1 //===- GenericLoopInfoImp.h - Generic Loop Info Implementation --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This fle contains the implementation of GenericLoopInfo. It should only be
10 // included in files that explicitly instantiate a GenericLoopInfo.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
15 #define LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
16
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/Support/GenericLoopInfo.h"
22
23 namespace llvm {
24
25 //===----------------------------------------------------------------------===//
26 // APIs for simple analysis of the loop. See header notes.
27
28 /// getExitingBlocks - Return all blocks inside the loop that have successors
29 /// outside of the loop. These are the blocks _inside of the current loop_
30 /// which branch out. The returned list is always unique.
31 ///
32 template <class BlockT, class LoopT>
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)33 void LoopBase<BlockT, LoopT>::getExitingBlocks(
34 SmallVectorImpl<BlockT *> &ExitingBlocks) const {
35 assert(!isInvalid() && "Loop not in a valid state!");
36 for (const auto BB : blocks())
37 for (auto *Succ : children<BlockT *>(BB))
38 if (!contains(Succ)) {
39 // Not in current loop? It must be an exit block.
40 ExitingBlocks.push_back(BB);
41 break;
42 }
43 }
44
45 /// getExitingBlock - If getExitingBlocks would return exactly one block,
46 /// return that block. Otherwise return null.
47 template <class BlockT, class LoopT>
getExitingBlock()48 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
49 assert(!isInvalid() && "Loop not in a valid state!");
50 auto notInLoop = [&](BlockT *BB) { return !contains(BB); };
51 auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * {
52 assert(!AllowRepeats && "Unexpected parameter value.");
53 // Child not in current loop? It must be an exit block.
54 return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr;
55 };
56
57 return find_singleton<BlockT>(blocks(), isExitBlock);
58 }
59
60 /// getExitBlocks - Return all of the successor blocks of this loop. These
61 /// are the blocks _outside of the current loop_ which are branched to.
62 ///
63 template <class BlockT, class LoopT>
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)64 void LoopBase<BlockT, LoopT>::getExitBlocks(
65 SmallVectorImpl<BlockT *> &ExitBlocks) const {
66 assert(!isInvalid() && "Loop not in a valid state!");
67 for (const auto BB : blocks())
68 for (auto *Succ : children<BlockT *>(BB))
69 if (!contains(Succ))
70 // Not in current loop? It must be an exit block.
71 ExitBlocks.push_back(Succ);
72 }
73
74 /// getExitBlock - If getExitBlocks would return exactly one block,
75 /// return that block. Otherwise return null.
76 template <class BlockT, class LoopT>
getExitBlockHelper(const LoopBase<BlockT,LoopT> * L,bool Unique)77 std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L,
78 bool Unique) {
79 assert(!L->isInvalid() && "Loop not in a valid state!");
80 auto notInLoop = [&](BlockT *BB,
81 bool AllowRepeats) -> std::pair<BlockT *, bool> {
82 assert(AllowRepeats == Unique && "Unexpected parameter value.");
83 return {!L->contains(BB) ? BB : nullptr, false};
84 };
85 auto singleExitBlock = [&](BlockT *BB,
86 bool AllowRepeats) -> std::pair<BlockT *, bool> {
87 assert(AllowRepeats == Unique && "Unexpected parameter value.");
88 return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop,
89 AllowRepeats);
90 };
91 return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique);
92 }
93
94 template <class BlockT, class LoopT>
hasNoExitBlocks()95 bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
96 auto RC = getExitBlockHelper(this, false);
97 if (RC.second)
98 // found multiple exit blocks
99 return false;
100 // return true if there is no exit block
101 return !RC.first;
102 }
103
104 /// getExitBlock - If getExitBlocks would return exactly one block,
105 /// return that block. Otherwise return null.
106 template <class BlockT, class LoopT>
getExitBlock()107 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
108 return getExitBlockHelper(this, false).first;
109 }
110
111 template <class BlockT, class LoopT>
hasDedicatedExits()112 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
113 // Each predecessor of each exit block of a normal loop is contained
114 // within the loop.
115 SmallVector<BlockT *, 4> UniqueExitBlocks;
116 getUniqueExitBlocks(UniqueExitBlocks);
117 for (BlockT *EB : UniqueExitBlocks)
118 for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
119 if (!contains(Predecessor))
120 return false;
121 // All the requirements are met.
