• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Defines facilities for reading and writing on-disk hash tables.
11 ///
12 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H
14 #define LLVM_SUPPORT_ONDISKHASHTABLE_H
15 
16 #include "llvm/Support/Alignment.h"
17 #include "llvm/Support/Allocator.h"
18 #include "llvm/Support/DataTypes.h"
19 #include "llvm/Support/EndianStream.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <cassert>
23 #include <cstdlib>
24 
25 namespace llvm {
26 
27 /// Generates an on disk hash table.
28 ///
29 /// This needs an \c Info that handles storing values into the hash table's
30 /// payload and computes the hash for a given key. This should provide the
31 /// following interface:
32 ///
33 /// \code
34 /// class ExampleInfo {
35 /// public:
36 ///   typedef ExampleKey key_type;   // Must be copy constructible
37 ///   typedef ExampleKey &key_type_ref;
38 ///   typedef ExampleData data_type; // Must be copy constructible
39 ///   typedef ExampleData &data_type_ref;
40 ///   typedef uint32_t hash_value_type; // The type the hash function returns.
41 ///   typedef uint32_t offset_type; // The type for offsets into the table.
42 ///
43 ///   /// Calculate the hash for Key
44 ///   static hash_value_type ComputeHash(key_type_ref Key);
45 ///   /// Return the lengths, in bytes, of the given Key/Data pair.
46 ///   static std::pair<offset_type, offset_type>
47 ///   EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data);
48 ///   /// Write Key to Out.  KeyLen is the length from EmitKeyDataLength.
49 ///   static void EmitKey(raw_ostream &Out, key_type_ref Key,
50 ///                       offset_type KeyLen);
51 ///   /// Write Data to Out.  DataLen is the length from EmitKeyDataLength.
52 ///   static void EmitData(raw_ostream &Out, key_type_ref Key,
53 ///                        data_type_ref Data, offset_type DataLen);
54 ///   /// Determine if two keys are equal. Optional, only needed by contains.
55 ///   static bool EqualKey(key_type_ref Key1, key_type_ref Key2);
56 /// };
57 /// \endcode
58 template <typename Info> class OnDiskChainedHashTableGenerator {
59   /// A single item in the hash table.
60   class Item {
61   public:
62     typename Info::key_type Key;
63     typename Info::data_type Data;
64     Item *Next;
65     const typename Info::hash_value_type Hash;
66 
Item(typename Info::key_type_ref Key,typename Info::data_type_ref Data,Info & InfoObj)67     Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data,
68          Info &InfoObj)
69         : Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {}
70   };
71 
72   typedef typename Info::offset_type offset_type;
73   offset_type NumBuckets;
74   offset_type NumEntries;
75   llvm::SpecificBumpPtrAllocator<Item> BA;
76 
77   /// A linked list of values in a particular hash bucket.
78   struct Bucket {
79     offset_type Off;
80     unsigned Length;
81     Item *Head;
82   };
83 
84   Bucket *Buckets;
85 
86 private:
87   /// Insert an item into the appropriate hash bucket.
insert(Bucket * Buckets,size_t Size,Item * E)88   void insert(Bucket *Buckets, size_t Size, Item *E) {
89     Bucket &B = Buckets[E->Hash & (Size - 1)];
90     E->Next = B.Head;
91     ++B.Length;
92     B.Head = E;
93   }
94 
95   /// Resize the hash table, moving the old entries into the new buckets.
resize(size_t NewSize)96   void resize(size_t NewSize) {
97     Bucket *NewBuckets = static_cast<Bucket *>(
98         safe_calloc(NewSize, sizeof(Bucket)));
99     // Populate NewBuckets with the old entries.
