• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the SmallVector class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_SMALLVECTOR_H
15 #define LLVM_ADT_SMALLVECTOR_H
16 
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/type_traits.h"
19 #include <algorithm>
20 #include <cassert>
21 #include <cstddef>
22 #include <cstdlib>
23 #include <cstring>
24 #include <functional>
25 #include <initializer_list>
26 #include <iterator>
27 #include <limits>
28 #include <memory>
29 #include <new>
30 #include <type_traits>
31 #include <utility>
32 
33 namespace llvm {
34 
35 template <typename T> class ArrayRef;
36 
37 template <typename IteratorT> class iterator_range;
38 
39 template <class Iterator>
40 using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible<
41     typename std::iterator_traits<Iterator>::iterator_category,
42     std::input_iterator_tag>::value>;
43 
44 /// This is all the stuff common to all SmallVectors.
45 ///
46 /// The template parameter specifies the type which should be used to hold the
47 /// Size and Capacity of the SmallVector, so it can be adjusted.
48 /// Using 32 bit size is desirable to shrink the size of the SmallVector.
49 /// Using 64 bit size is desirable for cases like SmallVector<char>, where a
50 /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
51 /// buffering bitcode output - which can exceed 4GB.
52 template <class Size_T> class SmallVectorBase {
53 protected:
54   void *BeginX;
55   Size_T Size = 0, Capacity;
56 
57   /// The maximum value of the Size_T used.
SizeTypeMax()58   static constexpr size_t SizeTypeMax() {
59     return std::numeric_limits<Size_T>::max();
60   }
61 
62   SmallVectorBase() = delete;
SmallVectorBase(void * FirstEl,size_t TotalCapacity)63   SmallVectorBase(void *FirstEl, size_t TotalCapacity)
64       : BeginX(FirstEl), Capacity(static_cast<Size_T>(TotalCapacity)) {}
65 
66   /// This is a helper for \a grow() that's out of line to reduce code
67   /// duplication.  This function will report a fatal error if it can't grow at
68   /// least to \p MinSize.
69   void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize,
70                       size_t &NewCapacity);
71 
72   /// This is an implementation of the grow() method which only works
73   /// on POD-like data types and is out of line to reduce code duplication.
74   /// This function will report a fatal error if it cannot increase capacity.
75   void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
76 
77   /// If vector was first created with capacity 0, getFirstEl() points to the
78   /// memory right after, an area unallocated. If a subsequent allocation,
79   /// that grows the vector, happens to return the same pointer as getFirstEl(),
80   /// get a new allocation, otherwise isSmall() will falsely return that no
81   /// allocation was done (true) and the memory will not be freed in the
82   /// destructor. If a VSize is given (vector size), also copy that many
83   /// elements to the new allocation - used if realloca fails to increase
84   /// space, and happens to allocate precisely at BeginX.
85   /// This is unlikely to be called often, but resolves a memory leak when the
86   /// situation does occur.
87   void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity,
88                           size_t VSize = 0);
89 
90 public:
size()91   size_t size() const { return Size; }
capacity()92   size_t capacity() const { return Capacity; }
93 
empty()94   [[nodiscard]] bool empty() const { return !Size; }
95 
96 protected:
97   /// Set the array size to \p N, which the current array must have enough
98   /// capacity for.
99   ///
100   /// This does not construct or destroy any elements in the vector.
set_size(size_t N)101   void set_size(size_t N) {
102     assert(N <= capacity()); // implies no overflow in assignment
103     Size = static_cast<Size_T>(N);
104   }
105 
106   /// Set the array data pointer to \p Begin and capacity to \p N.
107   ///
108   /// This does not construct or destroy any elements in the vector.
109   //  This does not clean up any existing allocation.
set_allocation_range(void * Begin,size_t N)110   void set_allocation_range(void *Begin, size_t N) {
111     assert(N <= SizeTypeMax());
112     BeginX = Begin;
113     Capacity = static_cast<Size_T>(N);
114   }
115 };
116 
117 template <class T>
118 using SmallVectorSizeType =
119     std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
120                        uint32_t>;
121 
122 /// Figure out the offset of the first element.
123 template <class T, typename = void> struct SmallVectorAlignmentAndSize {
124   alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
125       SmallVectorBase<SmallVectorSizeType<T>>)];
126   alignas(T) char FirstEl[sizeof(T)];
127 };
128 
129 /// This is the part of SmallVectorTemplateBase which does not depend on whether
130 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
131 /// to avoid unnecessarily requiring T to be complete.
132 template <typename T, typename = void>
133 class SmallVectorTemplateCommon
134     : public SmallVectorBase<SmallVectorSizeType<T>> {
135   using Base = SmallVectorBase<SmallVectorSizeType<T>>;
136 
137 protected:
138   /// Find the address of the first element.  For this pointer math to be valid
139   /// with small-size of 0 for T with lots of alignment, it's important that
140   /// SmallVectorStorage is properly-aligned even for small-size of 0.
getFirstEl()141   void *getFirstEl() const {
142     return const_cast<void *>(reinterpret_cast<const void *>(
143         reinterpret_cast<const char *>(this) +
144         offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
145   }
146   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
147 
SmallVectorTemplateCommon(size_t Size)148   SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
149 
grow_pod(size_t MinSize,size_t TSize)150   void grow_pod(size_t MinSize, size_t TSize) {
151     Base::grow_pod(getFirstEl(), MinSize, TSize);
152   }
153 
154   /// Return true if this is a smallvector which has not had dynamic
155   /// memory allocated for it.
isSmall()156   bool isSmall() const { return this->BeginX == getFirstEl(); }
157 
158   /// Put this vector in a state of being small.
resetToSmall()159   void resetToSmall() {
160     this->BeginX = getFirstEl();
161     this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
162   }
163 
164   /// Return true if V is an internal reference to the given range.
isReferenceToRange(const void * V,const void * First,const void * Last)165   bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
166     // Use std::less to avoid UB.