122 return true;
123 }
124
125 // Helper function to get unique loop exits. Pred is a predicate pointing to
126 // BasicBlocks in a loop which should be considered to find loop exits.
127 template <class BlockT, class LoopT, typename PredicateT>
getUniqueExitBlocksHelper(const LoopT * L,SmallVectorImpl<BlockT * > & ExitBlocks,PredicateT Pred)128 void getUniqueExitBlocksHelper(const LoopT *L,
129 SmallVectorImpl<BlockT *> &ExitBlocks,
130 PredicateT Pred) {
131 assert(!L->isInvalid() && "Loop not in a valid state!");
132 SmallPtrSet<BlockT *, 32> Visited;
133 auto Filtered = make_filter_range(L->blocks(), Pred);
134 for (BlockT *BB : Filtered)
135 for (BlockT *Successor : children<BlockT *>(BB))
136 if (!L->contains(Successor))
137 if (Visited.insert(Successor).second)
138 ExitBlocks.push_back(Successor);
139 }
140
141 template <class BlockT, class LoopT>
getUniqueExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)142 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
143 SmallVectorImpl<BlockT *> &ExitBlocks) const {
144 getUniqueExitBlocksHelper(this, ExitBlocks,
145 [](const BlockT *BB) { return true; });
146 }
147
148 template <class BlockT, class LoopT>
getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)149 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
150 SmallVectorImpl<BlockT *> &ExitBlocks) const {
151 const BlockT *Latch = getLoopLatch();
152 assert(Latch && "Latch block must exists");
153 getUniqueExitBlocksHelper(this, ExitBlocks,
154 [Latch](const BlockT *BB) { return BB != Latch; });
155 }
156
157 template <class BlockT, class LoopT>
getUniqueExitBlock()158 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
159 return getExitBlockHelper(this, true).first;
160 }
161
162 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
163 template <class BlockT, class LoopT>
getExitEdges(SmallVectorImpl<Edge> & ExitEdges)164 void LoopBase<BlockT, LoopT>::getExitEdges(
165 SmallVectorImpl<Edge> &ExitEdges) const {
166 assert(!isInvalid() && "Loop not in a valid state!");
167 for (const auto BB : blocks())
168 for (auto *Succ : children<BlockT *>(BB))
169 if (!contains(Succ))
170 // Not in current loop? It must be an exit block.
171 ExitEdges.emplace_back(BB, Succ);
172 }
173
174 namespace detail {
175 template <class BlockT>
176 using has_hoist_check = decltype(&BlockT::isLegalToHoistInto);
177
178 template <class BlockT>
179 using detect_has_hoist_check = llvm::is_detected<has_hoist_check, BlockT>;
180
181 /// SFINAE functions that dispatch to the isLegalToHoistInto member function or
182 /// return false, if it doesn't exist.
isLegalToHoistInto(BlockT * Block)183 template <class BlockT> bool isLegalToHoistInto(BlockT *Block) {
184 if constexpr (detect_has_hoist_check<BlockT>::value)
185 return Block->isLegalToHoistInto();
186 return false;
187 }
188 } // namespace detail
189
190 /// getLoopPreheader - If there is a preheader for this loop, return it. A
191 /// loop has a preheader if there is only one edge to the header of the loop
192 /// from outside of the loop and it is legal to hoist instructions into the
193 /// predecessor. If this is the case, the block branching to the header of the
194 /// loop is the preheader node.
195 ///
196 /// This method returns null if there is no preheader for the loop.
197 ///
198 template <class BlockT, class LoopT>
getLoopPreheader()199 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
200 assert(!isInvalid() && "Loop not in a valid state!");
201 // Keep track of nodes outside the loop branching to the header...
202 BlockT *Out = getLoopPredecessor();
203 if (!Out)
204 return nullptr;
205
206 // Make sure we are allowed to hoist instructions into the predecessor.
207 if (!detail::isLegalToHoistInto(Out))
208 return nullptr;
209
210 // Make sure there is only one exit out of the preheader.
211 typedef GraphTraits<BlockT *> BlockTraits;
212 typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
213 ++SI;
214 if (SI != BlockTraits::child_end(Out))
215 return nullptr; // Multiple exits from the block, must not be a preheader.