100     for (size_t I = 0; I < NumBuckets; ++I)
101       for (Item *E = Buckets[I].Head; E;) {
102         Item *N = E->Next;
103         E->Next = nullptr;
104         insert(NewBuckets, NewSize, E);
105         E = N;
106       }
107 
108     free(Buckets);
109     NumBuckets = NewSize;
110     Buckets = NewBuckets;
111   }
112 
113 public:
114   /// Insert an entry into the table.
insert(typename Info::key_type_ref Key,typename Info::data_type_ref Data)115   void insert(typename Info::key_type_ref Key,
116               typename Info::data_type_ref Data) {
117     Info InfoObj;
118     insert(Key, Data, InfoObj);
119   }
120 
121   /// Insert an entry into the table.
122   ///
123   /// Uses the provided Info instead of a stack allocated one.
insert(typename Info::key_type_ref Key,typename Info::data_type_ref Data,Info & InfoObj)124   void insert(typename Info::key_type_ref Key,
125               typename Info::data_type_ref Data, Info &InfoObj) {
126     ++NumEntries;
127     if (4 * NumEntries >= 3 * NumBuckets)
128       resize(NumBuckets * 2);
129     insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj));
130   }
131 
132   /// Determine whether an entry has been inserted.
contains(typename Info::key_type_ref Key,Info & InfoObj)133   bool contains(typename Info::key_type_ref Key, Info &InfoObj) {
134     unsigned Hash = InfoObj.ComputeHash(Key);
135     for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next)
136       if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key))
137         return true;
138     return false;
139   }
140 
141   /// Emit the table to Out, which must not be at offset 0.
Emit(raw_ostream & Out)142   offset_type Emit(raw_ostream &Out) {
143     Info InfoObj;
144     return Emit(Out, InfoObj);
145   }
146 
147   /// Emit the table to Out, which must not be at offset 0.
148   ///
149   /// Uses the provided Info instead of a stack allocated one.
Emit(raw_ostream & Out,Info & InfoObj)150   offset_type Emit(raw_ostream &Out, Info &InfoObj) {
151     using namespace llvm::support;
152     endian::Writer LE(Out, llvm::endianness::little);
153 
154     // Now we're done adding entries, resize the bucket list if it's
155     // significantly too large. (This only happens if the number of
156     // entries is small and we're within our initial allocation of
157     // 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4).
158     //
159     // As a special case, if there are two or fewer entries, just
160     // form a single bucket. A linear scan is fine in that case, and
161     // this is very common in C++ class lookup tables. This also
162     // guarantees we produce at least one bucket for an empty table.
163     //
164     // FIXME: Try computing a perfect hash function at this point.
165     unsigned TargetNumBuckets =
166         NumEntries <= 2 ? 1 : llvm::bit_ceil(NumEntries * 4 / 3 + 1);
167     if (TargetNumBuckets != NumBuckets)
168       resize(TargetNumBuckets);
169 
170     // Emit the payload of the table.
171     for (offset_type I = 0; I < NumBuckets; ++I) {
172       Bucket &B = Buckets[I];
173       if (!B.Head)
174         continue;
175 
176       // Store the offset for the data of this bucket.
177       B.Off = Out.tell();
178       assert(B.Off && "Cannot write a bucket at offset 0. Please add padding.");
179 
180       // Write out the number of items in the bucket.
181       LE.write<uint16_t>(B.Length);
182       assert(B.Length != 0 && "Bucket has a head but zero length?");
183 
184       // Write out the entries in the bucket.
185       for (Item *I = B.Head; I; I = I->Next) {
186         LE.write<typename Info::hash_value_type>(I->Hash);
187         const std::pair<offset_type, offset_type> &Len =
188             InfoObj.EmitKeyDataLength(Out, I->Key, I->Data);
189 #ifdef NDEBUG
190         InfoObj.EmitKey(Out, I->Key, Len.first);
191         InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
192 #else
193         // In asserts mode, check that the users length matches the data they
194         // wrote.
195         uint64_t KeyStart = Out.tell();
196         InfoObj.EmitKey(Out, I->Key, Len.first);
197         uint64_t DataStart = Out.tell();
198         InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
199         uint64_t End = Out.tell();
200         assert(offset_type(DataStart - KeyStart) == Len.first &&
201                "key length does not match bytes written");
202         assert(offset_type(End - DataStart) == Len.second &&
203                "data length does not match bytes written");
204 #endif
205       }
206     }
207 
208     // Pad with zeros so that we can start the hashtable at an aligned address.
