(__a, 1);
5100 _mm_storeu_pd(__addr_hi, __v128);
5101 }
5102
5103 /// Stores the upper and lower 128 bits of a 256-bit integer vector into
5104 /// two different unaligned memory locations.
5105 ///
5106 /// \headerfile <x86intrin.h>
5107 ///
5108 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5109 /// store instructions.
5110 ///
5111 /// \param __addr_hi
5112 /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5113 /// copied to this memory location. The address of this memory location does
5114 /// not have to be aligned.
5115 /// \param __addr_lo
5116 /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5117 /// copied to this memory location. The address of this memory location does
5118 /// not have to be aligned.
5119 /// \param __a
5120 /// A 256-bit integer vector.
5121 static __inline void __DEFAULT_FN_ATTRS
_mm256_storeu2_m128i(__m128i_u * __addr_hi,__m128i_u * __addr_lo,__m256i __a)5122 _mm256_storeu2_m128i(__m128i_u *__addr_hi, __m128i_u *__addr_lo, __m256i __a)
5123 {
5124 __m128i __v128;
5125
5126 __v128 = _mm256_castsi256_si128(__a);
5127 _mm_storeu_si128(__addr_lo, __v128);
5128 __v128 = _mm256_extractf128_si256(__a, 1);
5129 _mm_storeu_si128(__addr_hi, __v128);
5130 }
5131
5132 #undef __DEFAULT_FN_ATTRS
5133 #undef __DEFAULT_FN_ATTRS128
5134
5135 #endif /* __AVXINTRIN_H */
5136