1 /*===---- smmintrin.h - SSE4 intrinsics ------------------------------------===
2 *
3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 * See https://llvm.org/LICENSE.txt for license information.
5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 *
7 *===-----------------------------------------------------------------------===
8 */
9
10 #ifndef __SMMINTRIN_H
11 #define __SMMINTRIN_H
12
13 #if !defined(__i386__) && !defined(__x86_64__)
14 #error "This header is only meant to be used on x86 and x64 architecture"
15 #endif
16
17 #include <tmmintrin.h>
18
19 /* Define the default attributes for the functions in this file. */
20 #if defined(__EVEX512__) && !defined(__AVX10_1_512__)
21 #define __DEFAULT_FN_ATTRS \
22 __attribute__((__always_inline__, __nodebug__, \
23 __target__("sse4.1,no-evex512"), __min_vector_width__(128)))
24 #else
25 #define __DEFAULT_FN_ATTRS \
26 __attribute__((__always_inline__, __nodebug__, __target__("sse4.1"), \
27 __min_vector_width__(128)))
28 #endif
29
30 /* SSE4 Rounding macros. */
31 #define _MM_FROUND_TO_NEAREST_INT 0x00
32 #define _MM_FROUND_TO_NEG_INF 0x01
33 #define _MM_FROUND_TO_POS_INF 0x02
34 #define _MM_FROUND_TO_ZERO 0x03
35 #define _MM_FROUND_CUR_DIRECTION 0x04
36
37 #define _MM_FROUND_RAISE_EXC 0x00
38 #define _MM_FROUND_NO_EXC 0x08
39
40 #define _MM_FROUND_NINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT)
41 #define _MM_FROUND_FLOOR (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF)
42 #define _MM_FROUND_CEIL (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF)
43 #define _MM_FROUND_TRUNC (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO)
44 #define _MM_FROUND_RINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION)
45 #define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION)
46
47 /// Rounds up each element of the 128-bit vector of [4 x float] to an
48 /// integer and returns the rounded values in a 128-bit vector of
49 /// [4 x float].
50 ///
51 /// \headerfile <x86intrin.h>
52 ///
53 /// \code
54 /// __m128 _mm_ceil_ps(__m128 X);
55 /// \endcode
56 ///
57 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
58 ///
59 /// \param X
60 /// A 128-bit vector of [4 x float] values to be rounded up.
61 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
62 #define _mm_ceil_ps(X) _mm_round_ps((X), _MM_FROUND_CEIL)
63
64 /// Rounds up each element of the 128-bit vector of [2 x double] to an
65 /// integer and returns the rounded values in a 128-bit vector of
66 /// [2 x double].
67 ///
68 /// \headerfile <x86intrin.h>
69 ///
70 /// \code
71 /// __m128d _mm_ceil_pd(__m128d X);
72 /// \endcode
73 ///
74 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
75 ///
76 /// \param X
77 /// A 128-bit vector of [2 x double] values to be rounded up.
78 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
79 #define _mm_ceil_pd(X) _mm_round_pd((X), _MM_FROUND_CEIL)
80
81 /// Copies three upper elements of the first 128-bit vector operand to
82 /// the corresponding three upper elements of the 128-bit result vector of
83 /// [4 x float]. Rounds up the lowest element of the second 128-bit vector
84 /// operand to an integer and copies it to the lowest element of the 128-bit
85 /// result vector of [4 x float].
86 ///
87 /// \headerfile <x86intrin.h>
88 ///
89 /// \code
90 /// __m128 _mm_ceil_ss(__m128 X, __m128 Y);
91 /// \endcode
92 ///
93 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
94 ///
95 /// \param X
96 /// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
97 /// copied to the corresponding bits of the result.
98 /// \param Y
99 /// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
100 /// rounded up to the nearest integer and copied to the corresponding bits
101 /// of the result.
102 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
103 /// values.
104 #define _mm_ceil_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_CEIL)
105
106 /// Copies the upper element of the first 128-bit vector operand to the
107 /// corresponding upper element of the 128-bit result vector of [2 x double].
108 /// Rounds up the lower element of the second 128-bit vector operand to an
109 /// integer and copies it to the lower element of the 128-bit result vector
110 /// of [2 x double].
111 ///
112 /// \headerfile <x86intrin.h>
113 ///
114 /// \code
115 /// __m128d _mm_ceil_sd(__m128d X, __m128d Y);
116 /// \endcode
117 ///
118 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
119 ///
120 /// \param X
121 /// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
122 /// copied to the corresponding bits of the result.
123 /// \param Y
124 /// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
125 /// rounded up to the nearest integer and copied to the corresponding bits
126 /// of the result.
127 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
128 /// values.
129 #define _mm_ceil_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_CEIL)
130
131 /// Rounds down each element of the 128-bit vector of [4 x float] to an
132 /// an integer and returns the rounded values in a 128-bit vector of
133 /// [4 x float].
134 ///
135 /// \headerfile <x86intrin.h>
136 ///
137 /// \code
138 /// __m128 _mm_floor_ps(__m128 X);
139 /// \endcode
140 ///
141 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
142 ///
143 /// \param X
144 /// A 128-bit vector of [4 x float] values to be rounded down.
145 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
146 #define _mm_floor_ps(X) _mm_round_ps((X), _MM_FROUND_FLOOR)
147
148 /// Rounds down each element of the 128-bit vector of [2 x double] to an
149 /// integer and returns the rounded values in a 128-bit vector of
150 /// [2 x double].
151 ///
152 /// \headerfile <x86intrin.h>
153 ///
154 /// \code
155 /// __m128d _mm_floor_pd(__m128d X);
156 /// \endcode
157 ///
158 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
159 ///
160 /// \param X
161 /// A 128-bit vector of [2 x double].
162 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
163 #define _mm_floor_pd(X) _mm_round_pd((X), _MM_FROUND_FLOOR)
164
165 /// Copies three upper elements of the first 128-bit vector operand to
166 /// the corresponding three upper elements of the 128-bit result vector of
167 /// [4 x float]. Rounds down the lowest element of the second 128-bit vector
168 /// operand to an integer and copies it to the lowest element of the 128-bit
169 /// result vector of [4 x float].
170 ///
171 /// \headerfile <x86intrin.h>
172 ///
173 /// \code
174 /// __m128 _mm_floor_ss(__m128 X, __m128 Y);
175 /// \endcode
176 ///
177 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
178 ///
179 /// \param X
180 /// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
181 /// copied to the corresponding bits of the result.
182 /// \param Y
183 /// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
184 /// rounded down to the nearest integer and copied to the corresponding bits
185 /// of the result.
186 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
187 /// values.
188 #define _mm_floor_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_FLOOR)
189
190 /// Copies the upper element of the first 128-bit vector operand to the
191 /// corresponding upper element of the 128-bit result vector of [2 x double].
192 /// Rounds down the lower element of the second 128-bit vector operand to an
193 /// integer and copies it to the lower element of the 128-bit result vector
194 /// of [2 x double].
195 ///
196 /// \headerfile <x86intrin.h>
197 ///
198 /// \code
199 /// __m128d _mm_floor_sd(__m128d X, __m128d Y);
200 /// \endcode
201 ///
202 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
203 ///
204 /// \param X
205 /// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
206 /// copied to the corresponding bits of the result.
207 /// \param Y
208 /// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
209 /// rounded down to the nearest integer and copied to the corresponding bits
210 /// of the result.
211 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
212 /// values.
213 #define _mm_floor_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_FLOOR)
214
215 /// Rounds each element of the 128-bit vector of [4 x float] to an
216 /// integer value according to the rounding control specified by the second
217 /// argument and returns the rounded values in a 128-bit vector of
218 /// [4 x float].
219 ///
220 /// \headerfile <x86intrin.h>
221 ///
222 /// \code
223 /// __m128 _mm_round_ps(__m128 X, const int M);
224 /// \endcode
225 ///
226 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
227 ///
228 /// \param X
229 /// A 128-bit vector of [4 x float].
230 /// \param M
231 /// An integer value that specifies the rounding operation. \n
232 /// Bits [7:4] are reserved. \n
233 /// Bit [3] is a precision exception value: \n
234 /// 0: A normal PE exception is used \n
235 /// 1: The PE field is not updated \n
236 /// Bit [2] is the rounding control source: \n
237 /// 0: Use bits [1:0] of \a M \n
238 /// 1: Use the current MXCSR setting \n
239 /// Bits [1:0] contain the rounding control definition: \n
240 /// 00: Nearest \n
241 /// 01: Downward (toward negative infinity) \n
242 /// 10: Upward (toward positive infinity) \n
243 /// 11: Truncated
244 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
245 #define _mm_round_ps(X, M) \
246 ((__m128)__builtin_ia32_roundps((__v4sf)(__m128)(X), (M)))
247
248 /// Copies three upper elements of the first 128-bit vector operand to
249 /// the corresponding three upper elements of the 128-bit result vector of
250 /// [4 x float]. Rounds the lowest element of the second 128-bit vector
251 /// operand to an integer value according to the rounding control specified
252 /// by the third argument and copies it to the lowest element of the 128-bit
253 /// result vector of [4 x float].
254 ///
255 /// \headerfile <x86intrin.h>
256 ///
257 /// \code
258 /// __m128 _mm_round_ss(__m128 X, __m128 Y, const int M);
259 /// \endcode
260 ///
261 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
262 ///
263 /// \param X
264 /// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
265 /// copied to the corresponding bits of the result.
266 /// \param Y
267 /// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
268 /// rounded to the nearest integer using the specified rounding control and
269 /// copied to the corresponding bits of the result.
270 /// \param M
271 /// An integer value that specifies the rounding operation. \n
272 /// Bits [7:4] are reserved. \n
273 /// Bit [3] is a precision exception value: \n
274 /// 0: A normal PE exception is used \n
275 /// 1: The PE field is not updated \n
276 /// Bit [2] is the rounding control source: \n
277 /// 0: Use bits [1:0] of \a M \n
278 /// 1: Use the current MXCSR setting \n
279 /// Bits [1:0] contain the rounding control definition: \n
280 /// 00: Nearest \n
281 /// 01: Downward (toward negative infinity) \n
282 /// 10: Upward (toward positive infinity) \n
283 /// 11: Truncated
284 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
285 /// values.
286 #define _mm_round_ss(X, Y, M) \
287 ((__m128)__builtin_ia32_roundss((__v4sf)(__m128)(X), (__v4sf)(__m128)(Y), \
288 (M)))
289
290 /// Rounds each element of the 128-bit vector of [2 x double] to an
291 /// integer value according to the rounding control specified by the second
292 /// argument and returns the rounded values in a 128-bit vector of
293 /// [2 x double].
294 ///
295 /// \headerfile <x86intrin.h>
296 ///
297 /// \code
298 /// __m128d _mm_round_pd(__m128d X, const int M);
299 /// \endcode
300 ///
301 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
302 ///
303 /// \param X
304 /// A 128-bit vector of [2 x double].
305 /// \param M
306 /// An integer value that specifies the rounding operation. \n
307 /// Bits [7:4] are reserved. \n
308 /// Bit [3] is a precision exception value: \n
309 /// 0: A normal PE exception is used \n
310 /// 1: The PE field is not updated \n
311 /// Bit [2] is the rounding control source: \n
312 /// 0: Use bits [1:0] of \a M \n
313 /// 1: Use the current MXCSR setting \n
314 /// Bits [1:0] contain the rounding control definition: \n
315 /// 00: Nearest \n
316 /// 01: Downward (toward negative infinity) \n
317 /// 10: Upward (toward positive infinity) \n
318 /// 11: Truncated
319 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
320 #define _mm_round_pd(X, M) \
321 ((__m128d)__builtin_ia32_roundpd((__v2df)(__m128d)(X), (M)))
322
323 /// Copies the upper element of the first 128-bit vector operand to the
324 /// corresponding upper element of the 128-bit result vector of [2 x double].
325 /// Rounds the lower element of the second 128-bit vector operand to an
326 /// integer value according to the rounding control specified by the third
327 /// argument and copies it to the lower element of the 128-bit result vector
328 /// of [2 x double].
329 ///
330 /// \headerfile <x86intrin.h>
331 ///
332 /// \code
333 /// __m128d _mm_round_sd(__m128d X, __m128d Y, const int M);
334 /// \endcode
335 ///
336 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
337 ///
338 /// \param X
339 /// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
340 /// copied to the corresponding bits of the result.
341 /// \param Y
342 /// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
343 /// rounded to the nearest integer using the specified rounding control and
344 /// copied to the corresponding bits of the result.
345 /// \param M
346 /// An integer value that specifies the rounding operation. \n
347 /// Bits [7:4] are reserved. \n
348 /// Bit [3] is a precision exception value: \n
349 /// 0: A normal PE exception is used \n
350 /// 1: The PE field is not updated \n
351 /// Bit [2] is the rounding control source: \n
352 /// 0: Use bits [1:0] of \a M \n
353 /// 1: Use the current MXCSR setting \n
354 /// Bits [1:0] contain the rounding control definition: \n
355 /// 00: Nearest \n
356 /// 01: Downward (toward negative infinity) \n
357 /// 10: Upward (toward positive infinity) \n
358 /// 11: Truncated
359 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
360 /// values.
