• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombiner.h - InstCombine implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides the interface for the instcombine pass implementation.
11 /// The interface is used for generic transformations in this folder and
12 /// target specific combinations in the targets.
13 /// The visitor implementation is in \c InstCombinerImpl in
14 /// \c InstCombineInternal.h.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H
19 #define LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H
20 
21 #include "llvm/Analysis/DomConditionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetFolder.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/KnownBits.h"
29 #include <cassert>
30 
31 #define DEBUG_TYPE "instcombine"
32 #include "llvm/Transforms/Utils/InstructionWorklist.h"
33 
34 namespace llvm {
35 
36 class AAResults;
37 class AssumptionCache;
38 class OptimizationRemarkEmitter;
39 class ProfileSummaryInfo;
40 class TargetLibraryInfo;
41 class TargetTransformInfo;
42 
43 /// The core instruction combiner logic.
44 ///
45 /// This class provides both the logic to recursively visit instructions and
46 /// combine them.
47 class LLVM_LIBRARY_VISIBILITY InstCombiner {
48   /// Only used to call target specific intrinsic combining.
49   /// It must **NOT** be used for any other purpose, as InstCombine is a
50   /// target-independent canonicalization transform.
51   TargetTransformInfo &TTI;
52 
53 public:
54   /// Maximum size of array considered when transforming.
55   uint64_t MaxArraySizeForCombine = 0;
56 
57   /// An IRBuilder that automatically inserts new instructions into the
58   /// worklist.
59   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
60   BuilderTy &Builder;
61 
62 protected:
63   /// A worklist of the instructions that need to be simplified.
64   InstructionWorklist &Worklist;
65 
66   // Mode in which we are running the combiner.
67   const bool MinimizeSize;
68 
69   AAResults *AA;
70 
71   // Required analyses.
72   AssumptionCache &AC;
73   TargetLibraryInfo &TLI;
74   DominatorTree &DT;
75   const DataLayout &DL;
76   SimplifyQuery SQ;
77   OptimizationRemarkEmitter &ORE;
78   BlockFrequencyInfo *BFI;
79   ProfileSummaryInfo *PSI;
80   DomConditionCache DC;
81 
82   // Optional analyses. When non-null, these can both be used to do better
83   // combining and will be updated to reflect any changes.
84   LoopInfo *LI;
85 
86   bool MadeIRChange = false;
87 
88   /// Edges that are known to never be taken.
89   SmallDenseSet<std::pair<BasicBlock *, BasicBlock *>, 8> DeadEdges;
90 
91   /// Order of predecessors to canonicalize phi nodes towards.
92   SmallDenseMap<BasicBlock *, SmallVector<BasicBlock *>, 8> PredOrder;
93 
94 public:
InstCombiner(InstructionWorklist & Worklist,BuilderTy & Builder,bool MinimizeSize,AAResults * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,const DataLayout & DL,LoopInfo * LI)95   InstCombiner(InstructionWorklist &Worklist, BuilderTy &Builder,
96                bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
97                TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
98                DominatorTree &DT, OptimizationRemarkEmitter &ORE,
99                BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
100                const DataLayout &DL, LoopInfo *LI)
101       : TTI(TTI), Builder(Builder), Worklist(Worklist),
102         MinimizeSize(MinimizeSize), AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL),
103         SQ(DL, &TLI, &DT, &AC, nullptr, /*UseInstrInfo*/ true,
104            /*CanUseUndef*/ true, &DC),
105         ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}
106 
107   virtual ~InstCombiner() = default;
108 
109   /// Return the source operand of a potentially bitcasted value while
110   /// optionally checking if it has one use. If there is no bitcast or the one
111   /// use check is not met, return the input value itself.
112   static Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
113     if (auto *BitCast = dyn_cast<BitCastInst>(V))
114       if (!OneUseOnly || BitCast->hasOneUse())
115         return BitCast->getOperand(0);
116 
117     // V is not a bitcast or V has more than one use and OneUseOnly is true.