167     std::less<> LessThan;
168     return !LessThan(V, First) && LessThan(V, Last);
169   }
170 
171   /// Return true if V is an internal reference to this vector.
isReferenceToStorage(const void * V)172   bool isReferenceToStorage(const void *V) const {
173     return isReferenceToRange(V, this->begin(), this->end());
174   }
175 
176   /// Return true if First and Last form a valid (possibly empty) range in this
177   /// vector's storage.
isRangeInStorage(const void * First,const void * Last)178   bool isRangeInStorage(const void *First, const void *Last) const {
179     // Use std::less to avoid UB.
180     std::less<> LessThan;
181     return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
182            !LessThan(this->end(), Last);
183   }
184 
185   /// Return true unless Elt will be invalidated by resizing the vector to
186   /// NewSize.
isSafeToReferenceAfterResize(const void * Elt,size_t NewSize)187   bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
188     // Past the end.
189     if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
190       return true;
191 
192     // Return false if Elt will be destroyed by shrinking.
193     if (NewSize <= this->size())
194       return Elt < this->begin() + NewSize;
195 
196     // Return false if we need to grow.
197     return NewSize <= this->capacity();
198   }
199 
200   /// Check whether Elt will be invalidated by resizing the vector to NewSize.
assertSafeToReferenceAfterResize(const void * Elt,size_t NewSize)201   void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
202     assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
203            "Attempting to reference an element of the vector in an operation "
204            "that invalidates it");
205   }
206 
207   /// Check whether Elt will be invalidated by increasing the size of the
208   /// vector by N.
209   void assertSafeToAdd(const void *Elt, size_t N = 1) {
210     this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
211   }
212 
213   /// Check whether any part of the range will be invalidated by clearing.
assertSafeToReferenceAfterClear(const T * From,const T * To)214   void assertSafeToReferenceAfterClear(const T *From, const T *To) {
215     if (From == To)
216       return;
217     this->assertSafeToReferenceAfterResize(From, 0);
218     this->assertSafeToReferenceAfterResize(To - 1, 0);
219   }
220   template <
221       class ItTy,
222       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
223                        bool> = false>
assertSafeToReferenceAfterClear(ItTy,ItTy)224   void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
225 
226   /// Check whether any part of the range will be invalidated by growing.
assertSafeToAddRange(const T * From,const T * To)227   void assertSafeToAddRange(const T *From, const T *To) {
228     if (From == To)
229       return;
230     this->assertSafeToAdd(From, To - From);
231     this->assertSafeToAdd(To - 1, To - From);
232   }
233   template <
234       class ItTy,
235       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
236                        bool> = false>
assertSafeToAddRange(ItTy,ItTy)237   void assertSafeToAddRange(ItTy, ItTy) {}
238 
239   /// Reserve enough space to add one element, and return the updated element
240   /// pointer in case it was a reference to the storage.
241   template <class U>
reserveForParamAndGetAddressImpl(U * This,const T & Elt,size_t N)242   static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
243                                                    size_t N) {
244     size_t NewSize = This->size() + N;
245     if (LLVM_LIKELY(NewSize <= This->capacity()))
246       return &Elt;
247 
248     bool ReferencesStorage = false;
249     int64_t Index = -1;
250     if (!U::TakesParamByValue) {
251       if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
252         ReferencesStorage = true;
253         Index = &Elt - This->begin();
254       }
255     }
256     This->grow(NewSize);
257     return ReferencesStorage ? This->begin() + Index : &Elt;
258   }
259 
260 public:
261   using size_type = size_t;
262   using difference_type = ptrdiff_t;
263   using value_type = T;
264   using iterator = T *;
265   using const_iterator = const T *;
266 
267   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
268   using reverse_iterator = std::reverse_iterator<iterator>;
269 
270   using reference = T &;
271   using const_reference = const T &;
272   using pointer = T *;
273   using const_pointer = const T *;
274 
275   using Base::capacity;
276   using Base::empty;
277   using Base::size;
278 
279   // forward iterator creation methods.
begin()280   iterator begin() { return (iterator)this->BeginX; }
begin()281   const_iterator begin() const { return (const_iterator)this->BeginX; }
end()282   iterator end() { return begin() + size(); }
end()283   const_iterator end() const { return begin() + size(); }
284 
285   // reverse iterator creation methods.
rbegin()286   reverse_iterator rbegin()            { return reverse_iterator(end()); }
rbegin()287   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
rend()288   reverse_iterator rend()              { return reverse_iterator(begin()); }
rend()289   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
290 
size_in_bytes()291   size_type size_in_bytes() const { return size() * sizeof(T); }
max_size()292   size_type max_size() const {
293     return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
294   }
295 
capacity_in_bytes()296   size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
297 
298   /// Return a pointer to the vector's buffer, even if empty().
data()299   pointer data() { return pointer(begin()); }
300   /// Return a pointer to the vector's buffer, even if empty().
data()301   const_pointer data() const { return const_pointer(begin()); }
302 
303   reference operator[](size_type idx) {
304     assert(idx < size());
305     return begin()[idx];
306   }
307   const_reference operator[](size_type idx) const {
308     assert(idx < size());
309     return begin()[idx];
310   }
311 
front()312   reference front() {
313     assert(!empty());
314     return begin()[0];
315   }
front()316   const_reference front() const {
317     assert(!empty());
318     return begin()[0];
319   }
320 
back()321   reference back() {
322     assert(!empty());
323     return end()[-1];
324   }
back()325   const_reference back() const {
326     assert(!empty());
327     return end()[-1];
328   }
329 };
330 
331 /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
332 /// method implementations that are designed to work with non-trivial T's.
333 ///
334 /// We approximate is_trivially_copyable with trivial move/copy construction and
335 /// trivial destruction. While the standard doesn't specify that you're allowed
336 /// copy these types with memcpy, there is no way for the type to observe this.