361 #define _mm_round_sd(X, Y, M) \
362 ((__m128d)__builtin_ia32_roundsd((__v2df)(__m128d)(X), (__v2df)(__m128d)(Y), \
363 (M)))
364
365 /* SSE4 Packed Blending Intrinsics. */
366 /// Returns a 128-bit vector of [2 x double] where the values are
367 /// selected from either the first or second operand as specified by the
368 /// third operand, the control mask.
369 ///
370 /// \headerfile <x86intrin.h>
371 ///
372 /// \code
373 /// __m128d _mm_blend_pd(__m128d V1, __m128d V2, const int M);
374 /// \endcode
375 ///
376 /// This intrinsic corresponds to the <c> VBLENDPD / BLENDPD </c> instruction.
377 ///
378 /// \param V1
379 /// A 128-bit vector of [2 x double].
380 /// \param V2
381 /// A 128-bit vector of [2 x double].
382 /// \param M
383 /// An immediate integer operand, with mask bits [1:0] specifying how the
384 /// values are to be copied. The position of the mask bit corresponds to the
385 /// index of a copied value. When a mask bit is 0, the corresponding 64-bit
386 /// element in operand \a V1 is copied to the same position in the result.
387 /// When a mask bit is 1, the corresponding 64-bit element in operand \a V2
388 /// is copied to the same position in the result.
389 /// \returns A 128-bit vector of [2 x double] containing the copied values.
390 #define _mm_blend_pd(V1, V2, M) \
391 ((__m128d)__builtin_ia32_blendpd((__v2df)(__m128d)(V1), \
392 (__v2df)(__m128d)(V2), (int)(M)))
393
394 /// Returns a 128-bit vector of [4 x float] where the values are selected
395 /// from either the first or second operand as specified by the third
396 /// operand, the control mask.
397 ///
398 /// \headerfile <x86intrin.h>
399 ///
400 /// \code
401 /// __m128 _mm_blend_ps(__m128 V1, __m128 V2, const int M);
402 /// \endcode
403 ///
404 /// This intrinsic corresponds to the <c> VBLENDPS / BLENDPS </c> instruction.
405 ///
406 /// \param V1
407 /// A 128-bit vector of [4 x float].
408 /// \param V2
409 /// A 128-bit vector of [4 x float].
410 /// \param M
411 /// An immediate integer operand, with mask bits [3:0] specifying how the
412 /// values are to be copied. The position of the mask bit corresponds to the
413 /// index of a copied value. When a mask bit is 0, the corresponding 32-bit
414 /// element in operand \a V1 is copied to the same position in the result.
415 /// When a mask bit is 1, the corresponding 32-bit element in operand \a V2
416 /// is copied to the same position in the result.
417 /// \returns A 128-bit vector of [4 x float] containing the copied values.
418 #define _mm_blend_ps(V1, V2, M) \
419 ((__m128)__builtin_ia32_blendps((__v4sf)(__m128)(V1), (__v4sf)(__m128)(V2), \
420 (int)(M)))
421
422 /// Returns a 128-bit vector of [2 x double] where the values are
423 /// selected from either the first or second operand as specified by the
424 /// third operand, the control mask.
425 ///
426 /// \headerfile <x86intrin.h>
427 ///
428 /// This intrinsic corresponds to the <c> VBLENDVPD / BLENDVPD </c> instruction.
429 ///
430 /// \param __V1
431 /// A 128-bit vector of [2 x double].
432 /// \param __V2
433 /// A 128-bit vector of [2 x double].
434 /// \param __M
435 /// A 128-bit vector operand, with mask bits 127 and 63 specifying how the
436 /// values are to be copied. The position of the mask bit corresponds to the
437 /// most significant bit of a copied value. When a mask bit is 0, the
438 /// corresponding 64-bit element in operand \a __V1 is copied to the same
439 /// position in the result. When a mask bit is 1, the corresponding 64-bit
440 /// element in operand \a __V2 is copied to the same position in the result.
441 /// \returns A 128-bit vector of [2 x double] containing the copied values.
_mm_blendv_pd(__m128d __V1,__m128d __V2,__m128d __M)442 static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_blendv_pd(__m128d __V1,
443 __m128d __V2,
444 __m128d __M) {
445 return (__m128d)__builtin_ia32_blendvpd((__v2df)__V1, (__v2df)__V2,
446 (__v2df)__M);
447 }
448
449 /// Returns a 128-bit vector of [4 x float] where the values are
450 /// selected from either the first or second operand as specified by the
451 /// third operand, the control mask.
452 ///
453 /// \headerfile <x86intrin.h>
454 ///
455 /// This intrinsic corresponds to the <c> VBLENDVPS / BLENDVPS </c> instruction.
456 ///
457 /// \param __V1
458 /// A 128-bit vector of [4 x float].
459 /// \param __V2
460 /// A 128-bit vector of [4 x float].
461 /// \param __M
462 /// A 128-bit vector operand, with mask bits 127, 95, 63, and 31 specifying
463 /// how the values are to be copied. The position of the mask bit corresponds
464 /// to the most significant bit of a copied value. When a mask bit is 0, the
465 /// corresponding 32-bit element in operand \a __V1 is copied to the same
466 /// position in the result. When a mask bit is 1, the corresponding 32-bit
467 /// element in operand \a __V2 is copied to the same position in the result.
468 /// \returns A 128-bit vector of [4 x float] containing the copied values.
_mm_blendv_ps(__m128 __V1,__m128 __V2,__m128 __M)469 static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_blendv_ps(__m128 __V1,
470 __m128 __V2,
471 __m128 __M) {
472 return (__m128)__builtin_ia32_blendvps((__v4sf)__V1, (__v4sf)__V2,
473 (__v4sf)__M);
474 }
475
476 /// Returns a 128-bit vector of [16 x i8] where the values are selected
477 /// from either of the first or second operand as specified by the third
478 /// operand, the control mask.
479 ///
480 /// \headerfile <x86intrin.h>
481 ///
482 /// This intrinsic corresponds to the <c> VPBLENDVB / PBLENDVB </c> instruction.
483 ///
484 /// \param __V1
485 /// A 128-bit vector of [16 x i8].
486 /// \param __V2
487 /// A 128-bit vector of [16 x i8].
488 /// \param __M
489 /// A 128-bit vector operand, with mask bits 127, 119, 111...7 specifying
490 /// how the values are to be copied. The position of the mask bit corresponds
491 /// to the most significant bit of a copied value. When a mask bit is 0, the
492 /// corresponding 8-bit element in operand \a __V1 is copied to the same
493 /// position in the result. When a mask bit is 1, the corresponding 8-bit
494 /// element in operand \a __V2 is copied to the same position in the result.
495 /// \returns A 128-bit vector of [16 x i8] containing the copied values.
_mm_blendv_epi8(__m128i __V1,__m128i __V2,__m128i __M)496 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_blendv_epi8(__m128i __V1,
497 __m128i __V2,
498 __m128i __M) {
499 return (__m128i)__builtin_ia32_pblendvb128((__v16qi)__V1, (__v16qi)__V2,
500 (__v16qi)__M);
501 }
502
503 /// Returns a 128-bit vector of [8 x i16] where the values are selected
504 /// from either of the first or second operand as specified by the third
505 /// operand, the control mask.
506 ///
507 /// \headerfile <x86intrin.h>
508 ///
509 /// \code
510 /// __m128i _mm_blend_epi16(__m128i V1, __m128i V2, const int M);
511 /// \endcode
512 ///
513 /// This intrinsic corresponds to the <c> VPBLENDW / PBLENDW </c> instruction.
514 ///
515 /// \param V1
516 /// A 128-bit vector of [8 x i16].
517 /// \param V2
518 /// A 128-bit vector of [8 x i16].
519 /// \param M
520 /// An immediate integer operand, with mask bits [7:0] specifying how the
521 /// values are to be copied. The position of the mask bit corresponds to the
522 /// index of a copied value. When a mask bit is 0, the corresponding 16-bit
523 /// element in operand \a V1 is copied to the same position in the result.
524 /// When a mask bit is 1, the corresponding 16-bit element in operand \a V2
525 /// is copied to the same position in the result.
526 /// \returns A 128-bit vector of [8 x i16] containing the copied values.
527 #define _mm_blend_epi16(V1, V2, M) \
528 ((__m128i)__builtin_ia32_pblendw128((__v8hi)(__m128i)(V1), \
529 (__v8hi)(__m128i)(V2), (int)(M)))
530
531 /* SSE4 Dword Multiply Instructions. */
532 /// Multiples corresponding elements of two 128-bit vectors of [4 x i32]
533 /// and returns the lower 32 bits of the each product in a 128-bit vector of
534 /// [4 x i32].
535 ///
536 /// \headerfile <x86intrin.h>
537 ///
538 /// This intrinsic corresponds to the <c> VPMULLD / PMULLD </c> instruction.
539 ///
540 /// \param __V1
541 /// A 128-bit integer vector.
542 /// \param __V2
543 /// A 128-bit integer vector.
544 /// \returns A 128-bit integer vector containing the products of both operands.
_mm_mullo_epi32(__m128i __V1,__m128i __V2)545 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mullo_epi32(__m128i __V1,
546 __m128i __V2) {
547 return (__m128i)((__v4su)__V1 * (__v4su)__V2);
548 }
549
550 /// Multiplies corresponding even-indexed elements of two 128-bit
551 /// vectors of [4 x i32] and returns a 128-bit vector of [2 x i64]
552 /// containing the products.
553 ///
554 /// \headerfile <x86intrin.h>
555 ///
556 /// This intrinsic corresponds to the <c> VPMULDQ / PMULDQ </c> instruction.
557 ///
558 /// \param __V1
559 /// A 128-bit vector of [4 x i32].
560 /// \param __V2
561 /// A 128-bit vector of [4 x i32].
562 /// \returns A 128-bit vector of [2 x i64] containing the products of both
563 /// operands.
_mm_mul_epi32(__m128i __V1,__m128i __V2)564 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mul_epi32(__m128i __V1,
565 __m128i __V2) {
566 return (__m128i)__builtin_ia32_pmuldq128((__v4si)__V1, (__v4si)__V2);
567 }
568
569 /* SSE4 Floating Point Dot Product Instructions. */
570 /// Computes the dot product of the two 128-bit vectors of [4 x float]
571 /// and returns it in the elements of the 128-bit result vector of
572 /// [4 x float].
573 ///
574 /// The immediate integer operand controls which input elements
575 /// will contribute to the dot product, and where the final results are
576 /// returned.
577 ///
578 /// \headerfile <x86intrin.h>
579 ///
580 /// \code
581 /// __m128 _mm_dp_ps(__m128 X, __m128 Y, const int M);
582 /// \endcode
583 ///
584 /// This intrinsic corresponds to the <c> VDPPS / DPPS </c> instruction.
585 ///
586 /// \param X
587 /// A 128-bit vector of [4 x float].
588 /// \param Y
589 /// A 128-bit vector of [4 x float].
590 /// \param M
591 /// An immediate integer operand. Mask bits [7:4] determine which elements
592 /// of the input vectors are used, with bit [4] corresponding to the lowest
593 /// element and bit [7] corresponding to the highest element of each [4 x
594 /// float] vector. If a bit is set, the corresponding elements from the two
595 /// input vectors are used as an input for dot product; otherwise that input
596 /// is treated as zero. Bits [3:0] determine which elements of the result
597 /// will receive a copy of the final dot product, with bit [0] corresponding
598 /// to the lowest element and bit [3] corresponding to the highest element of
599 /// each [4 x float] subvector. If a bit is set, the dot product is returned
600 /// in the corresponding element; otherwise that element is set to zero.
601 /// \returns A 128-bit vector of [4 x float] containing the dot product.
602 #define _mm_dp_ps(X, Y, M) \
603 ((__m128)__builtin_ia32_dpps((__v4sf)(__m128)(X), (__v4sf)(__m128)(Y), (M)))
604
605 /// Computes the dot product of the two 128-bit vectors of [2 x double]
606 /// and returns it in the elements of the 128-bit result vector of
607 /// [2 x double].
608 ///
609 /// The immediate integer operand controls which input
610 /// elements will contribute to the dot product, and where the final results
611 /// are returned.
612 ///
613 /// \headerfile <x86intrin.h>
614 ///
615 /// \code
616 /// __m128d _mm_dp_pd(__m128d X, __m128d Y, const int M);
617 /// \endcode
618 ///
619 /// This intrinsic corresponds to the <c> VDPPD / DPPD </c> instruction.
620 ///
621 /// \param X
622 /// A 128-bit vector of [2 x double].
623 /// \param Y
624 /// A 128-bit vector of [2 x double].
625 /// \param M
626 /// An immediate integer operand. Mask bits [5:4] determine which elements
627 /// of the input vectors are used, with bit [4] corresponding to the lowest
628 /// element and bit [5] corresponding to the highest element of each of [2 x
629 /// double] vector. If a bit is set, the corresponding elements from the two
630 /// input vectors are used as an input for dot product; otherwise that input
631 /// is treated as zero. Bits [1:0] determine which elements of the result
632 /// will receive a copy of the final dot product, with bit [0] corresponding
633 /// to the lowest element and bit [1] corresponding to the highest element of
634 /// each [2 x double] vector. If a bit is set, the dot product is returned in
635 /// the corresponding element; otherwise that element is set to zero.
636 #define _mm_dp_pd(X, Y, M) \
637 ((__m128d)__builtin_ia32_dppd((__v2df)(__m128d)(X), (__v2df)(__m128d)(Y), \
638 (M)))
639
640 /* SSE4 Streaming Load Hint Instruction. */
641 /// Loads integer values from a 128-bit aligned memory location to a
642 /// 128-bit integer vector.