216
217 // The predecessor has exactly one successor, so it is a preheader.
218 return Out;
219 }
220
221 /// getLoopPredecessor - If the given loop's header has exactly one unique
222 /// predecessor outside the loop, return it. Otherwise return null.
223 /// This is less strict that the loop "preheader" concept, which requires
224 /// the predecessor to have exactly one successor.
225 ///
226 template <class BlockT, class LoopT>
getLoopPredecessor()227 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
228 assert(!isInvalid() && "Loop not in a valid state!");
229 // Keep track of nodes outside the loop branching to the header...
230 BlockT *Out = nullptr;
231
232 // Loop over the predecessors of the header node...
233 BlockT *Header = getHeader();
234 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
235 if (!contains(Pred)) { // If the block is not in the loop...
236 if (Out && Out != Pred)
237 return nullptr; // Multiple predecessors outside the loop
238 Out = Pred;
239 }
240 }
241
242 return Out;
243 }
244
245 /// getLoopLatch - If there is a single latch block for this loop, return it.
246 /// A latch block is a block that contains a branch back to the header.
247 template <class BlockT, class LoopT>
getLoopLatch()248 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
249 assert(!isInvalid() && "Loop not in a valid state!");
250 BlockT *Header = getHeader();
251 BlockT *Latch = nullptr;
252 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
253 if (contains(Pred)) {
254 if (Latch)
255 return nullptr;
256 Latch = Pred;
257 }
258 }
259
260 return Latch;
261 }
262
263 //===----------------------------------------------------------------------===//
264 // APIs for updating loop information after changing the CFG
265 //
266
267 /// addBasicBlockToLoop - This method is used by other analyses to update loop
268 /// information. NewBB is set to be a new member of the current loop.
269 /// Because of this, it is added as a member of all parent loops, and is added
270 /// to the specified LoopInfo object as being in the current basic block. It
271 /// is not valid to replace the loop header with this method.
272 ///
273 template <class BlockT, class LoopT>
addBasicBlockToLoop(BlockT * NewBB,LoopInfoBase<BlockT,LoopT> & LIB)274 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
275 BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
276 assert(!isInvalid() && "Loop not in a valid state!");
277 #ifndef NDEBUG
278 if (!Blocks.empty()) {
279 auto SameHeader = LIB[getHeader()];
280 assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
281 "Incorrect LI specified for this loop!");
282 }
283 #endif
284 assert(NewBB && "Cannot add a null basic block to the loop!");
285 assert(!LIB[NewBB] && "BasicBlock already in the loop!");
286
287 LoopT *L = static_cast<LoopT *>(this);
288
289 // Add the loop mapping to the LoopInfo object...
290 LIB.BBMap[NewBB] = L;
291
292 // Add the basic block to this loop and all parent loops...
293 while (L) {
294 L->addBlockEntry(NewBB);
295 L = L->getParentLoop();
296 }
297 }
298
299 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
300 /// the OldChild entry in our children list with NewChild, and updates the
301 /// parent pointer of OldChild to be null and the NewChild to be this loop.
302 /// This updates the loop depth of the new child.
303 template <class BlockT, class LoopT>
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)304 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
305 LoopT *NewChild) {
306 assert(!isInvalid() && "Loop not in a valid state!");
307 assert(OldChild->ParentLoop == this && "This loop is already broken!");
308 assert(!NewChild->ParentLoop && "NewChild already has a parent!");
309 typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
310 assert(I != SubLoops.end() && "OldChild not in loop!");
311 *I = NewChild;
312 OldChild->ParentLoop = nullptr;
313 NewChild->ParentLoop = static_cast<LoopT *>(this);
314 }
315
316 /// verifyLoop - Verify loop structure
317 template <class BlockT, class LoopT>
verifyLoop()318 void LoopBase<BlockT, LoopT>::verifyLoop() const {
319 assert(!isInvalid() && "Loop not in a valid state!");
320 #ifndef NDEBUG
321 assert(!Blocks.empty() && "Loop header is missing");
322
323 // Setup for using a depth-first iterator to visit every block in the loop.
324 SmallVector<BlockT *, 8> ExitBBs;
325 getExitBlocks(ExitBBs);
326 df_iterator_default_set<BlockT *> VisitSet;
327 VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
328
329 // Keep track of the BBs visited.
