• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- DataflowAnalysis.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines base types and functions for building dataflow analyses
10 //  that run over Control-Flow Graphs (CFGs).
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSIS_H
15 #define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSIS_H
16 
17 #include <iterator>
18 #include <optional>
19 #include <type_traits>
20 #include <utility>
21 #include <vector>
22 
23 #include "clang/AST/ASTContext.h"
24 #include "clang/Analysis/CFG.h"
25 #include "clang/Analysis/FlowSensitive/AdornedCFG.h"
26 #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
27 #include "clang/Analysis/FlowSensitive/DataflowLattice.h"
28 #include "clang/Analysis/FlowSensitive/MatchSwitch.h"
29 #include "clang/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.h"
30 #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/STLFunctionalExtras.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Errc.h"
35 #include "llvm/Support/Error.h"
36 
37 namespace clang {
38 namespace dataflow {
39 
40 /// Base class template for dataflow analyses built on a single lattice type.
41 ///
42 /// Requirements:
43 ///
44 ///  `Derived` must be derived from a specialization of this class template and
45 ///  must provide the following public members:
46 ///   * `LatticeT initialElement()` - returns a lattice element that models the
47 ///     initial state of a basic block;
48 ///   * `void transfer(const CFGElement &, LatticeT &, Environment &)` - applies
49 ///     the analysis transfer function for a given CFG element and lattice
50 ///     element.
51 ///
52 ///  `Derived` can optionally provide the following members:
53 ///  * `void transferBranch(bool Branch, const Stmt *Stmt, TypeErasedLattice &E,
54 ///                         Environment &Env)` - applies the analysis transfer
55 ///    function for a given edge from a CFG block of a conditional statement.
56 ///
57 ///  `Derived` can optionally override the virtual functions in the
58 ///  `Environment::ValueModel` interface (which is an indirect base class of
59 ///  this class).
60 ///
61 ///  `LatticeT` is a bounded join-semilattice that is used by `Derived` and must
62 ///  provide the following public members:
63 ///   * `LatticeJoinEffect join(const LatticeT &)` - joins the object and the
64 ///     argument by computing their least upper bound, modifies the object if
65 ///     necessary, and returns an effect indicating whether any changes were
66 ///     made to it;
67 ///     FIXME: make it `static LatticeT join(const LatticeT&, const LatticeT&)`
68 ///   * `bool operator==(const LatticeT &) const` - returns true if and only if
69 ///     the object is equal to the argument.
70 ///
71 /// `LatticeT` can optionally provide the following members:
72 ///  * `LatticeJoinEffect widen(const LatticeT &Previous)` - replaces the
73 ///    lattice element with an  approximation that can reach a fixed point more
74 ///    quickly than iterated application of the transfer function alone. The
75 ///    previous value is provided to inform the choice of widened value. The
76 ///    function must also serve as a comparison operation, by indicating whether
77 ///    the widened value is equivalent to the previous value with the returned
78 ///    `LatticeJoinEffect`.
79 template <typename Derived, typename LatticeT>
80 class DataflowAnalysis : public TypeErasedDataflowAnalysis {
81 public:
82   /// Bounded join-semilattice that is used in the analysis.
83   using Lattice = LatticeT;
84 
DataflowAnalysis(ASTContext & Context)85   explicit DataflowAnalysis(ASTContext &Context) : Context(Context) {}
86 
DataflowAnalysis(ASTContext & Context,DataflowAnalysisOptions Options)87   explicit DataflowAnalysis(ASTContext &Context,
88                             DataflowAnalysisOptions Options)
89       : TypeErasedDataflowAnalysis(Options), Context(Context) {}
90 
getASTContext()91   ASTContext &getASTContext() final { return Context; }
92 
typeErasedInitialElement()93   TypeErasedLattice typeErasedInitialElement() final {
94     return {static_cast<Derived *>(this)->initialElement()};
95   }
96 
joinTypeErased(const TypeErasedLattice & E1,const TypeErasedLattice & E2)97   TypeErasedLattice joinTypeErased(const TypeErasedLattice &E1,
98                                    const TypeErasedLattice &E2) final {
99     // FIXME: change the signature of join() to avoid copying here.