118     return V;
119   }
120 
121   /// Assign a complexity or rank value to LLVM Values. This is used to reduce
122   /// the amount of pattern matching needed for compares and commutative
123   /// instructions. For example, if we have:
124   ///   icmp ugt X, Constant
125   /// or
126   ///   xor (add X, Constant), cast Z
127   ///
128   /// We do not have to consider the commuted variants of these patterns because
129   /// canonicalization based on complexity guarantees the above ordering.
130   ///
131   /// This routine maps IR values to various complexity ranks:
132   ///   0 -> undef
133   ///   1 -> Constants
134   ///   2 -> Other non-instructions
135   ///   3 -> Arguments
136   ///   4 -> Cast and (f)neg/not instructions
137   ///   5 -> Other instructions
getComplexity(Value * V)138   static unsigned getComplexity(Value *V) {
139     if (isa<Instruction>(V)) {
140       if (isa<CastInst>(V) || match(V, m_Neg(PatternMatch::m_Value())) ||
141           match(V, m_Not(PatternMatch::m_Value())) ||
142           match(V, m_FNeg(PatternMatch::m_Value())))
143         return 4;
144       return 5;
145     }
146     if (isa<Argument>(V))
147       return 3;
148     return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
149   }
150 
151   /// Predicate canonicalization reduces the number of patterns that need to be
152   /// matched by other transforms. For example, we may swap the operands of a
153   /// conditional branch or select to create a compare with a canonical
154   /// (inverted) predicate which is then more likely to be matched with other
155   /// values.
isCanonicalPredicate(CmpInst::Predicate Pred)156   static bool isCanonicalPredicate(CmpInst::Predicate Pred) {
157     switch (Pred) {
158     case CmpInst::ICMP_NE:
159     case CmpInst::ICMP_ULE:
160     case CmpInst::ICMP_SLE:
161     case CmpInst::ICMP_UGE:
162     case CmpInst::ICMP_SGE:
163     // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
164     case CmpInst::FCMP_ONE:
165     case CmpInst::FCMP_OLE:
166     case CmpInst::FCMP_OGE:
167       return false;
168     default:
169       return true;
170     }
171   }
172 
173   /// Add one to a Constant
AddOne(Constant * C)174   static Constant *AddOne(Constant *C) {
175     return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
176   }
177 
178   /// Subtract one from a Constant
SubOne(Constant * C)179   static Constant *SubOne(Constant *C) {
180     return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
181   }
182 
183   std::optional<std::pair<
184       CmpInst::Predicate,
185       Constant *>> static getFlippedStrictnessPredicateAndConstant(CmpInst::
186                                                                        Predicate
187                                                                            Pred,
188                                                                    Constant *C);
189 
shouldAvoidAbsorbingNotIntoSelect(const SelectInst & SI)190   static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI) {
191     // a ? b : false and a ? true : b are the canonical form of logical and/or.
192     // This includes !a ? b : false and !a ? true : b. Absorbing the not into
193     // the select by swapping operands would break recognition of this pattern
194     // in other analyses, so don't do that.
195     return match(&SI, PatternMatch::m_LogicalAnd(PatternMatch::m_Value(),
196                                                  PatternMatch::m_Value())) ||
197            match(&SI, PatternMatch::m_LogicalOr(PatternMatch::m_Value(),
198                                                 PatternMatch::m_Value()));
199   }
200 
201   /// Return nonnull value if V is free to invert under the condition of
202   /// WillInvertAllUses.
203   /// If Builder is nonnull, it will return a simplified ~V.
204   /// If Builder is null, it will return an arbitrary nonnull value (not
205   /// dereferenceable).
206   /// If the inversion will consume instructions, `DoesConsume` will be set to
207   /// true. Otherwise it will be false.
208   Value *getFreelyInvertedImpl(Value *V, bool WillInvertAllUses,
209                                       BuilderTy *Builder, bool &DoesConsume,
210                                       unsigned Depth);
211 
getFreelyInverted(Value * V,bool WillInvertAllUses,BuilderTy * Builder,bool & DoesConsume)212   Value *getFreelyInverted(Value *V, bool WillInvertAllUses,
213                                   BuilderTy *Builder, bool &DoesConsume) {
214     DoesConsume = false;
215     return getFreelyInvertedImpl(V, WillInvertAllUses, Builder, DoesConsume,
216                                  /*Depth*/ 0);
217   }
218 
getFreelyInverted(Value * V,bool WillInvertAllUses,BuilderTy * Builder)219   Value *getFreelyInverted(Value *V, bool WillInvertAllUses,
220                                   BuilderTy *Builder) {
221     bool Unused;
222     return getFreelyInverted(V, WillInvertAllUses, Builder, Unused);
223   }
224 
225   /// Return true if the specified value is free to invert (apply ~ to).