643 ///
644 /// \headerfile <x86intrin.h>
645 ///
646 /// This intrinsic corresponds to the <c> VMOVNTDQA / MOVNTDQA </c> instruction.
647 ///
648 /// \param __V
649 /// A pointer to a 128-bit aligned memory location that contains the integer
650 /// values.
651 /// \returns A 128-bit integer vector containing the data stored at the
652 /// specified memory location.
653 static __inline__ __m128i __DEFAULT_FN_ATTRS
_mm_stream_load_si128(const void * __V)654 _mm_stream_load_si128(const void *__V) {
655 return (__m128i)__builtin_nontemporal_load((const __v2di *)__V);
656 }
657
658 /* SSE4 Packed Integer Min/Max Instructions. */
659 /// Compares the corresponding elements of two 128-bit vectors of
660 /// [16 x i8] and returns a 128-bit vector of [16 x i8] containing the lesser
661 /// of the two values.
662 ///
663 /// \headerfile <x86intrin.h>
664 ///
665 /// This intrinsic corresponds to the <c> VPMINSB / PMINSB </c> instruction.
666 ///
667 /// \param __V1
668 /// A 128-bit vector of [16 x i8].
669 /// \param __V2
670 /// A 128-bit vector of [16 x i8]
671 /// \returns A 128-bit vector of [16 x i8] containing the lesser values.
_mm_min_epi8(__m128i __V1,__m128i __V2)672 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi8(__m128i __V1,
673 __m128i __V2) {
674 return (__m128i)__builtin_elementwise_min((__v16qs)__V1, (__v16qs)__V2);
675 }
676
677 /// Compares the corresponding elements of two 128-bit vectors of
678 /// [16 x i8] and returns a 128-bit vector of [16 x i8] containing the
679 /// greater value of the two.
680 ///
681 /// \headerfile <x86intrin.h>
682 ///
683 /// This intrinsic corresponds to the <c> VPMAXSB / PMAXSB </c> instruction.
684 ///
685 /// \param __V1
686 /// A 128-bit vector of [16 x i8].
687 /// \param __V2
688 /// A 128-bit vector of [16 x i8].
689 /// \returns A 128-bit vector of [16 x i8] containing the greater values.
_mm_max_epi8(__m128i __V1,__m128i __V2)690 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi8(__m128i __V1,
691 __m128i __V2) {
692 return (__m128i)__builtin_elementwise_max((__v16qs)__V1, (__v16qs)__V2);
693 }
694
695 /// Compares the corresponding elements of two 128-bit vectors of
696 /// [8 x u16] and returns a 128-bit vector of [8 x u16] containing the lesser
697 /// value of the two.
698 ///
699 /// \headerfile <x86intrin.h>
700 ///
701 /// This intrinsic corresponds to the <c> VPMINUW / PMINUW </c> instruction.
702 ///
703 /// \param __V1
704 /// A 128-bit vector of [8 x u16].
705 /// \param __V2
706 /// A 128-bit vector of [8 x u16].
707 /// \returns A 128-bit vector of [8 x u16] containing the lesser values.
_mm_min_epu16(__m128i __V1,__m128i __V2)708 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu16(__m128i __V1,
709 __m128i __V2) {
710 return (__m128i)__builtin_elementwise_min((__v8hu)__V1, (__v8hu)__V2);
711 }
712
713 /// Compares the corresponding elements of two 128-bit vectors of
714 /// [8 x u16] and returns a 128-bit vector of [8 x u16] containing the
715 /// greater value of the two.
716 ///
717 /// \headerfile <x86intrin.h>
718 ///
719 /// This intrinsic corresponds to the <c> VPMAXUW / PMAXUW </c> instruction.
720 ///
721 /// \param __V1
722 /// A 128-bit vector of [8 x u16].
723 /// \param __V2
724 /// A 128-bit vector of [8 x u16].
725 /// \returns A 128-bit vector of [8 x u16] containing the greater values.
_mm_max_epu16(__m128i __V1,__m128i __V2)726 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu16(__m128i __V1,
727 __m128i __V2) {
728 return (__m128i)__builtin_elementwise_max((__v8hu)__V1, (__v8hu)__V2);
729 }
730
731 /// Compares the corresponding elements of two 128-bit vectors of
732 /// [4 x i32] and returns a 128-bit vector of [4 x i32] containing the lesser
733 /// value of the two.
734 ///
735 /// \headerfile <x86intrin.h>
736 ///
737 /// This intrinsic corresponds to the <c> VPMINSD / PMINSD </c> instruction.
738 ///
739 /// \param __V1
740 /// A 128-bit vector of [4 x i32].
741 /// \param __V2
742 /// A 128-bit vector of [4 x i32].
743 /// \returns A 128-bit vector of [4 x i32] containing the lesser values.
_mm_min_epi32(__m128i __V1,__m128i __V2)744 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi32(__m128i __V1,
745 __m128i __V2) {
746 return (__m128i)__builtin_elementwise_min((__v4si)__V1, (__v4si)__V2);
747 }
748
749 /// Compares the corresponding elements of two 128-bit vectors of
750 /// [4 x i32] and returns a 128-bit vector of [4 x i32] containing the
751 /// greater value of the two.
752 ///
753 /// \headerfile <x86intrin.h>
754 ///
755 /// This intrinsic corresponds to the <c> VPMAXSD / PMAXSD </c> instruction.
756 ///
757 /// \param __V1
758 /// A 128-bit vector of [4 x i32].
759 /// \param __V2
760 /// A 128-bit vector of [4 x i32].
761 /// \returns A 128-bit vector of [4 x i32] containing the greater values.
_mm_max_epi32(__m128i __V1,__m128i __V2)762 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi32(__m128i __V1,
763 __m128i __V2) {
764 return (__m128i)__builtin_elementwise_max((__v4si)__V1, (__v4si)__V2);
765 }
766
767 /// Compares the corresponding elements of two 128-bit vectors of
768 /// [4 x u32] and returns a 128-bit vector of [4 x u32] containing the lesser
769 /// value of the two.
770 ///
771 /// \headerfile <x86intrin.h>
772 ///
773 /// This intrinsic corresponds to the <c> VPMINUD / PMINUD </c> instruction.
774 ///
775 /// \param __V1
776 /// A 128-bit vector of [4 x u32].
777 /// \param __V2
778 /// A 128-bit vector of [4 x u32].
779 /// \returns A 128-bit vector of [4 x u32] containing the lesser values.
_mm_min_epu32(__m128i __V1,__m128i __V2)780 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu32(__m128i __V1,
781 __m128i __V2) {
782 return (__m128i)__builtin_elementwise_min((__v4su)__V1, (__v4su)__V2);
783 }
784
785 /// Compares the corresponding elements of two 128-bit vectors of
786 /// [4 x u32] and returns a 128-bit vector of [4 x u32] containing the
787 /// greater value of the two.
788 ///
789 /// \headerfile <x86intrin.h>
790 ///
791 /// This intrinsic corresponds to the <c> VPMAXUD / PMAXUD </c> instruction.
792 ///
793 /// \param __V1
794 /// A 128-bit vector of [4 x u32].
795 /// \param __V2
796 /// A 128-bit vector of [4 x u32].
797 /// \returns A 128-bit vector of [4 x u32] containing the greater values.
_mm_max_epu32(__m128i __V1,__m128i __V2)798 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu32(__m128i __V1,
799 __m128i __V2) {
800 return (__m128i)__builtin_elementwise_max((__v4su)__V1, (__v4su)__V2);
801 }
802
803 /* SSE4 Insertion and Extraction from XMM Register Instructions. */
804 /// Takes the first argument \a X and inserts an element from the second
805 /// argument \a Y as selected by the third argument \a N. That result then
806 /// has elements zeroed out also as selected by the third argument \a N. The
807 /// resulting 128-bit vector of [4 x float] is then returned.
808 ///
809 /// \headerfile <x86intrin.h>
810 ///
811 /// \code
812 /// __m128 _mm_insert_ps(__m128 X, __m128 Y, const int N);
813 /// \endcode
814 ///
815 /// This intrinsic corresponds to the <c> VINSERTPS </c> instruction.
816 ///
817 /// \param X
818 /// A 128-bit vector source operand of [4 x float]. With the exception of
819 /// those bits in the result copied from parameter \a Y and zeroed by bits
820 /// [3:0] of \a N, all bits from this parameter are copied to the result.
821 /// \param Y
822 /// A 128-bit vector source operand of [4 x float]. One single-precision
823 /// floating-point element from this source, as determined by the immediate
824 /// parameter, is copied to the result.
825 /// \param N
826 /// Specifies which bits from operand \a Y will be copied, which bits in the
827 /// result they will be copied to, and which bits in the result will be
828 /// cleared. The following assignments are made: \n
829 /// Bits [7:6] specify the bits to copy from operand \a Y: \n
830 /// 00: Selects bits [31:0] from operand \a Y. \n
831 /// 01: Selects bits [63:32] from operand \a Y. \n
832 /// 10: Selects bits [95:64] from operand \a Y. \n
833 /// 11: Selects bits [127:96] from operand \a Y. \n
834 /// Bits [5:4] specify the bits in the result to which the selected bits
835 /// from operand \a Y are copied: \n
836 /// 00: Copies the selected bits from \a Y to result bits [31:0]. \n
837 /// 01: Copies the selected bits from \a Y to result bits [63:32]. \n
838 /// 10: Copies the selected bits from \a Y to result bits [95:64]. \n
839 /// 11: Copies the selected bits from \a Y to result bits [127:96]. \n
840 /// Bits[3:0]: If any of these bits are set, the corresponding result
841 /// element is cleared.
842 /// \returns A 128-bit vector of [4 x float] containing the copied
843 /// single-precision floating point elements from the operands.
844 #define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N))
845
846 /// Extracts a 32-bit integer from a 128-bit vector of [4 x float] and
847 /// returns it, using the immediate value parameter \a N as a selector.
848 ///
849 /// \headerfile <x86intrin.h>
850 ///
851 /// \code
852 /// int _mm_extract_ps(__m128 X, const int N);
853 /// \endcode
854 ///
855 /// This intrinsic corresponds to the <c> VEXTRACTPS / EXTRACTPS </c>
856 /// instruction.
857 ///
858 /// \param X
859 /// A 128-bit vector of [4 x float].
860 /// \param N
861 /// An immediate value. Bits [1:0] determines which bits from the argument
862 /// \a X are extracted and returned: \n
863 /// 00: Bits [31:0] of parameter \a X are returned. \n
864 /// 01: Bits [63:32] of parameter \a X are returned. \n
865 /// 10: Bits [95:64] of parameter \a X are returned. \n
866 /// 11: Bits [127:96] of parameter \a X are returned.
867 /// \returns A 32-bit integer containing the extracted 32 bits of float data.
868 #define _mm_extract_ps(X, N) \
869 __builtin_bit_cast( \
870 int, __builtin_ia32_vec_ext_v4sf((__v4sf)(__m128)(X), (int)(N)))
871
872 /* Miscellaneous insert and extract macros. */
873 /* Extract a single-precision float from X at index N into D. */
874 #define _MM_EXTRACT_FLOAT(D, X, N) \
875 do { \
876 (D) = __builtin_ia32_vec_ext_v4sf((__v4sf)(__m128)(X), (int)(N)); \
877 } while (0)
878
879 /* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create
880 an index suitable for _mm_insert_ps. */
881 #define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z))
882
883 /* Extract a float from X at index N into the first index of the return. */
884 #define _MM_PICK_OUT_PS(X, N) \
885 _mm_insert_ps(_mm_setzero_ps(), (X), _MM_MK_INSERTPS_NDX((N), 0, 0x0e))
886
887 /* Insert int into packed integer array at index. */
888 /// Constructs a 128-bit vector of [16 x i8] by first making a copy of
889 /// the 128-bit integer vector parameter, and then inserting the lower 8 bits
890 /// of an integer parameter \a I into an offset specified by the immediate
891 /// value parameter \a N.
892 ///
893 /// \headerfile <x86intrin.h>
894 ///
895 /// \code
896 /// __m128i _mm_insert_epi8(__m128i X, int I, const int N);
897 /// \endcode
898 ///
899 /// This intrinsic corresponds to the <c> VPINSRB / PINSRB </c> instruction.
900 ///
901 /// \param X
902 /// A 128-bit integer vector of [16 x i8]. This vector is copied to the
903 /// result and then one of the sixteen elements in the result vector is
904 /// replaced by the lower 8 bits of \a I.
905 /// \param I
906 /// An integer. The lower 8 bits of this operand are written to the result
907 /// beginning at the offset specified by \a N.