337 /// This catches the important case of std::pair<POD, POD>, which is not
338 /// trivially assignable.
339 template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) &&
340                              (std::is_trivially_move_constructible<T>::value) &&
341                              std::is_trivially_destructible<T>::value>
342 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
343   friend class SmallVectorTemplateCommon<T>;
344 
345 protected:
346   static constexpr bool TakesParamByValue = false;
347   using ValueParamT = const T &;
348 
SmallVectorTemplateBase(size_t Size)349   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
350 
destroy_range(T * S,T * E)351   static void destroy_range(T *S, T *E) {
352     while (S != E) {
353       --E;
354       E->~T();
355     }
356   }
357 
358   /// Move the range [I, E) into the uninitialized memory starting with "Dest",
359   /// constructing elements as needed.
360   template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)361   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
362     std::uninitialized_move(I, E, Dest);
363   }
364 
365   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
366   /// constructing elements as needed.
367   template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)368   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
369     std::uninitialized_copy(I, E, Dest);
370   }
371 
372   /// Grow the allocated memory (without initializing new elements), doubling
373   /// the size of the allocated memory. Guarantees space for at least one more
374   /// element, or MinSize more elements if specified.
375   void grow(size_t MinSize = 0);
376 
377   /// Create a new allocation big enough for \p MinSize and pass back its size
378   /// in \p NewCapacity. This is the first section of \a grow().
379   T *mallocForGrow(size_t MinSize, size_t &NewCapacity);
380 
381   /// Move existing elements over to the new allocation \p NewElts, the middle
382   /// section of \a grow().
383   void moveElementsForGrow(T *NewElts);
384 
385   /// Transfer ownership of the allocation, finishing up \a grow().
386   void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
387 
388   /// Reserve enough space to add one element, and return the updated element
389   /// pointer in case it was a reference to the storage.
390   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
391     return this->reserveForParamAndGetAddressImpl(this, Elt, N);
392   }
393 
394   /// Reserve enough space to add one element, and return the updated element
395   /// pointer in case it was a reference to the storage.
396   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
397     return const_cast<T *>(
398         this->reserveForParamAndGetAddressImpl(this, Elt, N));
399   }
400 
forward_value_param(T && V)401   static T &&forward_value_param(T &&V) { return std::move(V); }
forward_value_param(const T & V)402   static const T &forward_value_param(const T &V) { return V; }
403 
growAndAssign(size_t NumElts,const T & Elt)404   void growAndAssign(size_t NumElts, const T &Elt) {
405     // Grow manually in case Elt is an internal reference.
406     size_t NewCapacity;
407     T *NewElts = mallocForGrow(NumElts, NewCapacity);
408     std::uninitialized_fill_n(NewElts, NumElts, Elt);
409     this->destroy_range(this->begin(), this->end());
410     takeAllocationForGrow(NewElts, NewCapacity);
411     this->set_size(NumElts);
412   }
413 
growAndEmplaceBack(ArgTypes &&...Args)414   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
415     // Grow manually in case one of Args is an internal reference.
416     size_t NewCapacity;
417     T *NewElts = mallocForGrow(0, NewCapacity);
418     ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
419     moveElementsForGrow(NewElts);
420     takeAllocationForGrow(NewElts, NewCapacity);
421     this->set_size(this->size() + 1);
422     return this->back();
423   }
424 
425 public:
push_back(const T & Elt)426   void push_back(const T &Elt) {
427     const T *EltPtr = reserveForParamAndGetAddress(Elt);
428     ::new ((void *)this->end()) T(*EltPtr);
429     this->set_size(this->size() + 1);
430   }
431 
push_back(T && Elt)432   void push_back(T &&Elt) {
433     T *EltPtr = reserveForParamAndGetAddress(Elt);
434     ::new ((void *)this->end()) T(::std::move(*EltPtr));
435     this->set_size(this->size() + 1);
436   }
437 
pop_back()438   void pop_back() {
439     this->set_size(this->size() - 1);
440     this->end()->~T();
441   }
442 };
443 
444 // Define this out-of-line to dissuade the C++ compiler from inlining it.
445 template <typename T, bool TriviallyCopyable>
grow(size_t MinSize)446 void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
447   size_t NewCapacity;
448   T *NewElts = mallocForGrow(MinSize, NewCapacity);
449   moveElementsForGrow(NewElts);
450   takeAllocationForGrow(NewElts, NewCapacity);
451 }
452 
453 template <typename T, bool TriviallyCopyable>
mallocForGrow(size_t MinSize,size_t & NewCapacity)454 T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow(
455     size_t MinSize, size_t &NewCapacity) {
456   return static_cast<T *>(
457       SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
458           this->getFirstEl(), MinSize, sizeof(T), NewCapacity));
459 }
460 
461 // Define this out-of-line to dissuade the C++ compiler from inlining it.
462 template <typename T, bool TriviallyCopyable>
moveElementsForGrow(T * NewElts)463 void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
464     T *NewElts) {
465   // Move the elements over.
466   this->uninitialized_move(this->begin(), this->end(), NewElts);
467 
468   // Destroy the original elements.
469   destroy_range(this->begin(), this->end());
470 }
471 
472 // Define this out-of-line to dissuade the C++ compiler from inlining it.
473 template <typename T, bool TriviallyCopyable>
takeAllocationForGrow(T * NewElts,size_t NewCapacity)474 void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
475     T *NewElts, size_t NewCapacity) {
476   // If this wasn't grown from the inline copy, deallocate the old space.
477   if (!this->isSmall())
478     free(this->begin());
479 
480   this->set_allocation_range(NewElts, NewCapacity);
481 }
482 
483 /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
484 /// method implementations that are designed to work with trivially copyable
485 /// T's. This allows using memcpy in place of copy/move construction and
486 /// skipping destruction.