209     offset_type TableOff = Out.tell();
210     uint64_t N = offsetToAlignment(TableOff, Align(alignof(offset_type)));
211     TableOff += N;
212     while (N--)
213       LE.write<uint8_t>(0);
214 
215     // Emit the hashtable itself.
216     LE.write<offset_type>(NumBuckets);
217     LE.write<offset_type>(NumEntries);
218     for (offset_type I = 0; I < NumBuckets; ++I)
219       LE.write<offset_type>(Buckets[I].Off);
220 
221     return TableOff;
222   }
223 
OnDiskChainedHashTableGenerator()224   OnDiskChainedHashTableGenerator() {
225     NumEntries = 0;
226     NumBuckets = 64;
227     // Note that we do not need to run the constructors of the individual
228     // Bucket objects since 'calloc' returns bytes that are all 0.
229     Buckets = static_cast<Bucket *>(safe_calloc(NumBuckets, sizeof(Bucket)));
230   }
231 
~OnDiskChainedHashTableGenerator()232   ~OnDiskChainedHashTableGenerator() { std::free(Buckets); }
233 };
234 
235 /// Provides lookup on an on disk hash table.
236 ///
237 /// This needs an \c Info that handles reading values from the hash table's
238 /// payload and computes the hash for a given key. This should provide the
239 /// following interface:
240 ///
241 /// \code
242 /// class ExampleLookupInfo {
243 /// public:
244 ///   typedef ExampleData data_type;
245 ///   typedef ExampleInternalKey internal_key_type; // The stored key type.
246 ///   typedef ExampleKey external_key_type; // The type to pass to find().
247 ///   typedef uint32_t hash_value_type; // The type the hash function returns.
248 ///   typedef uint32_t offset_type; // The type for offsets into the table.
249 ///
250 ///   /// Compare two keys for equality.
251 ///   static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2);
252 ///   /// Calculate the hash for the given key.
253 ///   static hash_value_type ComputeHash(internal_key_type &IKey);
254 ///   /// Translate from the semantic type of a key in the hash table to the
255 ///   /// type that is actually stored and used for hashing and comparisons.
256 ///   /// The internal and external types are often the same, in which case this
257 ///   /// can simply return the passed in value.
258 ///   static const internal_key_type &GetInternalKey(external_key_type &EKey);
259 ///   /// Read the key and data length from Buffer, leaving it pointing at the
260 ///   /// following byte.
261 ///   static std::pair<offset_type, offset_type>
262 ///   ReadKeyDataLength(const unsigned char *&Buffer);
263 ///   /// Read the key from Buffer, given the KeyLen as reported from
264 ///   /// ReadKeyDataLength.
265 ///   const internal_key_type &ReadKey(const unsigned char *Buffer,
266 ///                                    offset_type KeyLen);
267 ///   /// Read the data for Key from Buffer, given the DataLen as reported from
268 ///   /// ReadKeyDataLength.
269 ///   data_type ReadData(StringRef Key, const unsigned char *Buffer,
270 ///                      offset_type DataLen);
271 /// };
272 /// \endcode
273 template <typename Info> class OnDiskChainedHashTable {
274   const typename Info::offset_type NumBuckets;
275   const typename Info::offset_type NumEntries;
276   const unsigned char *const Buckets;
277   const unsigned char *const Base;
278   Info InfoObj;
279 
280 public:
281   typedef Info InfoType;
282   typedef typename Info::internal_key_type internal_key_type;
283   typedef typename Info::external_key_type external_key_type;
284   typedef typename Info::data_type data_type;
285   typedef typename Info::hash_value_type hash_value_type;
286   typedef typename Info::offset_type offset_type;
287 
288   OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
289                          const unsigned char *Buckets,
290                          const unsigned char *Base,
291                          const Info &InfoObj = Info())
NumBuckets(NumBuckets)292       : NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets),
293         Base(Base), InfoObj(InfoObj) {
294     assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
295            "'buckets' must have a 4-byte alignment");
296   }
297 
298   /// Read the number of buckets and the number of entries from a hash table
299   /// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets
300   /// pointer past them.