908 /// \param N
909 /// An immediate value. Bits [3:0] specify the bit offset in the result at
910 /// which the lower 8 bits of \a I are written. \n
911 /// 0000: Bits [7:0] of the result are used for insertion. \n
912 /// 0001: Bits [15:8] of the result are used for insertion. \n
913 /// 0010: Bits [23:16] of the result are used for insertion. \n
914 /// 0011: Bits [31:24] of the result are used for insertion. \n
915 /// 0100: Bits [39:32] of the result are used for insertion. \n
916 /// 0101: Bits [47:40] of the result are used for insertion. \n
917 /// 0110: Bits [55:48] of the result are used for insertion. \n
918 /// 0111: Bits [63:56] of the result are used for insertion. \n
919 /// 1000: Bits [71:64] of the result are used for insertion. \n
920 /// 1001: Bits [79:72] of the result are used for insertion. \n
921 /// 1010: Bits [87:80] of the result are used for insertion. \n
922 /// 1011: Bits [95:88] of the result are used for insertion. \n
923 /// 1100: Bits [103:96] of the result are used for insertion. \n
924 /// 1101: Bits [111:104] of the result are used for insertion. \n
925 /// 1110: Bits [119:112] of the result are used for insertion. \n
926 /// 1111: Bits [127:120] of the result are used for insertion.
927 /// \returns A 128-bit integer vector containing the constructed values.
928 #define _mm_insert_epi8(X, I, N) \
929 ((__m128i)__builtin_ia32_vec_set_v16qi((__v16qi)(__m128i)(X), (int)(I), \
930 (int)(N)))
931
932 /// Constructs a 128-bit vector of [4 x i32] by first making a copy of
933 /// the 128-bit integer vector parameter, and then inserting the 32-bit
934 /// integer parameter \a I at the offset specified by the immediate value
935 /// parameter \a N.
936 ///
937 /// \headerfile <x86intrin.h>
938 ///
939 /// \code
940 /// __m128i _mm_insert_epi32(__m128i X, int I, const int N);
941 /// \endcode
942 ///
943 /// This intrinsic corresponds to the <c> VPINSRD / PINSRD </c> instruction.
944 ///
945 /// \param X
946 /// A 128-bit integer vector of [4 x i32]. This vector is copied to the
947 /// result and then one of the four elements in the result vector is
948 /// replaced by \a I.
949 /// \param I
950 /// A 32-bit integer that is written to the result beginning at the offset
951 /// specified by \a N.
952 /// \param N
953 /// An immediate value. Bits [1:0] specify the bit offset in the result at
954 /// which the integer \a I is written. \n
955 /// 00: Bits [31:0] of the result are used for insertion. \n
956 /// 01: Bits [63:32] of the result are used for insertion. \n
957 /// 10: Bits [95:64] of the result are used for insertion. \n
958 /// 11: Bits [127:96] of the result are used for insertion.
959 /// \returns A 128-bit integer vector containing the constructed values.
960 #define _mm_insert_epi32(X, I, N) \
961 ((__m128i)__builtin_ia32_vec_set_v4si((__v4si)(__m128i)(X), (int)(I), \
962 (int)(N)))
963
964 #ifdef __x86_64__
965 /// Constructs a 128-bit vector of [2 x i64] by first making a copy of
966 /// the 128-bit integer vector parameter, and then inserting the 64-bit
967 /// integer parameter \a I, using the immediate value parameter \a N as an
968 /// insertion location selector.
969 ///
970 /// \headerfile <x86intrin.h>
971 ///
972 /// \code
973 /// __m128i _mm_insert_epi64(__m128i X, long long I, const int N);
974 /// \endcode
975 ///
976 /// This intrinsic corresponds to the <c> VPINSRQ / PINSRQ </c> instruction.
977 ///
978 /// \param X
979 /// A 128-bit integer vector of [2 x i64]. This vector is copied to the
980 /// result and then one of the two elements in the result vector is replaced
981 /// by \a I.
982 /// \param I
983 /// A 64-bit integer that is written to the result beginning at the offset
984 /// specified by \a N.
985 /// \param N
986 /// An immediate value. Bit [0] specifies the bit offset in the result at
987 /// which the integer \a I is written. \n
988 /// 0: Bits [63:0] of the result are used for insertion. \n
989 /// 1: Bits [127:64] of the result are used for insertion. \n
990 /// \returns A 128-bit integer vector containing the constructed values.
991 #define _mm_insert_epi64(X, I, N) \
992 ((__m128i)__builtin_ia32_vec_set_v2di((__v2di)(__m128i)(X), (long long)(I), \
993 (int)(N)))
994 #endif /* __x86_64__ */
995
996 /* Extract int from packed integer array at index. This returns the element
997 * as a zero extended value, so it is unsigned.
998 */
999 /// Extracts an 8-bit element from the 128-bit integer vector of
1000 /// [16 x i8], using the immediate value parameter \a N as a selector.
1001 ///
1002 /// \headerfile <x86intrin.h>
1003 ///
1004 /// \code
1005 /// int _mm_extract_epi8(__m128i X, const int N);
1006 /// \endcode
1007 ///
1008 /// This intrinsic corresponds to the <c> VPEXTRB / PEXTRB </c> instruction.
1009 ///
1010 /// \param X
1011 /// A 128-bit integer vector.
1012 /// \param N
1013 /// An immediate value. Bits [3:0] specify which 8-bit vector element from
1014 /// the argument \a X to extract and copy to the result. \n
1015 /// 0000: Bits [7:0] of parameter \a X are extracted. \n
1016 /// 0001: Bits [15:8] of the parameter \a X are extracted. \n
1017 /// 0010: Bits [23:16] of the parameter \a X are extracted. \n
1018 /// 0011: Bits [31:24] of the parameter \a X are extracted. \n
1019 /// 0100: Bits [39:32] of the parameter \a X are extracted. \n
1020 /// 0101: Bits [47:40] of the parameter \a X are extracted. \n
1021 /// 0110: Bits [55:48] of the parameter \a X are extracted. \n
1022 /// 0111: Bits [63:56] of the parameter \a X are extracted. \n
1023 /// 1000: Bits [71:64] of the parameter \a X are extracted. \n
1024 /// 1001: Bits [79:72] of the parameter \a X are extracted. \n
1025 /// 1010: Bits [87:80] of the parameter \a X are extracted. \n
1026 /// 1011: Bits [95:88] of the parameter \a X are extracted. \n
1027 /// 1100: Bits [103:96] of the parameter \a X are extracted. \n
1028 /// 1101: Bits [111:104] of the parameter \a X are extracted. \n
1029 /// 1110: Bits [119:112] of the parameter \a X are extracted. \n
1030 /// 1111: Bits [127:120] of the parameter \a X are extracted.
1031 /// \returns An unsigned integer, whose lower 8 bits are selected from the
1032 /// 128-bit integer vector parameter and the remaining bits are assigned
1033 /// zeros.
1034 #define _mm_extract_epi8(X, N) \
1035 ((int)(unsigned char)__builtin_ia32_vec_ext_v16qi((__v16qi)(__m128i)(X), \
1036 (int)(N)))
1037
1038 /// Extracts a 32-bit element from the 128-bit integer vector of
1039 /// [4 x i32], using the immediate value parameter \a N as a selector.
1040 ///
1041 /// \headerfile <x86intrin.h>
1042 ///
1043 /// \code
1044 /// int _mm_extract_epi32(__m128i X, const int N);
1045 /// \endcode
1046 ///
1047 /// This intrinsic corresponds to the <c> VPEXTRD / PEXTRD </c> instruction.
1048 ///
1049 /// \param X
1050 /// A 128-bit integer vector.
1051 /// \param N
1052 /// An immediate value. Bits [1:0] specify which 32-bit vector element from
1053 /// the argument \a X to extract and copy to the result. \n
1054 /// 00: Bits [31:0] of the parameter \a X are extracted. \n
1055 /// 01: Bits [63:32] of the parameter \a X are extracted. \n
1056 /// 10: Bits [95:64] of the parameter \a X are extracted. \n
1057 /// 11: Bits [127:96] of the parameter \a X are exracted.
1058 /// \returns An integer, whose lower 32 bits are selected from the 128-bit
1059 /// integer vector parameter and the remaining bits are assigned zeros.
1060 #define _mm_extract_epi32(X, N) \
1061 ((int)__builtin_ia32_vec_ext_v4si((__v4si)(__m128i)(X), (int)(N)))
1062
1063 /// Extracts a 64-bit element from the 128-bit integer vector of
1064 /// [2 x i64], using the immediate value parameter \a N as a selector.
1065 ///
1066 /// \headerfile <x86intrin.h>
1067 ///
1068 /// \code
1069 /// long long _mm_extract_epi64(__m128i X, const int N);
1070 /// \endcode
1071 ///
1072 /// This intrinsic corresponds to the <c> VPEXTRQ / PEXTRQ </c> instruction
1073 /// in 64-bit mode.
1074 ///
1075 /// \param X
1076 /// A 128-bit integer vector.
1077 /// \param N
1078 /// An immediate value. Bit [0] specifies which 64-bit vector element from
1079 /// the argument \a X to return. \n
1080 /// 0: Bits [63:0] are returned. \n
1081 /// 1: Bits [127:64] are returned. \n
1082 /// \returns A 64-bit integer.
1083 #define _mm_extract_epi64(X, N) \
1084 ((long long)__builtin_ia32_vec_ext_v2di((__v2di)(__m128i)(X), (int)(N)))
1085
1086 /* SSE4 128-bit Packed Integer Comparisons. */
1087 /// Tests whether the specified bits in a 128-bit integer vector are all
1088 /// zeros.
1089 ///
1090 /// \headerfile <x86intrin.h>
1091 ///
1092 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1093 ///
1094 /// \param __M
1095 /// A 128-bit integer vector containing the bits to be tested.
1096 /// \param __V
1097 /// A 128-bit integer vector selecting which bits to test in operand \a __M.
1098 /// \returns TRUE if the specified bits are all zeros; FALSE otherwise.
_mm_testz_si128(__m128i __M,__m128i __V)1099 static __inline__ int __DEFAULT_FN_ATTRS _mm_testz_si128(__m128i __M,
1100 __m128i __V) {
1101 return __builtin_ia32_ptestz128((__v2di)__M, (__v2di)__V);
1102 }
1103
1104 /// Tests whether the specified bits in a 128-bit integer vector are all
1105 /// ones.
1106 ///
1107 /// \headerfile <x86intrin.h>
1108 ///
1109 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1110 ///
1111 /// \param __M
1112 /// A 128-bit integer vector containing the bits to be tested.
1113 /// \param __V
1114 /// A 128-bit integer vector selecting which bits to test in operand \a __M.
1115 /// \returns TRUE if the specified bits are all ones; FALSE otherwise.
_mm_testc_si128(__m128i __M,__m128i __V)1116 static __inline__ int __DEFAULT_FN_ATTRS _mm_testc_si128(__m128i __M,
1117 __m128i __V) {
1118 return __builtin_ia32_ptestc128((__v2di)__M, (__v2di)__V);
1119 }
1120
1121 /// Tests whether the specified bits in a 128-bit integer vector are
1122 /// neither all zeros nor all ones.
1123 ///
1124 /// \headerfile <x86intrin.h>
1125 ///
1126 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1127 ///
1128 /// \param __M
1129 /// A 128-bit integer vector containing the bits to be tested.
1130 /// \param __V
1131 /// A 128-bit integer vector selecting which bits to test in operand \a __M.
1132 /// \returns TRUE if the specified bits are neither all zeros nor all ones;
1133 /// FALSE otherwise.
_mm_testnzc_si128(__m128i __M,__m128i __V)1134 static __inline__ int __DEFAULT_FN_ATTRS _mm_testnzc_si128(__m128i __M,
1135 __m128i __V) {
1136 return __builtin_ia32_ptestnzc128((__v2di)__M, (__v2di)__V);
1137 }
1138
1139 /// Tests whether the specified bits in a 128-bit integer vector are all
1140 /// ones.
1141 ///
1142 /// \headerfile <x86intrin.h>
1143 ///
1144 /// \code
1145 /// int _mm_test_all_ones(__m128i V);
1146 /// \endcode
1147 ///
1148 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1149 ///
1150 /// \param V
1151 /// A 128-bit integer vector containing the bits to be tested.
1152 /// \returns TRUE if the bits specified in the operand are all set to 1; FALSE
1153 /// otherwise.
1154 #define _mm_test_all_ones(V) _mm_testc_si128((V), _mm_set1_epi32(-1))
1155
1156 /// Tests whether the specified bits in a 128-bit integer vector are
1157 /// neither all zeros nor all ones.
1158 ///
1159 /// \headerfile <x86intrin.h>
1160 ///
1161 /// \code
1162 /// int _mm_test_mix_ones_zeros(__m128i M, __m128i V);
1163 /// \endcode
1164 ///
1165 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1166 ///
1167 /// \param M
1168 /// A 128-bit integer vector containing the bits to be tested.
1169 /// \param V
1170 /// A 128-bit integer vector selecting which bits to test in operand \a M.
1171 /// \returns TRUE if the specified bits are neither all zeros nor all ones;
1172 /// FALSE otherwise.
1173 #define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128((M), (V))
1174
1175 /// Tests whether the specified bits in a 128-bit integer vector are all
1176 /// zeros.
1177 ///
1178 /// \headerfile <x86intrin.h>
1179 ///
1180 /// \code
1181 /// int _mm_test_all_zeros(__m128i M, __m128i V);
1182 /// \endcode
1183 ///
1184 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1185 ///
1186 /// \param M
1187 /// A 128-bit integer vector containing the bits to be tested.
1188 /// \param V
1189 /// A 128-bit integer vector selecting which bits to test in operand \a M.
1190 /// \returns TRUE if the specified bits are all zeros; FALSE otherwise.
1191 #define _mm_test_all_zeros(M, V) _mm_testz_si128((M), (V))
1192
1193 /* SSE4 64-bit Packed Integer Comparisons. */
1194 /// Compares each of the corresponding 64-bit values of the 128-bit
1195 /// integer vectors for equality.