487 template <typename T>
488 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
489   friend class SmallVectorTemplateCommon<T>;
490 
491 protected:
492   /// True if it's cheap enough to take parameters by value. Doing so avoids
493   /// overhead related to mitigations for reference invalidation.
494   static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
495 
496   /// Either const T& or T, depending on whether it's cheap enough to take
497   /// parameters by value.
498   using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;
499 
SmallVectorTemplateBase(size_t Size)500   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
501 
502   // No need to do a destroy loop for POD's.
destroy_range(T *,T *)503   static void destroy_range(T *, T *) {}
504 
505   /// Move the range [I, E) onto the uninitialized memory
506   /// starting with "Dest", constructing elements into it as needed.
507   template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)508   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
509     // Just do a copy.
510     uninitialized_copy(I, E, Dest);
511   }
512 
513   /// Copy the range [I, E) onto the uninitialized memory
514   /// starting with "Dest", constructing elements into it as needed.
515   template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)516   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
517     // Arbitrary iterator types; just use the basic implementation.
518     std::uninitialized_copy(I, E, Dest);
519   }
520 
521   /// Copy the range [I, E) onto the uninitialized memory
522   /// starting with "Dest", constructing elements into it as needed.
523   template <typename T1, typename T2>
524   static void uninitialized_copy(
525       T1 *I, T1 *E, T2 *Dest,
526       std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * =
527           nullptr) {
528     // Use memcpy for PODs iterated by pointers (which includes SmallVector
529     // iterators): std::uninitialized_copy optimizes to memmove, but we can
530     // use memcpy here. Note that I and E are iterators and thus might be
531     // invalid for memcpy if they are equal.
532     if (I != E)
533       memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
534   }
535 
536   /// Double the size of the allocated memory, guaranteeing space for at
537   /// least one more element or MinSize if specified.
538   void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
539 
540   /// Reserve enough space to add one element, and return the updated element
541   /// pointer in case it was a reference to the storage.
542   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
543     return this->reserveForParamAndGetAddressImpl(this, Elt, N);
544   }
545 
546   /// Reserve enough space to add one element, and return the updated element
547   /// pointer in case it was a reference to the storage.
548   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
549     return const_cast<T *>(
550         this->reserveForParamAndGetAddressImpl(this, Elt, N));
551   }
552 
553   /// Copy \p V or return a reference, depending on \a ValueParamT.
forward_value_param(ValueParamT V)554   static ValueParamT forward_value_param(ValueParamT V) { return V; }
555 
growAndAssign(size_t NumElts,T Elt)556   void growAndAssign(size_t NumElts, T Elt) {
557     // Elt has been copied in case it's an internal reference, side-stepping
558     // reference invalidation problems without losing the realloc optimization.
559     this->set_size(0);
560     this->grow(NumElts);
561     std::uninitialized_fill_n(this->begin(), NumElts, Elt);
562     this->set_size(NumElts);
563   }
564 
growAndEmplaceBack(ArgTypes &&...Args)565   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
566     // Use push_back with a copy in case Args has an internal reference,
567     // side-stepping reference invalidation problems without losing the realloc
568     // optimization.
569     push_back(T(std::forward<ArgTypes>(Args)...));
570     return this->back();
571   }
572 
573 public:
push_back(ValueParamT Elt)574   void push_back(ValueParamT Elt) {
575     const T *EltPtr = reserveForParamAndGetAddress(Elt);
576     memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
577     this->set_size(this->size() + 1);
578   }
579 
pop_back()580   void pop_back() { this->set_size(this->size() - 1); }
581 };
582 
583 /// This class consists of common code factored out of the SmallVector class to
584 /// reduce code duplication based on the SmallVector 'N' template parameter.
585 template <typename T>
586 class SmallVectorImpl : public SmallVectorTemplateBase<T> {
587   using SuperClass = SmallVectorTemplateBase<T>;
588 
589 public:
590   using iterator = typename SuperClass::iterator;
591   using const_iterator = typename SuperClass::const_iterator;
592   using reference = typename SuperClass::reference;
593   using size_type = typename SuperClass::size_type;
594 
595 protected:
596   using SmallVectorTemplateBase<T>::TakesParamByValue;
597   using ValueParamT = typename SuperClass::ValueParamT;
598 
599   // Default ctor - Initialize to empty.
SmallVectorImpl(unsigned N)600   explicit SmallVectorImpl(unsigned N)
601       : SmallVectorTemplateBase<T>(N) {}
602 
assignRemote(SmallVectorImpl && RHS)603   void assignRemote(SmallVectorImpl &&RHS) {
604     this->destroy_range(this->begin(), this->end());
605     if (!this->isSmall())
606       free(this->begin());
607     this->BeginX = RHS.BeginX;
608     this->Size = RHS.Size;
609     this->Capacity = RHS.Capacity;
610     RHS.resetToSmall();
611   }
612 
~SmallVectorImpl()613   ~SmallVectorImpl() {
614     // Subclass has already destructed this vector's elements.
615     // If this wasn't grown from the inline copy, deallocate the old space.
616     if (!this->isSmall())
617       free(this->begin());
618   }
619 
620 public:
621   SmallVectorImpl(const SmallVectorImpl &) = delete;
622 
clear()623   void clear() {
624     this->destroy_range(this->begin(), this->end());
625     this->Size = 0;
626   }
627 
628 private:
629   // Make set_size() private to avoid misuse in subclasses.