330 SmallPtrSet<BlockT *, 8> VisitedBBs;
331
332 // Check the individual blocks.
333 for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
334 assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
335 GraphTraits<BlockT *>::child_end(BB),
336 [&](BlockT *B) { return contains(B); }) &&
337 "Loop block has no in-loop successors!");
338
339 assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
340 GraphTraits<Inverse<BlockT *>>::child_end(BB),
341 [&](BlockT *B) { return contains(B); }) &&
342 "Loop block has no in-loop predecessors!");
343
344 SmallVector<BlockT *, 2> OutsideLoopPreds;
345 for (BlockT *B :
346 llvm::make_range(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
347 GraphTraits<Inverse<BlockT *>>::child_end(BB)))
348 if (!contains(B))
349 OutsideLoopPreds.push_back(B);
350
351 if (BB == getHeader()) {
352 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
353 } else if (!OutsideLoopPreds.empty()) {
354 // A non-header loop shouldn't be reachable from outside the loop,
355 // though it is permitted if the predecessor is not itself actually
356 // reachable.
357 BlockT *EntryBB = &BB->getParent()->front();
358 for (BlockT *CB : depth_first(EntryBB))
359 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
360 assert(CB != OutsideLoopPreds[i] &&
361 "Loop has multiple entry points!");
362 }
363 assert(BB != &getHeader()->getParent()->front() &&
364 "Loop contains function entry block!");
365
366 VisitedBBs.insert(BB);
367 }
368
369 if (VisitedBBs.size() != getNumBlocks()) {
370 dbgs() << "The following blocks are unreachable in the loop: ";
371 for (auto *BB : Blocks) {
372 if (!VisitedBBs.count(BB)) {
373 dbgs() << *BB << "\n";
374 }
375 }
376 assert(false && "Unreachable block in loop");
377 }
378
379 // Check the subloops.
380 for (iterator I = begin(), E = end(); I != E; ++I)
381 // Each block in each subloop should be contained within this loop.
382 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
383 BI != BE; ++BI) {
384 assert(contains(*BI) &&
385 "Loop does not contain all the blocks of a subloop!");
386 }
387
388 // Check the parent loop pointer.
389 if (ParentLoop) {
390 assert(is_contained(ParentLoop->getSubLoops(), this) &&
391 "Loop is not a subloop of its parent!");
392 }
393 #endif
394 }
395
396 /// verifyLoop - Verify loop structure of this loop and all nested loops.
397 template <class BlockT, class LoopT>
verifyLoopNest(DenseSet<const LoopT * > * Loops)398 void LoopBase<BlockT, LoopT>::verifyLoopNest(
399 DenseSet<const LoopT *> *Loops) const {
400 assert(!isInvalid() && "Loop not in a valid state!");
401 Loops->insert(static_cast<const LoopT *>(this));
402 // Verify this loop.
403 verifyLoop();
404 // Verify the subloops.
405 for (iterator I = begin(), E = end(); I != E; ++I)
406 (*I)->verifyLoopNest(Loops);
407 }
408
409 template <class BlockT, class LoopT>
print(raw_ostream & OS,bool Verbose,bool PrintNested,unsigned Depth)410 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose,
411 bool PrintNested, unsigned Depth) const {
412 OS.indent(Depth * 2);
413 if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
414 OS << "Parallel ";
415 OS << "Loop at depth " << getLoopDepth() << " containing: ";
416
417 BlockT *H = getHeader();
418 for (unsigned i = 0; i < getBlocks().size(); ++i) {
419 BlockT *BB = getBlocks()[i];
420 if (!Verbose) {
421 if (i)
422 OS << ",";
423 BB->printAsOperand(OS, false);
424 } else
425 OS << "\n";
426
427 if (BB == H)
428 OS << "<header>";
429 if (isLoopLatch(BB))
430 OS << "<latch>";
431 if (isLoopExiting(BB))
432 OS << "<exiting>";
433 if (Verbose)
434 BB->print(OS);
435 }
436
437 if (PrintNested) {
438 OS << "\n";
439
440 for (iterator I = begin(), E = end(); I != E; ++I)
441 (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2);
442 }
443 }
444
445 //===----------------------------------------------------------------------===//
446 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
447 /// result does / not depend on use list (block predecessor) order.