1196 ///
1197 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1198 ///
1199 /// \headerfile <x86intrin.h>
1200 ///
1201 /// This intrinsic corresponds to the <c> VPCMPEQQ / PCMPEQQ </c> instruction.
1202 ///
1203 /// \param __V1
1204 /// A 128-bit integer vector.
1205 /// \param __V2
1206 /// A 128-bit integer vector.
1207 /// \returns A 128-bit integer vector containing the comparison results.
_mm_cmpeq_epi64(__m128i __V1,__m128i __V2)1208 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpeq_epi64(__m128i __V1,
1209 __m128i __V2) {
1210 return (__m128i)((__v2di)__V1 == (__v2di)__V2);
1211 }
1212
1213 /* SSE4 Packed Integer Sign-Extension. */
1214 /// Sign-extends each of the lower eight 8-bit integer elements of a
1215 /// 128-bit vector of [16 x i8] to 16-bit values and returns them in a
1216 /// 128-bit vector of [8 x i16]. The upper eight elements of the input vector
1217 /// are unused.
1218 ///
1219 /// \headerfile <x86intrin.h>
1220 ///
1221 /// This intrinsic corresponds to the <c> VPMOVSXBW / PMOVSXBW </c> instruction.
1222 ///
1223 /// \param __V
1224 /// A 128-bit vector of [16 x i8]. The lower eight 8-bit elements are
1225 /// sign-extended to 16-bit values.
1226 /// \returns A 128-bit vector of [8 x i16] containing the sign-extended values.
_mm_cvtepi8_epi16(__m128i __V)1227 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi16(__m128i __V) {
1228 /* This function always performs a signed extension, but __v16qi is a char
1229 which may be signed or unsigned, so use __v16qs. */
1230 return (__m128i) __builtin_convertvector(
1231 __builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3, 4, 5, 6,
1232 7),
1233 __v8hi);
1234 }
1235
1236 /// Sign-extends each of the lower four 8-bit integer elements of a
1237 /// 128-bit vector of [16 x i8] to 32-bit values and returns them in a
1238 /// 128-bit vector of [4 x i32]. The upper twelve elements of the input
1239 /// vector are unused.
1240 ///
1241 /// \headerfile <x86intrin.h>
1242 ///
1243 /// This intrinsic corresponds to the <c> VPMOVSXBD / PMOVSXBD </c> instruction.
1244 ///
1245 /// \param __V
1246 /// A 128-bit vector of [16 x i8]. The lower four 8-bit elements are
1247 /// sign-extended to 32-bit values.
1248 /// \returns A 128-bit vector of [4 x i32] containing the sign-extended values.
_mm_cvtepi8_epi32(__m128i __V)1249 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi32(__m128i __V) {
1250 /* This function always performs a signed extension, but __v16qi is a char
1251 which may be signed or unsigned, so use __v16qs. */
1252 return (__m128i) __builtin_convertvector(
1253 __builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3), __v4si);
1254 }
1255
1256 /// Sign-extends each of the lower two 8-bit integer elements of a
1257 /// 128-bit integer vector of [16 x i8] to 64-bit values and returns them in
1258 /// a 128-bit vector of [2 x i64]. The upper fourteen elements of the input
1259 /// vector are unused.
1260 ///
1261 /// \headerfile <x86intrin.h>
1262 ///
1263 /// This intrinsic corresponds to the <c> VPMOVSXBQ / PMOVSXBQ </c> instruction.
1264 ///
1265 /// \param __V
1266 /// A 128-bit vector of [16 x i8]. The lower two 8-bit elements are
1267 /// sign-extended to 64-bit values.
1268 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
_mm_cvtepi8_epi64(__m128i __V)1269 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi64(__m128i __V) {
1270 /* This function always performs a signed extension, but __v16qi is a char
1271 which may be signed or unsigned, so use __v16qs. */
1272 return (__m128i) __builtin_convertvector(
1273 __builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1), __v2di);
1274 }
1275
1276 /// Sign-extends each of the lower four 16-bit integer elements of a
1277 /// 128-bit integer vector of [8 x i16] to 32-bit values and returns them in
1278 /// a 128-bit vector of [4 x i32]. The upper four elements of the input
1279 /// vector are unused.
1280 ///
1281 /// \headerfile <x86intrin.h>
1282 ///
1283 /// This intrinsic corresponds to the <c> VPMOVSXWD / PMOVSXWD </c> instruction.
1284 ///
1285 /// \param __V
1286 /// A 128-bit vector of [8 x i16]. The lower four 16-bit elements are
1287 /// sign-extended to 32-bit values.
1288 /// \returns A 128-bit vector of [4 x i32] containing the sign-extended values.
_mm_cvtepi16_epi32(__m128i __V)1289 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi16_epi32(__m128i __V) {
1290 return (__m128i) __builtin_convertvector(
1291 __builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1, 2, 3), __v4si);
1292 }
1293
1294 /// Sign-extends each of the lower two 16-bit integer elements of a
1295 /// 128-bit integer vector of [8 x i16] to 64-bit values and returns them in
1296 /// a 128-bit vector of [2 x i64]. The upper six elements of the input
1297 /// vector are unused.
1298 ///
1299 /// \headerfile <x86intrin.h>
1300 ///
1301 /// This intrinsic corresponds to the <c> VPMOVSXWQ / PMOVSXWQ </c> instruction.
1302 ///
1303 /// \param __V
1304 /// A 128-bit vector of [8 x i16]. The lower two 16-bit elements are
1305 /// sign-extended to 64-bit values.
1306 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
_mm_cvtepi16_epi64(__m128i __V)1307 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi16_epi64(__m128i __V) {
1308 return (__m128i) __builtin_convertvector(
1309 __builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1), __v2di);
1310 }
1311
1312 /// Sign-extends each of the lower two 32-bit integer elements of a
1313 /// 128-bit integer vector of [4 x i32] to 64-bit values and returns them in
1314 /// a 128-bit vector of [2 x i64]. The upper two elements of the input vector
1315 /// are unused.
1316 ///
1317 /// \headerfile <x86intrin.h>
1318 ///
1319 /// This intrinsic corresponds to the <c> VPMOVSXDQ / PMOVSXDQ </c> instruction.
1320 ///
1321 /// \param __V
1322 /// A 128-bit vector of [4 x i32]. The lower two 32-bit elements are
1323 /// sign-extended to 64-bit values.
1324 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
_mm_cvtepi32_epi64(__m128i __V)1325 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi32_epi64(__m128i __V) {
1326 return (__m128i) __builtin_convertvector(
1327 __builtin_shufflevector((__v4si)__V, (__v4si)__V, 0, 1), __v2di);
1328 }
1329
1330 /* SSE4 Packed Integer Zero-Extension. */
1331 /// Zero-extends each of the lower eight 8-bit integer elements of a
1332 /// 128-bit vector of [16 x i8] to 16-bit values and returns them in a
1333 /// 128-bit vector of [8 x i16]. The upper eight elements of the input vector
1334 /// are unused.
1335 ///
1336 /// \headerfile <x86intrin.h>
1337 ///
1338 /// This intrinsic corresponds to the <c> VPMOVZXBW / PMOVZXBW </c> instruction.
1339 ///
1340 /// \param __V
1341 /// A 128-bit vector of [16 x i8]. The lower eight 8-bit elements are
1342 /// zero-extended to 16-bit values.
1343 /// \returns A 128-bit vector of [8 x i16] containing the zero-extended values.
_mm_cvtepu8_epi16(__m128i __V)1344 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi16(__m128i __V) {
1345 return (__m128i) __builtin_convertvector(
1346 __builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3, 4, 5, 6,
1347 7),
1348 __v8hi);
1349 }
1350
1351 /// Zero-extends each of the lower four 8-bit integer elements of a
1352 /// 128-bit vector of [16 x i8] to 32-bit values and returns them in a
1353 /// 128-bit vector of [4 x i32]. The upper twelve elements of the input
1354 /// vector are unused.
1355 ///
1356 /// \headerfile <x86intrin.h>
1357 ///
1358 /// This intrinsic corresponds to the <c> VPMOVZXBD / PMOVZXBD </c> instruction.
1359 ///
1360 /// \param __V
1361 /// A 128-bit vector of [16 x i8]. The lower four 8-bit elements are
1362 /// zero-extended to 32-bit values.
1363 /// \returns A 128-bit vector of [4 x i32] containing the zero-extended values.
_mm_cvtepu8_epi32(__m128i __V)1364 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi32(__m128i __V) {
1365 return (__m128i) __builtin_convertvector(
1366 __builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3), __v4si);
1367 }
1368
1369 /// Zero-extends each of the lower two 8-bit integer elements of a
1370 /// 128-bit integer vector of [16 x i8] to 64-bit values and returns them in
1371 /// a 128-bit vector of [2 x i64]. The upper fourteen elements of the input
1372 /// vector are unused.
1373 ///
1374 /// \headerfile <x86intrin.h>
1375 ///
1376 /// This intrinsic corresponds to the <c> VPMOVZXBQ / PMOVZXBQ </c> instruction.
1377 ///
1378 /// \param __V
1379 /// A 128-bit vector of [16 x i8]. The lower two 8-bit elements are
1380 /// zero-extended to 64-bit values.
1381 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
_mm_cvtepu8_epi64(__m128i __V)1382 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi64(__m128i __V) {
1383 return (__m128i) __builtin_convertvector(
1384 __builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1), __v2di);
1385 }
1386
1387 /// Zero-extends each of the lower four 16-bit integer elements of a
1388 /// 128-bit integer vector of [8 x i16] to 32-bit values and returns them in
1389 /// a 128-bit vector of [4 x i32]. The upper four elements of the input
1390 /// vector are unused.
1391 ///
1392 /// \headerfile <x86intrin.h>
1393 ///
1394 /// This intrinsic corresponds to the <c> VPMOVZXWD / PMOVZXWD </c> instruction.
1395 ///
1396 /// \param __V
1397 /// A 128-bit vector of [8 x i16]. The lower four 16-bit elements are
1398 /// zero-extended to 32-bit values.
1399 /// \returns A 128-bit vector of [4 x i32] containing the zero-extended values.
_mm_cvtepu16_epi32(__m128i __V)1400 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu16_epi32(__m128i __V) {
1401 return (__m128i) __builtin_convertvector(
1402 __builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1, 2, 3), __v4si);
1403 }
1404
1405 /// Zero-extends each of the lower two 16-bit integer elements of a
1406 /// 128-bit integer vector of [8 x i16] to 64-bit values and returns them in
1407 /// a 128-bit vector of [2 x i64]. The upper six elements of the input vector
1408 /// are unused.
1409 ///
1410 /// \headerfile <x86intrin.h>
1411 ///
1412 /// This intrinsic corresponds to the <c> VPMOVZXWQ / PMOVZXWQ </c> instruction.
1413 ///
1414 /// \param __V
1415 /// A 128-bit vector of [8 x i16]. The lower two 16-bit elements are
1416 /// zero-extended to 64-bit values.
1417 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
_mm_cvtepu16_epi64(__m128i __V)1418 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu16_epi64(__m128i __V) {
1419 return (__m128i) __builtin_convertvector(
1420 __builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1), __v2di);
1421 }
1422
1423 /// Zero-extends each of the lower two 32-bit integer elements of a
1424 /// 128-bit integer vector of [4 x i32] to 64-bit values and returns them in
1425 /// a 128-bit vector of [2 x i64]. The upper two elements of the input vector
1426 /// are unused.
1427 ///
1428 /// \headerfile <x86intrin.h>
1429 ///
1430 /// This intrinsic corresponds to the <c> VPMOVZXDQ / PMOVZXDQ </c> instruction.
1431 ///
1432 /// \param __V
1433 /// A 128-bit vector of [4 x i32]. The lower two 32-bit elements are
1434 /// zero-extended to 64-bit values.
1435 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
_mm_cvtepu32_epi64(__m128i __V)1436 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu32_epi64(__m128i __V) {
1437 return (__m128i) __builtin_convertvector(
1438 __builtin_shufflevector((__v4su)__V, (__v4su)__V, 0, 1), __v2di);
1439 }
1440
1441 /* SSE4 Pack with Unsigned Saturation. */
1442 /// Converts, with saturation, 32-bit signed integers from both 128-bit integer
1443 /// vector operands into 16-bit unsigned integers, and returns the packed
1444 /// result.
1445 ///
1446 /// Values greater than 0xFFFF are saturated to 0xFFFF. Values less than
1447 /// 0x0000 are saturated to 0x0000.
1448 ///
1449 /// \headerfile <x86intrin.h>
1450 ///
1451 /// This intrinsic corresponds to the <c> VPACKUSDW / PACKUSDW </c> instruction.
1452 ///
1453 /// \param __V1
1454 /// A 128-bit vector of [4 x i32]. The converted [4 x i16] values are
1455 /// written to the lower 64 bits of the result.
1456 /// \param __V2
1457 /// A 128-bit vector of [4 x i32]. The converted [4 x i16] values are
1458 /// written to the higher 64 bits of the result.
1459 /// \returns A 128-bit vector of [8 x i16] containing the converted values.