301   static std::pair<offset_type, offset_type>
readNumBucketsAndEntries(const unsigned char * & Buckets)302   readNumBucketsAndEntries(const unsigned char *&Buckets) {
303     assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
304            "buckets should be 4-byte aligned.");
305     using namespace llvm::support;
306     offset_type NumBuckets =
307         endian::readNext<offset_type, llvm::endianness::little, aligned>(
308             Buckets);
309     offset_type NumEntries =
310         endian::readNext<offset_type, llvm::endianness::little, aligned>(
311             Buckets);
312     return std::make_pair(NumBuckets, NumEntries);
313   }
314 
getNumBuckets()315   offset_type getNumBuckets() const { return NumBuckets; }
getNumEntries()316   offset_type getNumEntries() const { return NumEntries; }
getBase()317   const unsigned char *getBase() const { return Base; }
getBuckets()318   const unsigned char *getBuckets() const { return Buckets; }
319 
isEmpty()320   bool isEmpty() const { return NumEntries == 0; }
321 
322   class iterator {
323     internal_key_type Key;
324     const unsigned char *const Data;
325     const offset_type Len;
326     Info *InfoObj;
327 
328   public:
iterator()329     iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {}
iterator(const internal_key_type K,const unsigned char * D,offset_type L,Info * InfoObj)330     iterator(const internal_key_type K, const unsigned char *D, offset_type L,
331              Info *InfoObj)
332         : Key(K), Data(D), Len(L), InfoObj(InfoObj) {}
333 
334     data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); }
335 
getDataPtr()336     const unsigned char *getDataPtr() const { return Data; }
getDataLen()337     offset_type getDataLen() const { return Len; }
338 
339     bool operator==(const iterator &X) const { return X.Data == Data; }
340     bool operator!=(const iterator &X) const { return X.Data != Data; }
341   };
342 
343   /// Look up the stored data for a particular key.
344   iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) {
345     const internal_key_type &IKey = InfoObj.GetInternalKey(EKey);
346     hash_value_type KeyHash = InfoObj.ComputeHash(IKey);
347     return find_hashed(IKey, KeyHash, InfoPtr);
348   }
349 
350   /// Look up the stored data for a particular key with a known hash.
351   iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash,
352                        Info *InfoPtr = nullptr) {
353     using namespace llvm::support;
354 
355     if (!InfoPtr)
356       InfoPtr = &InfoObj;
357 
358     // Each bucket is just an offset into the hash table file.
359     offset_type Idx = KeyHash & (NumBuckets - 1);
360     const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx;
361 
362     offset_type Offset =
363         endian::readNext<offset_type, llvm::endianness::little, aligned>(
364             Bucket);
365     if (Offset == 0)
366       return iterator(); // Empty bucket.
367     const unsigned char *Items = Base + Offset;
368 
369     // 'Items' starts with a 16-bit unsigned integer representing the
370     // number of items in this bucket.
371     unsigned Len =
372         endian::readNext<uint16_t, llvm::endianness::little, unaligned>(Items);
373 
374     for (unsigned i = 0; i < Len; ++i) {
375       // Read the hash.
376       hash_value_type ItemHash =
377           endian::readNext<hash_value_type, llvm::endianness::little,
378                            unaligned>(Items);
379 
380       // Determine the length of the key and the data.
381       const std::pair<offset_type, offset_type> &L =
382           Info::ReadKeyDataLength(Items);
383       offset_type ItemLen = L.first + L.second;
384 
385       // Compare the hashes.  If they are not the same, skip the entry entirely.
386       if (ItemHash != KeyHash) {
387         Items += ItemLen;
388         continue;
389       }
390 
391       // Read the key.