448 ///
449
450 /// Discover a subloop with the specified backedges such that: All blocks within
451 /// this loop are mapped to this loop or a subloop. And all subloops within this
452 /// loop have their parent loop set to this loop or a subloop.
453 template <class BlockT, class LoopT>
discoverAndMapSubloop(LoopT * L,ArrayRef<BlockT * > Backedges,LoopInfoBase<BlockT,LoopT> * LI,const DomTreeBase<BlockT> & DomTree)454 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
455 LoopInfoBase<BlockT, LoopT> *LI,
456 const DomTreeBase<BlockT> &DomTree) {
457 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
458
459 unsigned NumBlocks = 0;
460 unsigned NumSubloops = 0;
461
462 // Perform a backward CFG traversal using a worklist.
463 std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
464 while (!ReverseCFGWorklist.empty()) {
465 BlockT *PredBB = ReverseCFGWorklist.back();
466 ReverseCFGWorklist.pop_back();
467
468 LoopT *Subloop = LI->getLoopFor(PredBB);
469 if (!Subloop) {
470 if (!DomTree.isReachableFromEntry(PredBB))
471 continue;
472
473 // This is an undiscovered block. Map it to the current loop.
474 LI->changeLoopFor(PredBB, L);
475 ++NumBlocks;
476 if (PredBB == L->getHeader())
477 continue;
478 // Push all block predecessors on the worklist.
479 ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
480 InvBlockTraits::child_begin(PredBB),
481 InvBlockTraits::child_end(PredBB));
482 } else {
483 // This is a discovered block. Find its outermost discovered loop.
484 Subloop = Subloop->getOutermostLoop();
485
486 // If it is already discovered to be a subloop of this loop, continue.
487 if (Subloop == L)
488 continue;
489
490 // Discover a subloop of this loop.
491 Subloop->setParentLoop(L);
492 ++NumSubloops;
493 NumBlocks += Subloop->getBlocksVector().capacity();
494 PredBB = Subloop->getHeader();
495 // Continue traversal along predecessors that are not loop-back edges from
496 // within this subloop tree itself. Note that a predecessor may directly
497 // reach another subloop that is not yet discovered to be a subloop of
498 // this loop, which we must traverse.
499 for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
500 if (LI->getLoopFor(Pred) != Subloop)
501 ReverseCFGWorklist.push_back(Pred);
502 }
503 }
504 }
505 L->getSubLoopsVector().reserve(NumSubloops);
506 L->reserveBlocks(NumBlocks);
507 }
508
509 /// Populate all loop data in a stable order during a single forward DFS.
510 template <class BlockT, class LoopT> class PopulateLoopsDFS {
511 typedef GraphTraits<BlockT *> BlockTraits;
512 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
513
514 LoopInfoBase<BlockT, LoopT> *LI;
515
516 public:
PopulateLoopsDFS(LoopInfoBase<BlockT,LoopT> * li)517 PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
518
519 void traverse(BlockT *EntryBlock);
520
521 protected:
522 void insertIntoLoop(BlockT *Block);
523 };
524
525 /// Top-level driver for the forward DFS within the loop.
526 template <class BlockT, class LoopT>
traverse(BlockT * EntryBlock)527 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
528 for (BlockT *BB : post_order(EntryBlock))
529 insertIntoLoop(BB);
530 }
531
532 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
533 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
534 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
535 template <class BlockT, class LoopT>
insertIntoLoop(BlockT * Block)536 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
537 LoopT *Subloop = LI->getLoopFor(Block);
538 if (Subloop && Block == Subloop->getHeader()) {
539 // We reach this point once per subloop after processing all the blocks in
540 // the subloop.
541 if (!Subloop->isOutermost())
542 Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
543 else
544 LI->addTopLevelLoop(Subloop);
545
546 // For convenience, Blocks and Subloops are inserted in postorder. Reverse
547 // the lists, except for the loop header, which is always at the beginning.
548 Subloop->reverseBlock(1);
549 std::reverse(Subloop->getSubLoopsVector().begin(),
550 Subloop->getSubLoopsVector().end());
551
552 Subloop = Subloop->getParentLoop();
553 }
554 for (; Subloop; Subloop = Subloop->getParentLoop())
555 Subloop->addBlockEntry(Block);
556 }
557
558 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
559 /// interleaved with backward CFG traversals within each subloop
560 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
561 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
562 /// Block vectors are then populated during a single forward CFG traversal
563 /// (PopulateLoopDFS).