_mm_packus_epi32(__m128i __V1,__m128i __V2)1460 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_packus_epi32(__m128i __V1,
1461 __m128i __V2) {
1462 return (__m128i)__builtin_ia32_packusdw128((__v4si)__V1, (__v4si)__V2);
1463 }
1464
1465 /* SSE4 Multiple Packed Sums of Absolute Difference. */
1466 /// Subtracts 8-bit unsigned integer values and computes the absolute
1467 /// values of the differences to the corresponding bits in the destination.
1468 /// Then sums of the absolute differences are returned according to the bit
1469 /// fields in the immediate operand.
1470 ///
1471 /// \headerfile <x86intrin.h>
1472 ///
1473 /// \code
1474 /// __m128i _mm_mpsadbw_epu8(__m128i X, __m128i Y, const int M);
1475 /// \endcode
1476 ///
1477 /// This intrinsic corresponds to the <c> VMPSADBW / MPSADBW </c> instruction.
1478 ///
1479 /// \param X
1480 /// A 128-bit vector of [16 x i8].
1481 /// \param Y
1482 /// A 128-bit vector of [16 x i8].
1483 /// \param M
1484 /// An 8-bit immediate operand specifying how the absolute differences are to
1485 /// be calculated, according to the following algorithm:
1486 /// \code
1487 /// // M2 represents bit 2 of the immediate operand
1488 /// // M10 represents bits [1:0] of the immediate operand
1489 /// i = M2 * 4;
1490 /// j = M10 * 4;
1491 /// for (k = 0; k < 8; k = k + 1) {
1492 /// d0 = abs(X[i + k + 0] - Y[j + 0]);
1493 /// d1 = abs(X[i + k + 1] - Y[j + 1]);
1494 /// d2 = abs(X[i + k + 2] - Y[j + 2]);
1495 /// d3 = abs(X[i + k + 3] - Y[j + 3]);
1496 /// r[k] = d0 + d1 + d2 + d3;
1497 /// }
1498 /// \endcode
1499 /// \returns A 128-bit integer vector containing the sums of the sets of
1500 /// absolute differences between both operands.
1501 #define _mm_mpsadbw_epu8(X, Y, M) \
1502 ((__m128i)__builtin_ia32_mpsadbw128((__v16qi)(__m128i)(X), \
1503 (__v16qi)(__m128i)(Y), (M)))
1504
1505 /// Finds the minimum unsigned 16-bit element in the input 128-bit
1506 /// vector of [8 x u16] and returns it and along with its index.
1507 ///
1508 /// \headerfile <x86intrin.h>
1509 ///
1510 /// This intrinsic corresponds to the <c> VPHMINPOSUW / PHMINPOSUW </c>
1511 /// instruction.
1512 ///
1513 /// \param __V
1514 /// A 128-bit vector of [8 x u16].
1515 /// \returns A 128-bit value where bits [15:0] contain the minimum value found
1516 /// in parameter \a __V, bits [18:16] contain the index of the minimum value
1517 /// and the remaining bits are set to 0.
_mm_minpos_epu16(__m128i __V)1518 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_minpos_epu16(__m128i __V) {
1519 return (__m128i)__builtin_ia32_phminposuw128((__v8hi)__V);
1520 }
1521
1522 /* Handle the sse4.2 definitions here. */
1523
1524 /* These definitions are normally in nmmintrin.h, but gcc puts them in here
1525 so we'll do the same. */
1526
1527 #undef __DEFAULT_FN_ATTRS
1528 #define __DEFAULT_FN_ATTRS \
1529 __attribute__((__always_inline__, __nodebug__, __target__("sse4.2")))
1530
1531 /* These specify the type of data that we're comparing. */
1532 #define _SIDD_UBYTE_OPS 0x00
1533 #define _SIDD_UWORD_OPS 0x01
1534 #define _SIDD_SBYTE_OPS 0x02
1535 #define _SIDD_SWORD_OPS 0x03
1536
1537 /* These specify the type of comparison operation. */
1538 #define _SIDD_CMP_EQUAL_ANY 0x00
1539 #define _SIDD_CMP_RANGES 0x04
1540 #define _SIDD_CMP_EQUAL_EACH 0x08
1541 #define _SIDD_CMP_EQUAL_ORDERED 0x0c
1542
1543 /* These macros specify the polarity of the operation. */
1544 #define _SIDD_POSITIVE_POLARITY 0x00
1545 #define _SIDD_NEGATIVE_POLARITY 0x10
1546 #define _SIDD_MASKED_POSITIVE_POLARITY 0x20
1547 #define _SIDD_MASKED_NEGATIVE_POLARITY 0x30
1548
1549 /* These macros are used in _mm_cmpXstri() to specify the return. */
1550 #define _SIDD_LEAST_SIGNIFICANT 0x00
1551 #define _SIDD_MOST_SIGNIFICANT 0x40
1552
1553 /* These macros are used in _mm_cmpXstri() to specify the return. */
1554 #define _SIDD_BIT_MASK 0x00
1555 #define _SIDD_UNIT_MASK 0x40
1556
1557 /* SSE4.2 Packed Comparison Intrinsics. */
1558 /// Uses the immediate operand \a M to perform a comparison of string
1559 /// data with implicitly defined lengths that is contained in source operands
1560 /// \a A and \a B. Returns a 128-bit integer vector representing the result
1561 /// mask of the comparison.
1562 ///
1563 /// \headerfile <x86intrin.h>
1564 ///
1565 /// \code
1566 /// __m128i _mm_cmpistrm(__m128i A, __m128i B, const int M);
1567 /// \endcode
1568 ///
1569 /// This intrinsic corresponds to the <c> VPCMPISTRM / PCMPISTRM </c>
1570 /// instruction.
1571 ///
1572 /// \param A
1573 /// A 128-bit integer vector containing one of the source operands to be
1574 /// compared.
1575 /// \param B
1576 /// A 128-bit integer vector containing one of the source operands to be
1577 /// compared.
1578 /// \param M
1579 /// An 8-bit immediate operand specifying whether the characters are bytes or
1580 /// words, the type of comparison to perform, and the format of the return
1581 /// value. \n
1582 /// Bits [1:0]: Determine source data format. \n
1583 /// 00: 16 unsigned bytes \n
1584 /// 01: 8 unsigned words \n
1585 /// 10: 16 signed bytes \n
1586 /// 11: 8 signed words \n
1587 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1588 /// 00: Subset: Each character in \a B is compared for equality with all
1589 /// the characters in \a A. \n
1590 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1591 /// basis is greater than or equal for even-indexed elements in \a A,
1592 /// and less than or equal for odd-indexed elements in \a A. \n
1593 /// 10: Match: Compare each pair of corresponding characters in \a A and
1594 /// \a B for equality. \n
1595 /// 11: Substring: Search \a B for substring matches of \a A. \n
1596 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1597 /// mask of the comparison results. \n
1598 /// 00: No effect. \n
1599 /// 01: Negate the bit mask. \n
1600 /// 10: No effect. \n
1601 /// 11: Negate the bit mask only for bits with an index less than or equal
1602 /// to the size of \a A or \a B. \n
1603 /// Bit [6]: Determines whether the result is zero-extended or expanded to 16
1604 /// bytes. \n
1605 /// 0: The result is zero-extended to 16 bytes. \n
1606 /// 1: The result is expanded to 16 bytes (this expansion is performed by
1607 /// repeating each bit 8 or 16 times).
1608 /// \returns Returns a 128-bit integer vector representing the result mask of
1609 /// the comparison.
1610 #define _mm_cmpistrm(A, B, M) \
1611 ((__m128i)__builtin_ia32_pcmpistrm128((__v16qi)(__m128i)(A), \
1612 (__v16qi)(__m128i)(B), (int)(M)))
1613
1614 /// Uses the immediate operand \a M to perform a comparison of string
1615 /// data with implicitly defined lengths that is contained in source operands
1616 /// \a A and \a B. Returns an integer representing the result index of the
1617 /// comparison.
1618 ///
1619 /// \headerfile <x86intrin.h>
1620 ///
1621 /// \code
1622 /// int _mm_cmpistri(__m128i A, __m128i B, const int M);
1623 /// \endcode
1624 ///
1625 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1626 /// instruction.
1627 ///
1628 /// \param A
1629 /// A 128-bit integer vector containing one of the source operands to be
1630 /// compared.
1631 /// \param B
1632 /// A 128-bit integer vector containing one of the source operands to be
1633 /// compared.
1634 /// \param M
1635 /// An 8-bit immediate operand specifying whether the characters are bytes or
1636 /// words, the type of comparison to perform, and the format of the return
1637 /// value. \n
1638 /// Bits [1:0]: Determine source data format. \n
1639 /// 00: 16 unsigned bytes \n
1640 /// 01: 8 unsigned words \n
1641 /// 10: 16 signed bytes \n
1642 /// 11: 8 signed words \n
1643 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1644 /// 00: Subset: Each character in \a B is compared for equality with all
1645 /// the characters in \a A. \n
1646 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1647 /// basis is greater than or equal for even-indexed elements in \a A,
1648 /// and less than or equal for odd-indexed elements in \a A. \n
1649 /// 10: Match: Compare each pair of corresponding characters in \a A and
1650 /// \a B for equality. \n
1651 /// 11: Substring: Search B for substring matches of \a A. \n
1652 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1653 /// mask of the comparison results. \n
1654 /// 00: No effect. \n
1655 /// 01: Negate the bit mask. \n
1656 /// 10: No effect. \n
1657 /// 11: Negate the bit mask only for bits with an index less than or equal
1658 /// to the size of \a A or \a B. \n
1659 /// Bit [6]: Determines whether the index of the lowest set bit or the
1660 /// highest set bit is returned. \n
1661 /// 0: The index of the least significant set bit. \n
1662 /// 1: The index of the most significant set bit. \n
1663 /// \returns Returns an integer representing the result index of the comparison.
1664 #define _mm_cmpistri(A, B, M) \
1665 ((int)__builtin_ia32_pcmpistri128((__v16qi)(__m128i)(A), \
1666 (__v16qi)(__m128i)(B), (int)(M)))
1667
1668 /// Uses the immediate operand \a M to perform a comparison of string
1669 /// data with explicitly defined lengths that is contained in source operands
1670 /// \a A and \a B. Returns a 128-bit integer vector representing the result
1671 /// mask of the comparison.
1672 ///
1673 /// \headerfile <x86intrin.h>
1674 ///
1675 /// \code
1676 /// __m128i _mm_cmpestrm(__m128i A, int LA, __m128i B, int LB, const int M);
1677 /// \endcode
1678 ///
1679 /// This intrinsic corresponds to the <c> VPCMPESTRM / PCMPESTRM </c>
1680 /// instruction.
1681 ///
1682 /// \param A
1683 /// A 128-bit integer vector containing one of the source operands to be
1684 /// compared.
1685 /// \param LA
1686 /// An integer that specifies the length of the string in \a A.
1687 /// \param B
1688 /// A 128-bit integer vector containing one of the source operands to be
1689 /// compared.
1690 /// \param LB
1691 /// An integer that specifies the length of the string in \a B.
1692 /// \param M
1693 /// An 8-bit immediate operand specifying whether the characters are bytes or
1694 /// words, the type of comparison to perform, and the format of the return
1695 /// value. \n
1696 /// Bits [1:0]: Determine source data format. \n
1697 /// 00: 16 unsigned bytes \n
1698 /// 01: 8 unsigned words \n
1699 /// 10: 16 signed bytes \n
1700 /// 11: 8 signed words \n
1701 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1702 /// 00: Subset: Each character in \a B is compared for equality with all
1703 /// the characters in \a A. \n
1704 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1705 /// basis is greater than or equal for even-indexed elements in \a A,
1706 /// and less than or equal for odd-indexed elements in \a A. \n
1707 /// 10: Match: Compare each pair of corresponding characters in \a A and
1708 /// \a B for equality. \n
1709 /// 11: Substring: Search \a B for substring matches of \a A. \n
1710 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1711 /// mask of the comparison results. \n
1712 /// 00: No effect. \n
1713 /// 01: Negate the bit mask. \n
1714 /// 10: No effect. \n
1715 /// 11: Negate the bit mask only for bits with an index less than or equal
1716 /// to the size of \a A or \a B. \n
1717 /// Bit [6]: Determines whether the result is zero-extended or expanded to 16
1718 /// bytes. \n
1719 /// 0: The result is zero-extended to 16 bytes. \n
1720 /// 1: The result is expanded to 16 bytes (this expansion is performed by
1721 /// repeating each bit 8 or 16 times). \n
1722 /// \returns Returns a 128-bit integer vector representing the result mask of
1723 /// the comparison.
1724 #define _mm_cmpestrm(A, LA, B, LB, M) \
1725 ((__m128i)__builtin_ia32_pcmpestrm128((__v16qi)(__m128i)(A), (int)(LA), \
1726 (__v16qi)(__m128i)(B), (int)(LB), \
1727 (int)(M)))
1728
1729 /// Uses the immediate operand \a M to perform a comparison of string
1730 /// data with explicitly defined lengths that is contained in source operands
1731 /// \a A and \a B. Returns an integer representing the result index of the
1732 /// comparison.
1733 ///
1734 /// \headerfile <x86intrin.h>
1735 ///
1736 /// \code
1737 /// int _mm_cmpestri(__m128i A, int LA, __m128i B, int LB, const int M);
1738 /// \endcode
1739 ///
1740 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
1741 /// instruction.