226   /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
227   /// is true, work under the assumption that the caller intends to remove all
228   /// uses of V and only keep uses of ~V.
229   ///
230   /// See also: canFreelyInvertAllUsersOf()
isFreeToInvert(Value * V,bool WillInvertAllUses,bool & DoesConsume)231   bool isFreeToInvert(Value *V, bool WillInvertAllUses,
232                              bool &DoesConsume) {
233     return getFreelyInverted(V, WillInvertAllUses, /*Builder*/ nullptr,
234                              DoesConsume) != nullptr;
235   }
236 
isFreeToInvert(Value * V,bool WillInvertAllUses)237   bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
238     bool Unused;
239     return isFreeToInvert(V, WillInvertAllUses, Unused);
240   }
241 
242   /// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
243   /// InstCombine's freelyInvertAllUsersOf() must be kept in sync with this fn.
244   /// NOTE: for Instructions only!
245   ///
246   /// See also: isFreeToInvert()
canFreelyInvertAllUsersOf(Instruction * V,Value * IgnoredUser)247   bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser) {
248     // Look at every user of V.
249     for (Use &U : V->uses()) {
250       if (U.getUser() == IgnoredUser)
251         continue; // Don't consider this user.
252 
253       auto *I = cast<Instruction>(U.getUser());
254       switch (I->getOpcode()) {
255       case Instruction::Select:
256         if (U.getOperandNo() != 0) // Only if the value is used as select cond.
257           return false;
258         if (shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(I)))
259           return false;
260         break;
261       case Instruction::Br:
262         assert(U.getOperandNo() == 0 && "Must be branching on that value.");
263         break; // Free to invert by swapping true/false values/destinations.
264       case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring
265                              // it.
266         if (!match(I, m_Not(PatternMatch::m_Value())))
267           return false; // Not a 'not'.
268         break;
269       default:
270         return false; // Don't know, likely not freely invertible.
271       }
272       // So far all users were free to invert...
273     }
274     return true; // Can freely invert all users!
275   }
276 
277   /// Some binary operators require special handling to avoid poison and
278   /// undefined behavior. If a constant vector has undef elements, replace those
279   /// undefs with identity constants if possible because those are always safe
280   /// to execute. If no identity constant exists, replace undef with some other
281   /// safe constant.
282   static Constant *
getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode,Constant * In,bool IsRHSConstant)283   getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In,
284                                 bool IsRHSConstant) {
285     auto *InVTy = cast<FixedVectorType>(In->getType());
286 
287     Type *EltTy = InVTy->getElementType();
288     auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
289     if (!SafeC) {
290       // TODO: Should this be available as a constant utility function? It is
291       // similar to getBinOpAbsorber().