630   using SuperClass::set_size;
631 
resizeImpl(size_type N)632   template <bool ForOverwrite> void resizeImpl(size_type N) {
633     if (N == this->size())
634       return;
635 
636     if (N < this->size()) {
637       this->truncate(N);
638       return;
639     }
640 
641     this->reserve(N);
642     for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
643       if (ForOverwrite)
644         new (&*I) T;
645       else
646         new (&*I) T();
647     this->set_size(N);
648   }
649 
650 public:
resize(size_type N)651   void resize(size_type N) { resizeImpl<false>(N); }
652 
653   /// Like resize, but \ref T is POD, the new values won't be initialized.
resize_for_overwrite(size_type N)654   void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
655 
656   /// Like resize, but requires that \p N is less than \a size().
truncate(size_type N)657   void truncate(size_type N) {
658     assert(this->size() >= N && "Cannot increase size with truncate");
659     this->destroy_range(this->begin() + N, this->end());
660     this->set_size(N);
661   }
662 
resize(size_type N,ValueParamT NV)663   void resize(size_type N, ValueParamT NV) {
664     if (N == this->size())
665       return;
666 
667     if (N < this->size()) {
668       this->truncate(N);
669       return;
670     }
671 
672     // N > this->size(). Defer to append.
673     this->append(N - this->size(), NV);
674   }
675 
reserve(size_type N)676   void reserve(size_type N) {
677     if (this->capacity() < N)
678       this->grow(N);
679   }
680 
pop_back_n(size_type NumItems)681   void pop_back_n(size_type NumItems) {
682     assert(this->size() >= NumItems);
683     truncate(this->size() - NumItems);
684   }
685 
pop_back_val()686   [[nodiscard]] T pop_back_val() {
687     T Result = ::std::move(this->back());
688     this->pop_back();
689     return Result;
690   }
691 
692   void swap(SmallVectorImpl &RHS);
693 
694   /// Add the specified range to the end of the SmallVector.
695   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
append(ItTy in_start,ItTy in_end)696   void append(ItTy in_start, ItTy in_end) {
697     this->assertSafeToAddRange(in_start, in_end);
698     size_type NumInputs = std::distance(in_start, in_end);
699     this->reserve(this->size() + NumInputs);
700     this->uninitialized_copy(in_start, in_end, this->end());
701     this->set_size(this->size() + NumInputs);
702   }
703 
704   /// Append \p NumInputs copies of \p Elt to the end.
append(size_type NumInputs,ValueParamT Elt)705   void append(size_type NumInputs, ValueParamT Elt) {
706     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
707     std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
708     this->set_size(this->size() + NumInputs);
709   }
710 
append(std::initializer_list<T> IL)711   void append(std::initializer_list<T> IL) {
712     append(IL.begin(), IL.end());
713   }
714 
append(const SmallVectorImpl & RHS)715   void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
716 
assign(size_type NumElts,ValueParamT Elt)717   void assign(size_type NumElts, ValueParamT Elt) {
718     // Note that Elt could be an internal reference.
719     if (NumElts > this->capacity()) {
720       this->growAndAssign(NumElts, Elt);
721       return;
722     }
723 
724     // Assign over existing elements.
725     std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
726     if (NumElts > this->size())
727       std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
728     else if (NumElts < this->size())
729       this->destroy_range(this->begin() + NumElts, this->end());
730     this->set_size(NumElts);
731   }
732 
733   // FIXME: Consider assigning over existing elements, rather than clearing &
734   // re-initializing them - for all assign(...) variants.
735 
736   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
assign(ItTy in_start,ItTy in_end)737   void assign(ItTy in_start, ItTy in_end) {
738     this->assertSafeToReferenceAfterClear(in_start, in_end);
739     clear();
740     append(in_start, in_end);
741   }
742 
assign(std::initializer_list<T> IL)743   void assign(std::initializer_list<T> IL) {
744     clear();
745     append(IL);
746   }
747 
assign(const SmallVectorImpl & RHS)748   void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
749 
erase(const_iterator CI)750   iterator erase(const_iterator CI) {
751     // Just cast away constness because this is a non-const member function.
752     iterator I = const_cast<iterator>(CI);
753 
754     assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
755 
756     iterator N = I;
757     // Shift all elts down one.
758     std::move(I+1, this->end(), I);
759     // Drop the last elt.
760     this->pop_back();
761     return(N);
762   }
763 
erase(const_iterator CS,const_iterator CE)764   iterator erase(const_iterator CS, const_iterator CE) {
765     // Just cast away constness because this is a non-const member function.
766     iterator S = const_cast<iterator>(CS);
767     iterator E = const_cast<iterator>(CE);
768 
769     assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
770 
771     iterator N = S;
772     // Shift all elts down.
773     iterator I = std::move(E, this->end(), S);
774     // Drop the last elts.
775     this->destroy_range(I, this->end());
776     this->set_size(I - this->begin());
777     return(N);
778   }
779 
780 private:
insert_one_impl(iterator I,ArgType && Elt)781   template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
782     // Callers ensure that ArgType is derived from T.
783     static_assert(
784         std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
785                      T>::value,
786         "ArgType must be derived from T!");
787 
788     if (I == this->end()) {  // Important special case for empty vector.
789       this->push_back(::std::forward<ArgType>(Elt));
790       return this->end()-1;
791     }
792 
793     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
794 
795     // Grow if necessary.
796     size_t Index = I - this->begin();
797     std::remove_reference_t<ArgType> *EltPtr =
798         this->reserveForParamAndGetAddress(Elt);
799     I = this->begin() + Index;
800 
801     ::new ((void*) this->end()) T(::std::move(this->back()));
802     // Push everything else over.
803     std::move_backward(I, this->end()-1, this->end());
804     this->set_size(this->size() + 1);
805 
806     // If we just moved the element we're inserting, be sure to update
807     // the reference (never happens if TakesParamByValue).
808     static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
809                   "ArgType must be 'T' when taking by value!");
810     if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
811       ++EltPtr;
812 
813     *I = ::std::forward<ArgType>(*EltPtr);
814     return I;
815   }
816 
817 public:
insert(iterator I,T && Elt)818   iterator insert(iterator I, T &&Elt) {
819     return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
820   }
821 
insert(iterator I,const T & Elt)822   iterator insert(iterator I, const T &Elt) {
823     return insert_one_impl(I, this->forward_value_param(Elt));
824   }
825 
insert(iterator I,size_type NumToInsert,ValueParamT Elt)826   iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
827     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
828     size_t InsertElt = I - this->begin();
829 
830     if (I == this->end()) {  // Important special case for empty vector.