1742 ///
1743 /// \param A
1744 /// A 128-bit integer vector containing one of the source operands to be
1745 /// compared.
1746 /// \param LA
1747 /// An integer that specifies the length of the string in \a A.
1748 /// \param B
1749 /// A 128-bit integer vector containing one of the source operands to be
1750 /// compared.
1751 /// \param LB
1752 /// An integer that specifies the length of the string in \a B.
1753 /// \param M
1754 /// An 8-bit immediate operand specifying whether the characters are bytes or
1755 /// words, the type of comparison to perform, and the format of the return
1756 /// value. \n
1757 /// Bits [1:0]: Determine source data format. \n
1758 /// 00: 16 unsigned bytes \n
1759 /// 01: 8 unsigned words \n
1760 /// 10: 16 signed bytes \n
1761 /// 11: 8 signed words \n
1762 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1763 /// 00: Subset: Each character in \a B is compared for equality with all
1764 /// the characters in \a A. \n
1765 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1766 /// basis is greater than or equal for even-indexed elements in \a A,
1767 /// and less than or equal for odd-indexed elements in \a A. \n
1768 /// 10: Match: Compare each pair of corresponding characters in \a A and
1769 /// \a B for equality. \n
1770 /// 11: Substring: Search B for substring matches of \a A. \n
1771 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1772 /// mask of the comparison results. \n
1773 /// 00: No effect. \n
1774 /// 01: Negate the bit mask. \n
1775 /// 10: No effect. \n
1776 /// 11: Negate the bit mask only for bits with an index less than or equal
1777 /// to the size of \a A or \a B. \n
1778 /// Bit [6]: Determines whether the index of the lowest set bit or the
1779 /// highest set bit is returned. \n
1780 /// 0: The index of the least significant set bit. \n
1781 /// 1: The index of the most significant set bit. \n
1782 /// \returns Returns an integer representing the result index of the comparison.
1783 #define _mm_cmpestri(A, LA, B, LB, M) \
1784 ((int)__builtin_ia32_pcmpestri128((__v16qi)(__m128i)(A), (int)(LA), \
1785 (__v16qi)(__m128i)(B), (int)(LB), \
1786 (int)(M)))
1787
1788 /* SSE4.2 Packed Comparison Intrinsics and EFlag Reading. */
1789 /// Uses the immediate operand \a M to perform a comparison of string
1790 /// data with implicitly defined lengths that is contained in source operands
1791 /// \a A and \a B. Returns 1 if the bit mask is zero and the length of the
1792 /// string in \a B is the maximum, otherwise, returns 0.
1793 ///
1794 /// \headerfile <x86intrin.h>
1795 ///
1796 /// \code
1797 /// int _mm_cmpistra(__m128i A, __m128i B, const int M);
1798 /// \endcode
1799 ///
1800 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1801 /// instruction.
1802 ///
1803 /// \param A
1804 /// A 128-bit integer vector containing one of the source operands to be
1805 /// compared.
1806 /// \param B
1807 /// A 128-bit integer vector containing one of the source operands to be
1808 /// compared.
1809 /// \param M
1810 /// An 8-bit immediate operand specifying whether the characters are bytes or
1811 /// words and the type of comparison to perform. \n
1812 /// Bits [1:0]: Determine source data format. \n
1813 /// 00: 16 unsigned bytes \n
1814 /// 01: 8 unsigned words \n
1815 /// 10: 16 signed bytes \n
1816 /// 11: 8 signed words \n
1817 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1818 /// 00: Subset: Each character in \a B is compared for equality with all
1819 /// the characters in \a A. \n
1820 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1821 /// basis is greater than or equal for even-indexed elements in \a A,
1822 /// and less than or equal for odd-indexed elements in \a A. \n
1823 /// 10: Match: Compare each pair of corresponding characters in \a A and
1824 /// \a B for equality. \n
1825 /// 11: Substring: Search \a B for substring matches of \a A. \n
1826 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1827 /// mask of the comparison results. \n
1828 /// 00: No effect. \n
1829 /// 01: Negate the bit mask. \n
1830 /// 10: No effect. \n
1831 /// 11: Negate the bit mask only for bits with an index less than or equal
1832 /// to the size of \a A or \a B. \n
1833 /// \returns Returns 1 if the bit mask is zero and the length of the string in
1834 /// \a B is the maximum; otherwise, returns 0.
1835 #define _mm_cmpistra(A, B, M) \
1836 ((int)__builtin_ia32_pcmpistria128((__v16qi)(__m128i)(A), \
1837 (__v16qi)(__m128i)(B), (int)(M)))
1838
1839 /// Uses the immediate operand \a M to perform a comparison of string
1840 /// data with implicitly defined lengths that is contained in source operands
1841 /// \a A and \a B. Returns 1 if the bit mask is non-zero, otherwise, returns
1842 /// 0.
1843 ///
1844 /// \headerfile <x86intrin.h>
1845 ///
1846 /// \code
1847 /// int _mm_cmpistrc(__m128i A, __m128i B, const int M);
1848 /// \endcode
1849 ///
1850 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1851 /// instruction.
1852 ///
1853 /// \param A
1854 /// A 128-bit integer vector containing one of the source operands to be
1855 /// compared.
1856 /// \param B
1857 /// A 128-bit integer vector containing one of the source operands to be
1858 /// compared.
1859 /// \param M
1860 /// An 8-bit immediate operand specifying whether the characters are bytes or
1861 /// words and the type of comparison to perform. \n
1862 /// Bits [1:0]: Determine source data format. \n
1863 /// 00: 16 unsigned bytes \n
1864 /// 01: 8 unsigned words \n
1865 /// 10: 16 signed bytes \n
1866 /// 11: 8 signed words \n
1867 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1868 /// 00: Subset: Each character in \a B is compared for equality with all
1869 /// the characters in \a A. \n
1870 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1871 /// basis is greater than or equal for even-indexed elements in \a A,
1872 /// and less than or equal for odd-indexed elements in \a A. \n
1873 /// 10: Match: Compare each pair of corresponding characters in \a A and
1874 /// \a B for equality. \n
1875 /// 11: Substring: Search B for substring matches of \a A. \n
1876 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1877 /// mask of the comparison results. \n
1878 /// 00: No effect. \n
1879 /// 01: Negate the bit mask. \n
1880 /// 10: No effect. \n
1881 /// 11: Negate the bit mask only for bits with an index less than or equal
1882 /// to the size of \a A or \a B.
1883 /// \returns Returns 1 if the bit mask is non-zero, otherwise, returns 0.
1884 #define _mm_cmpistrc(A, B, M) \
1885 ((int)__builtin_ia32_pcmpistric128((__v16qi)(__m128i)(A), \
1886 (__v16qi)(__m128i)(B), (int)(M)))
1887
1888 /// Uses the immediate operand \a M to perform a comparison of string
1889 /// data with implicitly defined lengths that is contained in source operands
1890 /// \a A and \a B. Returns bit 0 of the resulting bit mask.
1891 ///
1892 /// \headerfile <x86intrin.h>
1893 ///
1894 /// \code
1895 /// int _mm_cmpistro(__m128i A, __m128i B, const int M);
1896 /// \endcode
1897 ///
1898 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1899 /// instruction.
1900 ///
1901 /// \param A
1902 /// A 128-bit integer vector containing one of the source operands to be
1903 /// compared.
1904 /// \param B
1905 /// A 128-bit integer vector containing one of the source operands to be
1906 /// compared.
1907 /// \param M
1908 /// An 8-bit immediate operand specifying whether the characters are bytes or
1909 /// words and the type of comparison to perform. \n
1910 /// Bits [1:0]: Determine source data format. \n
1911 /// 00: 16 unsigned bytes \n
1912 /// 01: 8 unsigned words \n
1913 /// 10: 16 signed bytes \n
1914 /// 11: 8 signed words \n
1915 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1916 /// 00: Subset: Each character in \a B is compared for equality with all
1917 /// the characters in \a A. \n
1918 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1919 /// basis is greater than or equal for even-indexed elements in \a A,
1920 /// and less than or equal for odd-indexed elements in \a A. \n
1921 /// 10: Match: Compare each pair of corresponding characters in \a A and
1922 /// \a B for equality. \n
1923 /// 11: Substring: Search B for substring matches of \a A. \n
1924 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1925 /// mask of the comparison results. \n
1926 /// 00: No effect. \n
1927 /// 01: Negate the bit mask. \n
1928 /// 10: No effect. \n
1929 /// 11: Negate the bit mask only for bits with an index less than or equal
1930 /// to the size of \a A or \a B. \n
1931 /// \returns Returns bit 0 of the resulting bit mask.
1932 #define _mm_cmpistro(A, B, M) \
1933 ((int)__builtin_ia32_pcmpistrio128((__v16qi)(__m128i)(A), \
1934 (__v16qi)(__m128i)(B), (int)(M)))
1935
1936 /// Uses the immediate operand \a M to perform a comparison of string
1937 /// data with implicitly defined lengths that is contained in source operands
1938 /// \a A and \a B. Returns 1 if the length of the string in \a A is less than
1939 /// the maximum, otherwise, returns 0.
1940 ///
1941 /// \headerfile <x86intrin.h>
1942 ///
1943 /// \code
1944 /// int _mm_cmpistrs(__m128i A, __m128i B, const int M);
1945 /// \endcode
1946 ///
1947 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1948 /// instruction.
1949 ///
1950 /// \param A
1951 /// A 128-bit integer vector containing one of the source operands to be
1952 /// compared.
1953 /// \param B
1954 /// A 128-bit integer vector containing one of the source operands to be
1955 /// compared.
1956 /// \param M
1957 /// An 8-bit immediate operand specifying whether the characters are bytes or
1958 /// words and the type of comparison to perform. \n
1959 /// Bits [1:0]: Determine source data format. \n
1960 /// 00: 16 unsigned bytes \n
1961 /// 01: 8 unsigned words \n
1962 /// 10: 16 signed bytes \n
1963 /// 11: 8 signed words \n
1964 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1965 /// 00: Subset: Each character in \a B is compared for equality with all
1966 /// the characters in \a A. \n
1967 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1968 /// basis is greater than or equal for even-indexed elements in \a A,
1969 /// and less than or equal for odd-indexed elements in \a A. \n
1970 /// 10: Match: Compare each pair of corresponding characters in \a A and
1971 /// \a B for equality. \n
1972 /// 11: Substring: Search \a B for substring matches of \a A. \n
1973 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1974 /// mask of the comparison results. \n
1975 /// 00: No effect. \n
1976 /// 01: Negate the bit mask. \n
1977 /// 10: No effect. \n
1978 /// 11: Negate the bit mask only for bits with an index less than or equal
1979 /// to the size of \a A or \a B. \n
1980 /// \returns Returns 1 if the length of the string in \a A is less than the
1981 /// maximum, otherwise, returns 0.
1982 #define _mm_cmpistrs(A, B, M) \
1983 ((int)__builtin_ia32_pcmpistris128((__v16qi)(__m128i)(A), \
1984 (__v16qi)(__m128i)(B), (int)(M)))
1985
1986 /// Uses the immediate operand \a M to perform a comparison of string
1987 /// data with implicitly defined lengths that is contained in source operands
1988 /// \a A and \a B. Returns 1 if the length of the string in \a B is less than
1989 /// the maximum, otherwise, returns 0.
1990 ///
1991 /// \headerfile <x86intrin.h>
1992 ///
1993 /// \code
1994 /// int _mm_cmpistrz(__m128i A, __m128i B, const int M);
1995 /// \endcode
1996 ///
1997 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1998 /// instruction.
1999 ///
2000 /// \param A
2001 /// A 128-bit integer vector containing one of the source operands to be
2002 /// compared.
2003 /// \param B
2004 /// A 128-bit integer vector containing one of the source operands to be
2005 /// compared.
2006 /// \param M
2007 /// An 8-bit immediate operand specifying whether the characters are bytes or
2008 /// words and the type of comparison to perform. \n
2009 /// Bits [1:0]: Determine source data format. \n
2010 /// 00: 16 unsigned bytes \n
2011 /// 01: 8 unsigned words \n
2012 /// 10: 16 signed bytes \n
2013 /// 11: 8 signed words \n
2014 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2015 /// 00: Subset: Each character in \a B is compared for equality with all
2016 /// the characters in \a A. \n
2017 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2018 /// basis is greater than or equal for even-indexed elements in \a A,
2019 /// and less than or equal for odd-indexed elements in \a A. \n
2020 /// 10: Match: Compare each pair of corresponding characters in \a A and
2021 /// \a B for equality. \n
2022 /// 11: Substring: Search \a B for substring matches of \a A. \n
2023 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2024 /// mask of the comparison results. \n
2025 /// 00: No effect. \n
2026 /// 01: Negate the bit mask. \n
2027 /// 10: No effect. \n
2028 /// 11: Negate the bit mask only for bits with an index less than or equal
2029 /// to the size of \a A or \a B.
2030 /// \returns Returns 1 if the length of the string in \a B is less than the
2031 /// maximum, otherwise, returns 0.
2032 #define _mm_cmpistrz(A, B, M) \
2033 ((int)__builtin_ia32_pcmpistriz128((__v16qi)(__m128i)(A), \
2034 (__v16qi)(__m128i)(B), (int)(M)))
2035
2036 /// Uses the immediate operand \a M to perform a comparison of string
2037 /// data with explicitly defined lengths that is contained in source operands
2038 /// \a A and \a B. Returns 1 if the bit mask is zero and the length of the
2039 /// string in \a B is the maximum, otherwise, returns 0.