564 ///
565 /// During the two CFG traversals each block is seen three times:
566 /// 1) Discovered and mapped by a reverse CFG traversal.
567 /// 2) Visited during a forward DFS CFG traversal.
568 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
569 ///
570 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
571 /// insertions per block.
572 template <class BlockT, class LoopT>
analyze(const DomTreeBase<BlockT> & DomTree)573 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
574 // Postorder traversal of the dominator tree.
575 const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
576 for (auto DomNode : post_order(DomRoot)) {
577
578 BlockT *Header = DomNode->getBlock();
579 SmallVector<BlockT *, 4> Backedges;
580
581 // Check each predecessor of the potential loop header.
582 for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
583 // If Header dominates predBB, this is a new loop. Collect the backedges.
584 const DomTreeNodeBase<BlockT> *BackedgeNode = DomTree.getNode(Backedge);
585 if (BackedgeNode && DomTree.dominates(DomNode, BackedgeNode))
586 Backedges.push_back(Backedge);
587 }
588 // Perform a backward CFG traversal to discover and map blocks in this loop.
589 if (!Backedges.empty()) {
590 LoopT *L = AllocateLoop(Header);
591 discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
592 }
593 }
594 // Perform a single forward CFG traversal to populate block and subloop
595 // vectors for all loops.
596 PopulateLoopsDFS<BlockT, LoopT> DFS(this);
597 DFS.traverse(DomRoot->getBlock());
598 }
599
600 template <class BlockT, class LoopT>
601 SmallVector<LoopT *, 4>
getLoopsInPreorder()602 LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const {
603 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
604 // The outer-most loop actually goes into the result in the same relative
605 // order as we walk it. But LoopInfo stores the top level loops in reverse
606 // program order so for here we reverse it to get forward program order.
607 // FIXME: If we change the order of LoopInfo we will want to remove the
608 // reverse here.
609 for (LoopT *RootL : reverse(*this)) {
610 auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
611 PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
612 PreOrderLoopsInRootL.end());
613 }
614
615 return PreOrderLoops;
616 }
617
618 template <class BlockT, class LoopT>
619 SmallVector<LoopT *, 4>
getLoopsInReverseSiblingPreorder()620 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const {
621 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
622 // The outer-most loop actually goes into the result in the same relative
623 // order as we walk it. LoopInfo stores the top level loops in reverse
624 // program order so we walk in order here.
625 // FIXME: If we change the order of LoopInfo we will want to add a reverse
626 // here.
627 for (LoopT *RootL : *this) {
628 assert(PreOrderWorklist.empty() &&
629 "Must start with an empty preorder walk worklist.");
630 PreOrderWorklist.push_back(RootL);
631 do {
632 LoopT *L = PreOrderWorklist.pop_back_val();
633 // Sub-loops are stored in forward program order, but will process the
634 // worklist backwards so we can just append them in order.