831       append(NumToInsert, Elt);
832       return this->begin()+InsertElt;
833     }
834 
835     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
836 
837     // Ensure there is enough space, and get the (maybe updated) address of
838     // Elt.
839     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
840 
841     // Uninvalidate the iterator.
842     I = this->begin()+InsertElt;
843 
844     // If there are more elements between the insertion point and the end of the
845     // range than there are being inserted, we can use a simple approach to
846     // insertion.  Since we already reserved space, we know that this won't
847     // reallocate the vector.
848     if (size_t(this->end()-I) >= NumToInsert) {
849       T *OldEnd = this->end();
850       append(std::move_iterator<iterator>(this->end() - NumToInsert),
851              std::move_iterator<iterator>(this->end()));
852 
853       // Copy the existing elements that get replaced.
854       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
855 
856       // If we just moved the element we're inserting, be sure to update
857       // the reference (never happens if TakesParamByValue).
858       if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
859         EltPtr += NumToInsert;
860 
861       std::fill_n(I, NumToInsert, *EltPtr);
862       return I;
863     }
864 
865     // Otherwise, we're inserting more elements than exist already, and we're
866     // not inserting at the end.
867 
868     // Move over the elements that we're about to overwrite.
869     T *OldEnd = this->end();
870     this->set_size(this->size() + NumToInsert);
871     size_t NumOverwritten = OldEnd-I;
872     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
873 
874     // If we just moved the element we're inserting, be sure to update
875     // the reference (never happens if TakesParamByValue).
876     if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
877       EltPtr += NumToInsert;
878 
879     // Replace the overwritten part.
880     std::fill_n(I, NumOverwritten, *EltPtr);
881 
882     // Insert the non-overwritten middle part.
883     std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
884     return I;
885   }
886 
887   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
insert(iterator I,ItTy From,ItTy To)888   iterator insert(iterator I, ItTy From, ItTy To) {
889     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
890     size_t InsertElt = I - this->begin();
891 
892     if (I == this->end()) {  // Important special case for empty vector.
893       append(From, To);
894       return this->begin()+InsertElt;
895     }
896 
897     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
898 
899     // Check that the reserve that follows doesn't invalidate the iterators.
900     this->assertSafeToAddRange(From, To);
901 
902     size_t NumToInsert = std::distance(From, To);
903 
904     // Ensure there is enough space.
905     reserve(this->size() + NumToInsert);
906 
907     // Uninvalidate the iterator.
908     I = this->begin()+InsertElt;
909 
910     // If there are more elements between the insertion point and the end of the
911     // range than there are being inserted, we can use a simple approach to
912     // insertion.  Since we already reserved space, we know that this won't
913     // reallocate the vector.
914     if (size_t(this->end()-I) >= NumToInsert) {
915       T *OldEnd = this->end();
916       append(std::move_iterator<iterator>(this->end() - NumToInsert),
917              std::move_iterator<iterator>(this->end()));
918 
919       // Copy the existing elements that get replaced.
920       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
921 
922       std::copy(From, To, I);
923       return I;
924     }
925 
926     // Otherwise, we're inserting more elements than exist already, and we're
927     // not inserting at the end.
928 
929     // Move over the elements that we're about to overwrite.
930     T *OldEnd = this->end();
931     this->set_size(this->size() + NumToInsert);
932     size_t NumOverwritten = OldEnd-I;
933     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
934 
935     // Replace the overwritten part.
936     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
937       *J = *From;
938       ++J; ++From;
939     }
940 
941     // Insert the non-overwritten middle part.
942     this->uninitialized_copy(From, To, OldEnd);
943     return I;
944   }
945 
insert(iterator I,std::initializer_list<T> IL)946   void insert(iterator I, std::initializer_list<T> IL) {
947     insert(I, IL.begin(), IL.end());
948   }
949 
emplace_back(ArgTypes &&...Args)950   template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
951     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
952       return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
953 
954     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
955     this->set_size(this->size() + 1);
956     return this->back();
957   }
958 
959   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
960 
961   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
962 
963   bool operator==(const SmallVectorImpl &RHS) const {
964     if (this->size() != RHS.size()) return false;
965     return std::equal(this->begin(), this->end(), RHS.begin());
966   }
967   bool operator!=(const SmallVectorImpl &RHS) const {
968     return !(*this == RHS);
969   }
970 
971   bool operator<(const SmallVectorImpl &RHS) const {
972     return std::lexicographical_compare(this->begin(), this->end(),
973                                         RHS.begin(), RHS.end());
974   }
975   bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; }
976   bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); }
977   bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); }
978 };
979 
980 template <typename T>
swap(SmallVectorImpl<T> & RHS)981 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
982   if (this == &RHS) return;
983 
984   // We can only avoid copying elements if neither vector is small.
985   if (!this->isSmall() && !RHS.isSmall()) {
986     std::swap(this->BeginX, RHS.BeginX);
987     std::swap(this->Size, RHS.Size);
988     std::swap(this->Capacity, RHS.Capacity);
989     return;
990   }
991   this->reserve(RHS.size());
992   RHS.reserve(this->size());
993 
994   // Swap the shared elements.
995   size_t NumShared = this->size();
996   if (NumShared > RHS.size()) NumShared = RHS.size();
997   for (size_type i = 0; i != NumShared; ++i)
998     std::swap((*this)[i], RHS[i]);
999 
1000   // Copy over the extra elts.