292       if (IsRHSConstant) {
293         switch (Opcode) {
294         case Instruction::SRem: // X % 1 = 0
295         case Instruction::URem: // X %u 1 = 0
296           SafeC = ConstantInt::get(EltTy, 1);
297           break;
298         case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
299           SafeC = ConstantFP::get(EltTy, 1.0);
300           break;
301         default:
302           llvm_unreachable(
303               "Only rem opcodes have no identity constant for RHS");
304         }
305       } else {
306         switch (Opcode) {
307         case Instruction::Shl:  // 0 << X = 0
308         case Instruction::LShr: // 0 >>u X = 0
309         case Instruction::AShr: // 0 >> X = 0
310         case Instruction::SDiv: // 0 / X = 0
311         case Instruction::UDiv: // 0 /u X = 0
312         case Instruction::SRem: // 0 % X = 0
313         case Instruction::URem: // 0 %u X = 0
314         case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
315         case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
316         case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
317         case Instruction::FRem: // 0.0 % X = 0
318           SafeC = Constant::getNullValue(EltTy);
319           break;
320         default:
321           llvm_unreachable("Expected to find identity constant for opcode");
322         }
323       }
324     }
325     assert(SafeC && "Must have safe constant for binop");
326     unsigned NumElts = InVTy->getNumElements();
327     SmallVector<Constant *, 16> Out(NumElts);
328     for (unsigned i = 0; i != NumElts; ++i) {
329       Constant *C = In->getAggregateElement(i);
330       Out[i] = isa<UndefValue>(C) ? SafeC : C;
331     }
332     return ConstantVector::get(Out);
333   }
334 
addToWorklist(Instruction * I)335   void addToWorklist(Instruction *I) { Worklist.push(I); }
336 
getAssumptionCache()337   AssumptionCache &getAssumptionCache() const { return AC; }
getTargetLibraryInfo()338   TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
getDominatorTree()339   DominatorTree &getDominatorTree() const { return DT; }
getDataLayout()340   const DataLayout &getDataLayout() const { return DL; }
getSimplifyQuery()341   const SimplifyQuery &getSimplifyQuery() const { return SQ; }
getOptimizationRemarkEmitter()342   OptimizationRemarkEmitter &getOptimizationRemarkEmitter() const {
343     return ORE;
344   }
getBlockFrequencyInfo()345   BlockFrequencyInfo *getBlockFrequencyInfo() const { return BFI; }
getProfileSummaryInfo()346   ProfileSummaryInfo *getProfileSummaryInfo() const { return PSI; }
getLoopInfo()347   LoopInfo *getLoopInfo() const { return LI; }
348 
349   // Call target specific combiners
350   std::optional<Instruction *> targetInstCombineIntrinsic(IntrinsicInst &II);
351   std::optional<Value *>
352   targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask,
353                                          KnownBits &Known,
354                                          bool &KnownBitsComputed);
355   std::optional<Value *> targetSimplifyDemandedVectorEltsIntrinsic(
356       IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
357       APInt &UndefElts2, APInt &UndefElts3,
358       std::function<void(Instruction *, unsigned, APInt, APInt &)>
359           SimplifyAndSetOp);
360 
361   /// Inserts an instruction \p New before instruction \p Old
362   ///
363   /// Also adds the new instruction to the worklist and returns \p New so that
364   /// it is suitable for use as the return from the visitation patterns.
InsertNewInstBefore(Instruction * New,BasicBlock::iterator Old)365   Instruction *InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old) {
366     assert(New && !New->getParent() &&
367            "New instruction already inserted into a basic block!");
368     New->insertBefore(Old); // Insert inst
369     Worklist.add(New);
370     return New;
371   }
372 
373   /// Same as InsertNewInstBefore, but also sets the debug loc.
InsertNewInstWith(Instruction * New,BasicBlock::iterator Old)374   Instruction *InsertNewInstWith(Instruction *New, BasicBlock::iterator Old) {
375     New->setDebugLoc(Old->getDebugLoc());
376     return InsertNewInstBefore(New, Old);
377   }
378 
379   /// A combiner-aware RAUW-like routine.
380   ///
381   /// This method is to be used when an instruction is found to be dead,
382   /// replaceable with another preexisting expression. Here we add all uses of
383   /// I to the worklist, replace all uses of I with the new value, then return
384   /// I, so that the inst combiner will know that I was modified.
replaceInstUsesWith(Instruction & I,Value * V)385   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
386     // If there are no uses to replace, then we return nullptr to indicate that
387     // no changes were made to the program.
388     if (I.use_empty()) return nullptr;
389 
390     Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
391 
392     // If we are replacing the instruction with itself, this must be in a
393     // segment of unreachable code, so just clobber the instruction.
394     if (&I == V)
395       V = PoisonValue::get(I.getType());
396 
397     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
398                       << "    with " << *V << '\n');
399 
400     // If V is a new unnamed instruction, take the name from the old one.