392       const internal_key_type &X =
393           InfoPtr->ReadKey((const unsigned char *const)Items, L.first);
394 
395       // If the key doesn't match just skip reading the value.
396       if (!InfoPtr->EqualKey(X, IKey)) {
397         Items += ItemLen;
398         continue;
399       }
400 
401       // The key matches!
402       return iterator(X, Items + L.first, L.second, InfoPtr);
403     }
404 
405     return iterator();
406   }
407 
end()408   iterator end() const { return iterator(); }
409 
getInfoObj()410   Info &getInfoObj() { return InfoObj; }
411 
412   /// Create the hash table.
413   ///
414   /// \param Buckets is the beginning of the hash table itself, which follows
415   /// the payload of entire structure. This is the value returned by
416   /// OnDiskHashTableGenerator::Emit.
417   ///
418   /// \param Base is the point from which all offsets into the structure are
419   /// based. This is offset 0 in the stream that was used when Emitting the
420   /// table.
421   static OnDiskChainedHashTable *Create(const unsigned char *Buckets,
422                                         const unsigned char *const Base,
423                                         const Info &InfoObj = Info()) {
424     assert(Buckets > Base);
425     auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets);
426     return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first,
427                                             NumBucketsAndEntries.second,
428                                             Buckets, Base, InfoObj);
429   }
430 };
431 
432 /// Provides lookup and iteration over an on disk hash table.
433 ///
434 /// \copydetails llvm::OnDiskChainedHashTable
435 template <typename Info>
436 class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> {
437   const unsigned char *Payload;
438 
439 public:
440   typedef OnDiskChainedHashTable<Info>          base_type;
441   typedef typename base_type::internal_key_type internal_key_type;
442   typedef typename base_type::external_key_type external_key_type;
443   typedef typename base_type::data_type         data_type;
444   typedef typename base_type::hash_value_type   hash_value_type;
445   typedef typename base_type::offset_type       offset_type;
446 
447 private:
448   /// Iterates over all of the keys in the table.
449   class iterator_base {
450     const unsigned char *Ptr;
451     offset_type NumItemsInBucketLeft;
452     offset_type NumEntriesLeft;
453 
454   public:
455     typedef external_key_type value_type;
456 
iterator_base(const unsigned char * const Ptr,offset_type NumEntries)457     iterator_base(const unsigned char *const Ptr, offset_type NumEntries)
458         : Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {}
iterator_base()459     iterator_base()
460         : Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {}
461 
462     friend bool operator==(const iterator_base &X, const iterator_base &Y) {
463       return X.NumEntriesLeft == Y.NumEntriesLeft;
464     }
465     friend bool operator!=(const iterator_base &X, const iterator_base &Y) {
466       return X.NumEntriesLeft != Y.NumEntriesLeft;
467     }
468 
469     /// Move to the next item.
advance()470     void advance() {
471       using namespace llvm::support;
472       if (!NumItemsInBucketLeft) {
473         // 'Items' starts with a 16-bit unsigned integer representing the
474         // number of items in this bucket.
475         NumItemsInBucketLeft =
476             endian::readNext<uint16_t, llvm::endianness::little, unaligned>(
477                 Ptr);
478       }
479       Ptr += sizeof(hash_value_type); // Skip the hash.
480       // Determine the length of the key and the data.
481       const std::pair<offset_type, offset_type> &L =
482           Info::ReadKeyDataLength(Ptr);
483       Ptr += L.first + L.second;
484       assert(NumItemsInBucketLeft);
485       --NumItemsInBucketLeft;
486       assert(NumEntriesLeft);
487       --NumEntriesLeft;
488     }
489 
490     /// Get the start of the item as written by the trait (after the hash and
491     /// immediately before the key and value length).
getItem()492     const unsigned char *getItem() const {
493       return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type);
494     }
495   };
496 
497 public:
498   OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
499                                  const unsigned char *Buckets,
500                                  const unsigned char *Payload,
501                                  const unsigned char *Base,
502                                  const Info &InfoObj = Info())
base_type(NumBuckets,NumEntries,Buckets,Base,InfoObj)503       : base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj),
504         Payload(Payload) {}
505 
506   /// Iterates over all of the keys in the table.