1001   if (this->size() > RHS.size()) {
1002     size_t EltDiff = this->size() - RHS.size();
1003     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
1004     RHS.set_size(RHS.size() + EltDiff);
1005     this->destroy_range(this->begin()+NumShared, this->end());
1006     this->set_size(NumShared);
1007   } else if (RHS.size() > this->size()) {
1008     size_t EltDiff = RHS.size() - this->size();
1009     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
1010     this->set_size(this->size() + EltDiff);
1011     this->destroy_range(RHS.begin()+NumShared, RHS.end());
1012     RHS.set_size(NumShared);
1013   }
1014 }
1015 
1016 template <typename T>
1017 SmallVectorImpl<T> &SmallVectorImpl<T>::
1018   operator=(const SmallVectorImpl<T> &RHS) {
1019   // Avoid self-assignment.
1020   if (this == &RHS) return *this;
1021 
1022   // If we already have sufficient space, assign the common elements, then
1023   // destroy any excess.
1024   size_t RHSSize = RHS.size();
1025   size_t CurSize = this->size();
1026   if (CurSize >= RHSSize) {
1027     // Assign common elements.
1028     iterator NewEnd;
1029     if (RHSSize)
1030       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
1031     else
1032       NewEnd = this->begin();
1033 
1034     // Destroy excess elements.
1035     this->destroy_range(NewEnd, this->end());
1036 
1037     // Trim.
1038     this->set_size(RHSSize);
1039     return *this;
1040   }
1041 
1042   // If we have to grow to have enough elements, destroy the current elements.
1043   // This allows us to avoid copying them during the grow.
1044   // FIXME: don't do this if they're efficiently moveable.
1045   if (this->capacity() < RHSSize) {
1046     // Destroy current elements.
1047     this->clear();
1048     CurSize = 0;
1049     this->grow(RHSSize);
1050   } else if (CurSize) {
1051     // Otherwise, use assignment for the already-constructed elements.
1052     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1053   }
1054 
1055   // Copy construct the new elements in place.
1056   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1057                            this->begin()+CurSize);
1058 
1059   // Set end.
1060   this->set_size(RHSSize);
1061   return *this;
1062 }
1063 
1064 template <typename T>
1065 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1066   // Avoid self-assignment.
1067   if (this == &RHS) return *this;
1068 
1069   // If the RHS isn't small, clear this vector and then steal its buffer.
1070   if (!RHS.isSmall()) {
1071     this->assignRemote(std::move(RHS));
1072     return *this;
1073   }
1074 
1075   // If we already have sufficient space, assign the common elements, then
1076   // destroy any excess.
1077   size_t RHSSize = RHS.size();
1078   size_t CurSize = this->size();
1079   if (CurSize >= RHSSize) {
1080     // Assign common elements.
1081     iterator NewEnd = this->begin();
1082     if (RHSSize)
1083       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1084 
1085     // Destroy excess elements and trim the bounds.
1086     this->destroy_range(NewEnd, this->end());
1087     this->set_size(RHSSize);
1088 
1089     // Clear the RHS.
1090     RHS.clear();
1091 
1092     return *this;
1093   }
1094 
1095   // If we have to grow to have enough elements, destroy the current elements.
1096   // This allows us to avoid copying them during the grow.
1097   // FIXME: this may not actually make any sense if we can efficiently move
1098   // elements.
1099   if (this->capacity() < RHSSize) {
1100     // Destroy current elements.
1101     this->clear();
1102     CurSize = 0;
1103     this->grow(RHSSize);
1104   } else if (CurSize) {
1105     // Otherwise, use assignment for the already-constructed elements.
1106     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1107   }
1108 
1109   // Move-construct the new elements in place.
1110   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1111                            this->begin()+CurSize);
1112 
1113   // Set end.
1114   this->set_size(RHSSize);
1115 
1116   RHS.clear();
1117   return *this;
1118 }
1119 
1120 /// Storage for the SmallVector elements.  This is specialized for the N=0 case
1121 /// to avoid allocating unnecessary storage.
1122 template <typename T, unsigned N>
1123 struct SmallVectorStorage {
1124   alignas(T) char InlineElts[N * sizeof(T)];
1125 };
1126 
1127 /// We need the storage to be properly aligned even for small-size of 0 so that
1128 /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1129 /// well-defined.
1130 template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1131 
1132 /// Forward declaration of SmallVector so that
1133 /// calculateSmallVectorDefaultInlinedElements can reference
1134 /// `sizeof(SmallVector<T, 0>)`.
1135 template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;
1136 
1137 /// Helper class for calculating the default number of inline elements for
1138 /// `SmallVector<T>`.
1139 ///
1140 /// This should be migrated to a constexpr function when our minimum
1141 /// compiler support is enough for multi-statement constexpr functions.
1142 template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1143   // Parameter controlling the default number of inlined elements
1144   // for `SmallVector<T>`.
1145   //
1146   // The default number of inlined elements ensures that
1147   // 1. There is at least one inlined element.
1148   // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1149   // it contradicts 1.
1150   static constexpr size_t kPreferredSmallVectorSizeof = 64;
1151 
1152   // static_assert that sizeof(T) is not "too big".
1153   //
1154   // Because our policy guarantees at least one inlined element, it is possible
1155   // for an arbitrarily large inlined element to allocate an arbitrarily large
1156   // amount of inline storage. We generally consider it an antipattern for a
1157   // SmallVector to allocate an excessive amount of inline storage, so we want
1158   // to call attention to these cases and make sure that users are making an
1159   // intentional decision if they request a lot of inline storage.
1160   //
1161   // We want this assertion to trigger in pathological cases, but otherwise
1162   // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1163   // larger than kPreferredSmallVectorSizeof (otherwise,
1164   // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1165   // pattern seems useful in practice).
1166   //
1167   // One wrinkle is that this assertion is in theory non-portable, since
1168   // sizeof(T) is in general platform-dependent. However, we don't expect this
1169   // to be much of an issue, because most LLVM development happens on 64-bit
1170   // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1171   // 32-bit hosts, dodging the issue. The reverse situation, where development
1172   // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1173   // 64-bit host, is expected to be very rare.