635 PreOrderWorklist.append(L->begin(), L->end());
636 PreOrderLoops.push_back(L);
637 } while (!PreOrderWorklist.empty());
638 }
639
640 return PreOrderLoops;
641 }
642
643 // Debugging
644 template <class BlockT, class LoopT>
print(raw_ostream & OS)645 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
646 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
647 TopLevelLoops[i]->print(OS);
648 #if 0
649 for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
650 E = BBMap.end(); I != E; ++I)
651 OS << "BB '" << I->first->getName() << "' level = "
652 << I->second->getLoopDepth() << "\n";
653 #endif
654 }
655
656 template <typename T>
compareVectors(std::vector<T> & BB1,std::vector<T> & BB2)657 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
658 llvm::sort(BB1);
659 llvm::sort(BB2);
660 return BB1 == BB2;
661 }
662
663 template <class BlockT, class LoopT>
addInnerLoopsToHeadersMap(DenseMap<BlockT *,const LoopT * > & LoopHeaders,const LoopInfoBase<BlockT,LoopT> & LI,const LoopT & L)664 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
665 const LoopInfoBase<BlockT, LoopT> &LI,
666 const LoopT &L) {
667 LoopHeaders[L.getHeader()] = &L;
668 for (LoopT *SL : L)
669 addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
670 }
671
672 #ifndef NDEBUG
673 template <class BlockT, class LoopT>
compareLoops(const LoopT * L,const LoopT * OtherL,DenseMap<BlockT *,const LoopT * > & OtherLoopHeaders)674 static void compareLoops(const LoopT *L, const LoopT *OtherL,
675 DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
676 BlockT *H = L->getHeader();
677 BlockT *OtherH = OtherL->getHeader();
678 assert(H == OtherH &&
679 "Mismatched headers even though found in the same map entry!");
680
681 assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
682 "Mismatched loop depth!");
683 const LoopT *ParentL = L, *OtherParentL = OtherL;
684 do {
685 assert(ParentL->getHeader() == OtherParentL->getHeader() &&
686 "Mismatched parent loop headers!");
687 ParentL = ParentL->getParentLoop();
688 OtherParentL = OtherParentL->getParentLoop();
689 } while (ParentL);
690
691 for (const LoopT *SubL : *L) {
692 BlockT *SubH = SubL->getHeader();
693 const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
694 assert(OtherSubL && "Inner loop is missing in computed loop info!");
695 OtherLoopHeaders.erase(SubH);
696 compareLoops(SubL, OtherSubL, OtherLoopHeaders);
697 }
698
699 std::vector<BlockT *> BBs = L->getBlocks();
700 std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
701 assert(compareVectors(BBs, OtherBBs) &&
702 "Mismatched basic blocks in the loops!");
703
704 const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
705 const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet =
706 OtherL->getBlocksSet();
707 assert(BlocksSet.size() == OtherBlocksSet.size() &&
708 llvm::set_is_subset(BlocksSet, OtherBlocksSet) &&
709 "Mismatched basic blocks in BlocksSets!");
710 }
711 #endif
712
713 template <class BlockT, class LoopT>
verify(const DomTreeBase<BlockT> & DomTree)714 void LoopInfoBase<BlockT, LoopT>::verify(
715 const DomTreeBase<BlockT> &DomTree) const {
716 DenseSet<const LoopT *> Loops;
717 for (iterator I = begin(), E = end(); I != E; ++I) {
718 assert((*I)->isOutermost() && "Top-level loop has a parent!");
719 (*I)->verifyLoopNest(&Loops);
720 }
721
722 // Verify that blocks are mapped to valid loops.
723 #ifndef NDEBUG
724 for (auto &Entry : BBMap) {
725 const BlockT *BB = Entry.first;
726 LoopT *L = Entry.second;
727 assert(Loops.count(L) && "orphaned loop");
728 assert(L->contains(BB) && "orphaned block");
729 for (LoopT *ChildLoop : *L)
730 assert(!ChildLoop->contains(BB) &&
731 "BBMap should point to the innermost loop containing BB");
732 }
733
734 // Recompute LoopInfo to verify loops structure.
735 LoopInfoBase<BlockT, LoopT> OtherLI;
736 OtherLI.analyze(DomTree);
737
738 // Build a map we can use to move from our LI to the computed one. This
739 // allows us to ignore the particular order in any layer of the loop forest
740 // while still comparing the structure.
741 DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
742 for (LoopT *L : OtherLI)
743 addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
744
745 // Walk the top level loops and ensure there is a corresponding top-level
746 // loop in the computed version and then recursively compare those loop
747 // nests.
748 for (LoopT *L : *this) {
749 BlockT *Header = L->getHeader();
750 const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
751 assert(OtherL && "Top level loop is missing in computed loop info!");
752 // Now that we've matched this loop, erase its header from the map.
753 OtherLoopHeaders.erase(Header);
754 // And recursively compare these loops.
755 compareLoops(L, OtherL, OtherLoopHeaders);
756 }
757
758 // Any remaining entries in the map are loops which were found when computing
759 // a fresh LoopInfo but not present in the current one.
760 if (!OtherLoopHeaders.empty()) {
761 for (const auto &HeaderAndLoop : OtherLoopHeaders)
762 dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
763 llvm_unreachable("Found new loops when recomputing LoopInfo!");
764 }
765 #endif
766 }
767
768 } // namespace llvm
769
770 #endif // LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
771