507   class key_iterator : public iterator_base {
508     Info *InfoObj;
509 
510   public:
511     typedef external_key_type value_type;
512 
key_iterator(const unsigned char * const Ptr,offset_type NumEntries,Info * InfoObj)513     key_iterator(const unsigned char *const Ptr, offset_type NumEntries,
514                  Info *InfoObj)
515         : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
key_iterator()516     key_iterator() : iterator_base(), InfoObj() {}
517 
518     key_iterator &operator++() {
519       this->advance();
520       return *this;
521     }
522     key_iterator operator++(int) { // Postincrement
523       key_iterator tmp = *this;
524       ++*this;
525       return tmp;
526     }
527 
getInternalKey()528     internal_key_type getInternalKey() const {
529       auto *LocalPtr = this->getItem();
530 
531       // Determine the length of the key and the data.
532       auto L = Info::ReadKeyDataLength(LocalPtr);
533 
534       // Read the key.
535       return InfoObj->ReadKey(LocalPtr, L.first);
536     }
537 
538     value_type operator*() const {
539       return InfoObj->GetExternalKey(getInternalKey());
540     }
541   };
542 
key_begin()543   key_iterator key_begin() {
544     return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
545   }
key_end()546   key_iterator key_end() { return key_iterator(); }
547 
keys()548   iterator_range<key_iterator> keys() {
549     return make_range(key_begin(), key_end());
550   }
551 
552   /// Iterates over all the entries in the table, returning the data.
553   class data_iterator : public iterator_base {
554     Info *InfoObj;
555 
556   public:
557     typedef data_type value_type;
558 
data_iterator(const unsigned char * const Ptr,offset_type NumEntries,Info * InfoObj)559     data_iterator(const unsigned char *const Ptr, offset_type NumEntries,
560                   Info *InfoObj)
561         : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
data_iterator()562     data_iterator() : iterator_base(), InfoObj() {}
563 
564     data_iterator &operator++() { // Preincrement
565       this->advance();
566       return *this;
567     }
568     data_iterator operator++(int) { // Postincrement
569       data_iterator tmp = *this;
570       ++*this;
571       return tmp;
572     }
573 
574     value_type operator*() const {
575       auto *LocalPtr = this->getItem();
576 
577       // Determine the length of the key and the data.
578       auto L = Info::ReadKeyDataLength(LocalPtr);
579 
580       // Read the key.
581       const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
582       return InfoObj->ReadData(Key, LocalPtr + L.first, L.second);
583     }
584   };
585 
data_begin()586   data_iterator data_begin() {
587     return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
588   }
data_end()589   data_iterator data_end() { return data_iterator(); }
590 
data()591   iterator_range<data_iterator> data() {
592     return make_range(data_begin(), data_end());
593   }
594 
595   /// Create the hash table.
596   ///
597   /// \param Buckets is the beginning of the hash table itself, which follows
598   /// the payload of entire structure. This is the value returned by
599   /// OnDiskHashTableGenerator::Emit.
600   ///
601   /// \param Payload is the beginning of the data contained in the table.  This
602   /// is Base plus any padding or header data that was stored, ie, the offset
603   /// that the stream was at when calling Emit.
604   ///
605   /// \param Base is the point from which all offsets into the structure are
606   /// based. This is offset 0 in the stream that was used when Emitting the
607   /// table.
608   static OnDiskIterableChainedHashTable *
609   Create(const unsigned char *Buckets, const unsigned char *const Payload,
610          const unsigned char *const Base, const Info &InfoObj = Info()) {
611     assert(Buckets > Base);
612     auto NumBucketsAndEntries =
613         OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets);
614     return new OnDiskIterableChainedHashTable<Info>(
615         NumBucketsAndEntries.first, NumBucketsAndEntries.second,
616         Buckets, Payload, Base, InfoObj);
617   }
618 };
619 
620 } // end namespace llvm
621 
622 #endif
623