1174   static_assert(
1175       sizeof(T) <= 256,
1176       "You are trying to use a default number of inlined elements for "
1177       "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1178       "explicit number of inlined elements with `SmallVector<T, N>` to make "
1179       "sure you really want that much inline storage.");
1180 
1181   // Discount the size of the header itself when calculating the maximum inline
1182   // bytes.
1183   static constexpr size_t PreferredInlineBytes =
1184       kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1185   static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1186   static constexpr size_t value =
1187       NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1188 };
1189 
1190 /// This is a 'vector' (really, a variable-sized array), optimized
1191 /// for the case when the array is small.  It contains some number of elements
1192 /// in-place, which allows it to avoid heap allocation when the actual number of
1193 /// elements is below that threshold.  This allows normal "small" cases to be
1194 /// fast without losing generality for large inputs.
1195 ///
1196 /// \note
1197 /// In the absence of a well-motivated choice for the number of inlined
1198 /// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1199 /// omitting the \p N). This will choose a default number of inlined elements
1200 /// reasonable for allocation on the stack (for example, trying to keep \c
1201 /// sizeof(SmallVector<T>) around 64 bytes).
1202 ///
1203 /// \warning This does not attempt to be exception safe.
1204 ///
1205 /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1206 template <typename T,
1207           unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1208 class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>,
1209                                    SmallVectorStorage<T, N> {
1210 public:
1211   SmallVector() : SmallVectorImpl<T>(N) {}
1212 
1213   ~SmallVector() {
1214     // Destroy the constructed elements in the vector.
1215     this->destroy_range(this->begin(), this->end());
1216   }
1217 
1218   explicit SmallVector(size_t Size)
1219     : SmallVectorImpl<T>(N) {
1220     this->resize(Size);
1221   }
1222 
1223   SmallVector(size_t Size, const T &Value)
1224     : SmallVectorImpl<T>(N) {
1225     this->assign(Size, Value);
1226   }
1227 
1228   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
1229   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1230     this->append(S, E);
1231   }
1232 
1233   template <typename RangeTy>
1234   explicit SmallVector(const iterator_range<RangeTy> &R)
1235       : SmallVectorImpl<T>(N) {
1236     this->append(R.begin(), R.end());
1237   }
1238 
1239   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1240     this->append(IL);
1241   }
1242 
1243   template <typename U,
1244             typename = std::enable_if_t<std::is_convertible<U, T>::value>>
1245   explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) {
1246     this->append(A.begin(), A.end());
1247   }
1248 
1249   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1250     if (!RHS.empty())
1251       SmallVectorImpl<T>::operator=(RHS);
1252   }
1253 
1254   SmallVector &operator=(const SmallVector &RHS) {
1255     SmallVectorImpl<T>::operator=(RHS);
1256     return *this;
1257   }
1258 
1259   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1260     if (!RHS.empty())
1261       SmallVectorImpl<T>::operator=(::std::move(RHS));
1262   }
1263 
1264   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1265     if (!RHS.empty())
1266       SmallVectorImpl<T>::operator=(::std::move(RHS));
1267   }
1268 
1269   SmallVector &operator=(SmallVector &&RHS) {
1270     if (N) {
1271       SmallVectorImpl<T>::operator=(::std::move(RHS));
1272       return *this;
1273     }
1274     // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
1275     // case.
1276     if (this == &RHS)
1277       return *this;
1278     if (RHS.empty()) {
1279       this->destroy_range(this->begin(), this->end());
1280       this->Size = 0;
1281     } else {
1282       this->assignRemote(std::move(RHS));
1283     }
1284     return *this;
1285   }
1286 
1287   SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1288     SmallVectorImpl<T>::operator=(::std::move(RHS));
1289     return *this;
1290   }
1291 
1292   SmallVector &operator=(std::initializer_list<T> IL) {
1293     this->assign(IL);
1294     return *this;
1295   }
1296 };
1297 
1298 template <typename T, unsigned N>
1299 inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1300   return X.capacity_in_bytes();
1301 }
1302 
1303 template <typename RangeType>
1304 using ValueTypeFromRangeType =
1305     std::remove_const_t<std::remove_reference_t<decltype(*std::begin(
1306         std::declval<RangeType &>()))>>;
1307 
1308 /// Given a range of type R, iterate the entire range and return a
1309 /// SmallVector with elements of the vector.  This is useful, for example,
1310 /// when you want to iterate a range and then sort the results.
1311 template <unsigned Size, typename R>
1312 SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) {
1313   return {std::begin(Range), std::end(Range)};
1314 }
1315 template <typename R>
1316 SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) {
1317   return {std::begin(Range), std::end(Range)};
1318 }
1319 
1320 template <typename Out, unsigned Size, typename R>
1321 SmallVector<Out, Size> to_vector_of(R &&Range) {
1322   return {std::begin(Range), std::end(Range)};
1323 }
1324 
1325 template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) {
1326   return {std::begin(Range), std::end(Range)};
1327 }
1328 
1329 // Explicit instantiations
1330 extern template class llvm::SmallVectorBase<uint32_t>;
1331 #if SIZE_MAX > UINT32_MAX
1332 extern template class llvm::SmallVectorBase<uint64_t>;
1333 #endif
1334 
1335 } // end namespace llvm
1336 
1337 namespace std {
1338 
1339   /// Implement std::swap in terms of SmallVector swap.
1340   template<typename T>
1341   inline void
1342   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1343     LHS.swap(RHS);
1344   }
1345 
1346   /// Implement std::swap in terms of SmallVector swap.
1347   template<typename T, unsigned N>
1348   inline void
1349   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1350     LHS.swap(RHS);
1351   }
1352 
1353 } // end namespace std
1354 
1355 #endif // LLVM_ADT_SMALLVECTOR_H
1356