100     Lattice L1 = llvm::any_cast<const Lattice &>(E1.Value);
101     const Lattice &L2 = llvm::any_cast<const Lattice &>(E2.Value);
102     L1.join(L2);
103     return {std::move(L1)};
104   }
105 
widenTypeErased(TypeErasedLattice & Current,const TypeErasedLattice & Previous)106   LatticeJoinEffect widenTypeErased(TypeErasedLattice &Current,
107                                     const TypeErasedLattice &Previous) final {
108     Lattice &C = llvm::any_cast<Lattice &>(Current.Value);
109     const Lattice &P = llvm::any_cast<const Lattice &>(Previous.Value);
110     return widenInternal(Rank0{}, C, P);
111   }
112 
isEqualTypeErased(const TypeErasedLattice & E1,const TypeErasedLattice & E2)113   bool isEqualTypeErased(const TypeErasedLattice &E1,
114                          const TypeErasedLattice &E2) final {
115     const Lattice &L1 = llvm::any_cast<const Lattice &>(E1.Value);
116     const Lattice &L2 = llvm::any_cast<const Lattice &>(E2.Value);
117     return L1 == L2;
118   }
119 
transferTypeErased(const CFGElement & Element,TypeErasedLattice & E,Environment & Env)120   void transferTypeErased(const CFGElement &Element, TypeErasedLattice &E,
121                           Environment &Env) final {
122     Lattice &L = llvm::any_cast<Lattice &>(E.Value);
123     static_cast<Derived *>(this)->transfer(Element, L, Env);
124   }
125 
transferBranchTypeErased(bool Branch,const Stmt * Stmt,TypeErasedLattice & E,Environment & Env)126   void transferBranchTypeErased(bool Branch, const Stmt *Stmt,
127                                 TypeErasedLattice &E, Environment &Env) final {
128     transferBranchInternal(Rank0{}, *static_cast<Derived *>(this), Branch, Stmt,
129                            E, Env);
130   }
131 
132 private:
133   // These `Rank` structs are used for template metaprogramming to choose
134   // between overloads.
135   struct Rank1 {};
136   struct Rank0 : Rank1 {};
137 
138   // The first-choice implementation: use `widen` when it is available.
139   template <typename T>
140   static auto widenInternal(Rank0, T &Current, const T &Prev)
141       -> decltype(Current.widen(Prev)) {
142     return Current.widen(Prev);
143   }
144 
145   // The second-choice implementation: `widen` is unavailable. Widening is
146   // merged with equality checking, so when widening is unimplemented, we
147   // default to equality checking.
widenInternal(Rank1,const Lattice & Current,const Lattice & Prev)148   static LatticeJoinEffect widenInternal(Rank1, const Lattice &Current,
149                                          const Lattice &Prev) {
150     return Prev == Current ? LatticeJoinEffect::Unchanged
151                            : LatticeJoinEffect::Changed;
152   }
153 
154   // The first-choice implementation: `transferBranch` is implemented.
155   template <typename Analysis>
156   static auto transferBranchInternal(Rank0, Analysis &A, bool Branch,
157                                      const Stmt *Stmt, TypeErasedLattice &L,
158                                      Environment &Env)
159       -> std::void_t<decltype(A.transferBranch(
160           Branch, Stmt, std::declval<LatticeT &>(), Env))> {
161     A.transferBranch(Branch, Stmt, llvm::any_cast<Lattice &>(L.Value), Env);
162   }
163 
164   // The second-choice implementation: `transferBranch` is unimplemented. No-op.