401     if (V->use_empty() && isa<Instruction>(V) && !V->hasName() && I.hasName())
402       V->takeName(&I);
403 
404     I.replaceAllUsesWith(V);
405     return &I;
406   }
407 
408   /// Replace operand of instruction and add old operand to the worklist.
replaceOperand(Instruction & I,unsigned OpNum,Value * V)409   Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
410     Value *OldOp = I.getOperand(OpNum);
411     I.setOperand(OpNum, V);
412     Worklist.handleUseCountDecrement(OldOp);
413     return &I;
414   }
415 
416   /// Replace use and add the previously used value to the worklist.
replaceUse(Use & U,Value * NewValue)417   void replaceUse(Use &U, Value *NewValue) {
418     Value *OldOp = U;
419     U = NewValue;
420     Worklist.handleUseCountDecrement(OldOp);
421   }
422 
423   /// Combiner aware instruction erasure.
424   ///
425   /// When dealing with an instruction that has side effects or produces a void
426   /// value, we can't rely on DCE to delete the instruction. Instead, visit
427   /// methods should return the value returned by this function.
428   virtual Instruction *eraseInstFromFunction(Instruction &I) = 0;
429 
computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Instruction * CxtI)430   void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
431                         const Instruction *CxtI) const {
432     llvm::computeKnownBits(V, Known, Depth, SQ.getWithInstruction(CxtI));
433   }
434 
computeKnownBits(const Value * V,unsigned Depth,const Instruction * CxtI)435   KnownBits computeKnownBits(const Value *V, unsigned Depth,
436                              const Instruction *CxtI) const {
437     return llvm::computeKnownBits(V, Depth, SQ.getWithInstruction(CxtI));
438   }
439 
440   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
441                               unsigned Depth = 0,
442                               const Instruction *CxtI = nullptr) {
443     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
444   }
445 
446   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
447                          const Instruction *CxtI = nullptr) const {
448     return llvm::MaskedValueIsZero(V, Mask, SQ.getWithInstruction(CxtI), Depth);
449   }
450 
451   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
452                               const Instruction *CxtI = nullptr) const {
453     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
454   }
455 
456   unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth = 0,
457                                      const Instruction *CxtI = nullptr) const {
458     return llvm::ComputeMaxSignificantBits(Op, DL, Depth, &AC, CxtI, &DT);
459   }
460 
computeOverflowForUnsignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)461   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
462                                                const Value *RHS,
463                                                const Instruction *CxtI) const {
464     return llvm::computeOverflowForUnsignedMul(LHS, RHS,
465                                                SQ.getWithInstruction(CxtI));
466   }
467 
computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)468   OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
469                                              const Instruction *CxtI) const {
470     return llvm::computeOverflowForSignedMul(LHS, RHS,
471                                              SQ.getWithInstruction(CxtI));
472   }
473 
474   OverflowResult
computeOverflowForUnsignedAdd(const WithCache<const Value * > & LHS,const WithCache<const Value * > & RHS,const Instruction * CxtI)475   computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
476                                 const WithCache<const Value *> &RHS,
477                                 const Instruction *CxtI) const {
478     return llvm::computeOverflowForUnsignedAdd(LHS, RHS,
479                                                SQ.getWithInstruction(CxtI));
480   }
481 
482   OverflowResult
computeOverflowForSignedAdd(const WithCache<const Value * > & LHS,const WithCache<const Value * > & RHS,const Instruction * CxtI)483   computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
484                               const WithCache<const Value *> &RHS,
485                               const Instruction *CxtI) const {
486     return llvm::computeOverflowForSignedAdd(LHS, RHS,
487                                              SQ.getWithInstruction(CxtI));
488   }
489 
computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)490   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
491                                                const Value *RHS,
492                                                const Instruction *CxtI) const {
493     return llvm::computeOverflowForUnsignedSub(LHS, RHS,
494                                                SQ.getWithInstruction(CxtI));
495   }
496 
computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)497   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
498                                              const Instruction *CxtI) const {
499     return llvm::computeOverflowForSignedSub(LHS, RHS,
500                                              SQ.getWithInstruction(CxtI));
501   }
502 
503   virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo,
504                                     const APInt &DemandedMask, KnownBits &Known,
505                                     unsigned Depth = 0) = 0;
506   virtual Value *
507   SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
508                              unsigned Depth = 0,
509                              bool AllowMultipleUsers = false) = 0;
510 
511   bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
512 };
513 
514 } // namespace llvm
515 
516 #undef DEBUG_TYPE
517 
518 #endif
519