2040 ///
2041 /// \headerfile <x86intrin.h>
2042 ///
2043 /// \code
2044 /// int _mm_cmpestra(__m128i A, int LA, __m128i B, int LB, const int M);
2045 /// \endcode
2046 ///
2047 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2048 /// instruction.
2049 ///
2050 /// \param A
2051 /// A 128-bit integer vector containing one of the source operands to be
2052 /// compared.
2053 /// \param LA
2054 /// An integer that specifies the length of the string in \a A.
2055 /// \param B
2056 /// A 128-bit integer vector containing one of the source operands to be
2057 /// compared.
2058 /// \param LB
2059 /// An integer that specifies the length of the string in \a B.
2060 /// \param M
2061 /// An 8-bit immediate operand specifying whether the characters are bytes or
2062 /// words and the type of comparison to perform. \n
2063 /// Bits [1:0]: Determine source data format. \n
2064 /// 00: 16 unsigned bytes \n
2065 /// 01: 8 unsigned words \n
2066 /// 10: 16 signed bytes \n
2067 /// 11: 8 signed words \n
2068 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2069 /// 00: Subset: Each character in \a B is compared for equality with all
2070 /// the characters in \a A. \n
2071 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2072 /// basis is greater than or equal for even-indexed elements in \a A,
2073 /// and less than or equal for odd-indexed elements in \a A. \n
2074 /// 10: Match: Compare each pair of corresponding characters in \a A and
2075 /// \a B for equality. \n
2076 /// 11: Substring: Search \a B for substring matches of \a A. \n
2077 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2078 /// mask of the comparison results. \n
2079 /// 00: No effect. \n
2080 /// 01: Negate the bit mask. \n
2081 /// 10: No effect. \n
2082 /// 11: Negate the bit mask only for bits with an index less than or equal
2083 /// to the size of \a A or \a B.
2084 /// \returns Returns 1 if the bit mask is zero and the length of the string in
2085 /// \a B is the maximum, otherwise, returns 0.
2086 #define _mm_cmpestra(A, LA, B, LB, M) \
2087 ((int)__builtin_ia32_pcmpestria128((__v16qi)(__m128i)(A), (int)(LA), \
2088 (__v16qi)(__m128i)(B), (int)(LB), \
2089 (int)(M)))
2090
2091 /// Uses the immediate operand \a M to perform a comparison of string
2092 /// data with explicitly defined lengths that is contained in source operands
2093 /// \a A and \a B. Returns 1 if the resulting mask is non-zero, otherwise,
2094 /// returns 0.
2095 ///
2096 /// \headerfile <x86intrin.h>
2097 ///
2098 /// \code
2099 /// int _mm_cmpestrc(__m128i A, int LA, __m128i B, int LB, const int M);
2100 /// \endcode
2101 ///
2102 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2103 /// instruction.
2104 ///
2105 /// \param A
2106 /// A 128-bit integer vector containing one of the source operands to be
2107 /// compared.
2108 /// \param LA
2109 /// An integer that specifies the length of the string in \a A.
2110 /// \param B
2111 /// A 128-bit integer vector containing one of the source operands to be
2112 /// compared.
2113 /// \param LB
2114 /// An integer that specifies the length of the string in \a B.
2115 /// \param M
2116 /// An 8-bit immediate operand specifying whether the characters are bytes or
2117 /// words and the type of comparison to perform. \n
2118 /// Bits [1:0]: Determine source data format. \n
2119 /// 00: 16 unsigned bytes \n
2120 /// 01: 8 unsigned words \n
2121 /// 10: 16 signed bytes \n
2122 /// 11: 8 signed words \n
2123 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2124 /// 00: Subset: Each character in \a B is compared for equality with all
2125 /// the characters in \a A. \n
2126 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2127 /// basis is greater than or equal for even-indexed elements in \a A,
2128 /// and less than or equal for odd-indexed elements in \a A. \n
2129 /// 10: Match: Compare each pair of corresponding characters in \a A and
2130 /// \a B for equality. \n
2131 /// 11: Substring: Search \a B for substring matches of \a A. \n
2132 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2133 /// mask of the comparison results. \n
2134 /// 00: No effect. \n
2135 /// 01: Negate the bit mask. \n
2136 /// 10: No effect. \n
2137 /// 11: Negate the bit mask only for bits with an index less than or equal
2138 /// to the size of \a A or \a B. \n
2139 /// \returns Returns 1 if the resulting mask is non-zero, otherwise, returns 0.
2140 #define _mm_cmpestrc(A, LA, B, LB, M) \
2141 ((int)__builtin_ia32_pcmpestric128((__v16qi)(__m128i)(A), (int)(LA), \
2142 (__v16qi)(__m128i)(B), (int)(LB), \
2143 (int)(M)))
2144
2145 /// Uses the immediate operand \a M to perform a comparison of string
2146 /// data with explicitly defined lengths that is contained in source operands
2147 /// \a A and \a B. Returns bit 0 of the resulting bit mask.
2148 ///
2149 /// \headerfile <x86intrin.h>
2150 ///
2151 /// \code
2152 /// int _mm_cmpestro(__m128i A, int LA, __m128i B, int LB, const int M);
2153 /// \endcode
2154 ///
2155 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2156 /// instruction.
2157 ///
2158 /// \param A
2159 /// A 128-bit integer vector containing one of the source operands to be
2160 /// compared.
2161 /// \param LA
2162 /// An integer that specifies the length of the string in \a A.
2163 /// \param B
2164 /// A 128-bit integer vector containing one of the source operands to be
2165 /// compared.
2166 /// \param LB
2167 /// An integer that specifies the length of the string in \a B.
2168 /// \param M
2169 /// An 8-bit immediate operand specifying whether the characters are bytes or
2170 /// words and the type of comparison to perform. \n
2171 /// Bits [1:0]: Determine source data format. \n
2172 /// 00: 16 unsigned bytes \n
2173 /// 01: 8 unsigned words \n
2174 /// 10: 16 signed bytes \n
2175 /// 11: 8 signed words \n
2176 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2177 /// 00: Subset: Each character in \a B is compared for equality with all
2178 /// the characters in \a A. \n
2179 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2180 /// basis is greater than or equal for even-indexed elements in \a A,
2181 /// and less than or equal for odd-indexed elements in \a A. \n
2182 /// 10: Match: Compare each pair of corresponding characters in \a A and
2183 /// \a B for equality. \n
2184 /// 11: Substring: Search \a B for substring matches of \a A. \n
2185 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2186 /// mask of the comparison results. \n
2187 /// 00: No effect. \n
2188 /// 01: Negate the bit mask. \n
2189 /// 10: No effect. \n
2190 /// 11: Negate the bit mask only for bits with an index less than or equal
2191 /// to the size of \a A or \a B.
2192 /// \returns Returns bit 0 of the resulting bit mask.
2193 #define _mm_cmpestro(A, LA, B, LB, M) \
2194 ((int)__builtin_ia32_pcmpestrio128((__v16qi)(__m128i)(A), (int)(LA), \
2195 (__v16qi)(__m128i)(B), (int)(LB), \
2196 (int)(M)))
2197
2198 /// Uses the immediate operand \a M to perform a comparison of string
2199 /// data with explicitly defined lengths that is contained in source operands
2200 /// \a A and \a B. Returns 1 if the length of the string in \a A is less than
2201 /// the maximum, otherwise, returns 0.
2202 ///
2203 /// \headerfile <x86intrin.h>
2204 ///
2205 /// \code
2206 /// int _mm_cmpestrs(__m128i A, int LA, __m128i B, int LB, const int M);
2207 /// \endcode
2208 ///
2209 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2210 /// instruction.
2211 ///
2212 /// \param A
2213 /// A 128-bit integer vector containing one of the source operands to be
2214 /// compared.
2215 /// \param LA
2216 /// An integer that specifies the length of the string in \a A.
2217 /// \param B
2218 /// A 128-bit integer vector containing one of the source operands to be
2219 /// compared.
2220 /// \param LB
2221 /// An integer that specifies the length of the string in \a B.
2222 /// \param M
2223 /// An 8-bit immediate operand specifying whether the characters are bytes or
2224 /// words and the type of comparison to perform. \n
2225 /// Bits [1:0]: Determine source data format. \n
2226 /// 00: 16 unsigned bytes \n
2227 /// 01: 8 unsigned words \n
2228 /// 10: 16 signed bytes \n
2229 /// 11: 8 signed words \n
2230 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2231 /// 00: Subset: Each character in \a B is compared for equality with all
2232 /// the characters in \a A. \n
2233 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2234 /// basis is greater than or equal for even-indexed elements in \a A,
2235 /// and less than or equal for odd-indexed elements in \a A. \n
2236 /// 10: Match: Compare each pair of corresponding characters in \a A and
2237 /// \a B for equality. \n
2238 /// 11: Substring: Search \a B for substring matches of \a A. \n
2239 /// Bits [5:4]: Determine whether to perform a one's complement in the bit
2240 /// mask of the comparison results. \n
2241 /// 00: No effect. \n
2242 /// 01: Negate the bit mask. \n
2243 /// 10: No effect. \n
2244 /// 11: Negate the bit mask only for bits with an index less than or equal
2245 /// to the size of \a A or \a B. \n
2246 /// \returns Returns 1 if the length of the string in \a A is less than the
2247 /// maximum, otherwise, returns 0.
2248 #define _mm_cmpestrs(A, LA, B, LB, M) \
2249 ((int)__builtin_ia32_pcmpestris128((__v16qi)(__m128i)(A), (int)(LA), \
2250 (__v16qi)(__m128i)(B), (int)(LB), \
2251 (int)(M)))
2252
2253 /// Uses the immediate operand \a M to perform a comparison of string
2254 /// data with explicitly defined lengths that is contained in source operands
2255 /// \a A and \a B. Returns 1 if the length of the string in \a B is less than
2256 /// the maximum, otherwise, returns 0.
2257 ///
2258 /// \headerfile <x86intrin.h>
2259 ///
2260 /// \code
2261 /// int _mm_cmpestrz(__m128i A, int LA, __m128i B, int LB, const int M);
2262 /// \endcode
2263 ///
2264 /// This intrinsic corresponds to the <c> VPCMPESTRI </c> instruction.
2265 ///
2266 /// \param A
2267 /// A 128-bit integer vector containing one of the source operands to be
2268 /// compared.
2269 /// \param LA
2270 /// An integer that specifies the length of the string in \a A.
2271 /// \param B
2272 /// A 128-bit integer vector containing one of the source operands to be
2273 /// compared.
2274 /// \param LB
2275 /// An integer that specifies the length of the string in \a B.
2276 /// \param M
2277 /// An 8-bit immediate operand specifying whether the characters are bytes or
2278 /// words and the type of comparison to perform. \n
2279 /// Bits [1:0]: Determine source data format. \n
2280 /// 00: 16 unsigned bytes \n
2281 /// 01: 8 unsigned words \n
2282 /// 10: 16 signed bytes \n
2283 /// 11: 8 signed words \n
2284 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2285 /// 00: Subset: Each character in \a B is compared for equality with all
2286 /// the characters in \a A. \n
2287 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2288 /// basis is greater than or equal for even-indexed elements in \a A,
2289 /// and less than or equal for odd-indexed elements in \a A. \n
2290 /// 10: Match: Compare each pair of corresponding characters in \a A and
2291 /// \a B for equality. \n
2292 /// 11: Substring: Search \a B for substring matches of \a A. \n
2293 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2294 /// mask of the comparison results. \n
2295 /// 00: No effect. \n
2296 /// 01: Negate the bit mask. \n
2297 /// 10: No effect. \n
2298 /// 11: Negate the bit mask only for bits with an index less than or equal
2299 /// to the size of \a A or \a B.
2300 /// \returns Returns 1 if the length of the string in \a B is less than the
2301 /// maximum, otherwise, returns 0.
2302 #define _mm_cmpestrz(A, LA, B, LB, M) \
2303 ((int)__builtin_ia32_pcmpestriz128((__v16qi)(__m128i)(A), (int)(LA), \
2304 (__v16qi)(__m128i)(B), (int)(LB), \
2305 (int)(M)))
2306
2307 /* SSE4.2 Compare Packed Data -- Greater Than. */
2308 /// Compares each of the corresponding 64-bit values of the 128-bit
2309 /// integer vectors to determine if the values in the first operand are
2310 /// greater than those in the second operand.
2311 ///
2312 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
2313 ///
2314 /// \headerfile <x86intrin.h>
2315 ///
2316 /// This intrinsic corresponds to the <c> VPCMPGTQ / PCMPGTQ </c> instruction.
2317 ///
2318 /// \param __V1
2319 /// A 128-bit integer vector.
2320 /// \param __V2
2321 /// A 128-bit integer vector.
2322 /// \returns A 128-bit integer vector containing the comparison results.
_mm_cmpgt_epi64(__m128i __V1,__m128i __V2)2323 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpgt_epi64(__m128i __V1,
2324 __m128i __V2) {
2325 return (__m128i)((__v2di)__V1 > (__v2di)__V2);
2326 }
2327
2328 #undef __DEFAULT_FN_ATTRS
2329
2330 #include <popcntintrin.h>
2331
2332 #include <crc32intrin.h>
2333
2334 #endif /* __SMMINTRIN_H */
2335