165   template <typename Analysis>
transferBranchInternal(Rank1,Analysis & A,bool,const Stmt *,TypeErasedLattice &,Environment &)166   static void transferBranchInternal(Rank1, Analysis &A, bool, const Stmt *,
167                                      TypeErasedLattice &, Environment &) {}
168 
169   ASTContext &Context;
170 };
171 
172 // Model of the program at a given program point.
173 template <typename LatticeT> struct DataflowAnalysisState {
174   // Model of a program property.
175   LatticeT Lattice;
176 
177   // Model of the state of the program (store and heap).
178   Environment Env;
179 };
180 
181 /// Performs dataflow analysis and returns a mapping from basic block IDs to
182 /// dataflow analysis states that model the respective basic blocks. The
183 /// returned vector, if any, will have the same size as the number of CFG
184 /// blocks, with indices corresponding to basic block IDs. Returns an error if
185 /// the dataflow analysis cannot be performed successfully. Otherwise, calls
186 /// `PostVisitCFG` on each CFG element with the final analysis results at that
187 /// program point.
188 ///
189 /// `MaxBlockVisits` caps the number of block visits during analysis. See
190 /// `runTypeErasedDataflowAnalysis` for a full description. The default value is
191 /// essentially arbitrary -- large enough to accommodate what seems like any
192 /// reasonable CFG, but still small enough to limit the cost of hitting the
193 /// limit.
194 template <typename AnalysisT>
195 llvm::Expected<std::vector<
196     std::optional<DataflowAnalysisState<typename AnalysisT::Lattice>>>>
197 runDataflowAnalysis(
198     const AdornedCFG &ACFG, AnalysisT &Analysis, const Environment &InitEnv,
199     std::function<void(const CFGElement &, const DataflowAnalysisState<
200                                                typename AnalysisT::Lattice> &)>
201         PostVisitCFG = nullptr,
202     std::int32_t MaxBlockVisits = 20'000) {
203   std::function<void(const CFGElement &,
204                      const TypeErasedDataflowAnalysisState &)>
205       PostVisitCFGClosure = nullptr;
206   if (PostVisitCFG) {
207     PostVisitCFGClosure = [&PostVisitCFG](
208                               const CFGElement &Element,
209                               const TypeErasedDataflowAnalysisState &State) {
210       auto *Lattice =
211           llvm::any_cast<typename AnalysisT::Lattice>(&State.Lattice.Value);
212       // FIXME: we should not be copying the environment here!
213       // Ultimately the PostVisitCFG only gets a const reference anyway.
214       PostVisitCFG(Element, DataflowAnalysisState<typename AnalysisT::Lattice>{
215                                 *Lattice, State.Env.fork()});
216     };
217   }
218 
219   auto TypeErasedBlockStates = runTypeErasedDataflowAnalysis(
220       ACFG, Analysis, InitEnv, PostVisitCFGClosure, MaxBlockVisits);
221   if (!TypeErasedBlockStates)
222     return TypeErasedBlockStates.takeError();
223 
224   std::vector<std::optional<DataflowAnalysisState<typename AnalysisT::Lattice>>>
225       BlockStates;
226   BlockStates.reserve(TypeErasedBlockStates->size());
227 
228   llvm::transform(
229       std::move(*TypeErasedBlockStates), std::back_inserter(BlockStates),
230       [](auto &OptState) {
231         return llvm::transformOptional(
232             std::move(OptState), [](TypeErasedDataflowAnalysisState &&State) {
233               return DataflowAnalysisState<typename AnalysisT::Lattice>{
234                   llvm::any_cast<typename AnalysisT::Lattice>(
235                       std::move(State.Lattice.Value)),
236                   std::move(State.Env)};
237             });
238       });
239   return std::move(BlockStates);
240 }
241 
242 // Create an analysis class that is derived from `DataflowAnalysis`. This is an
243 // SFINAE adapter that allows us to call two different variants of constructor
244 // (either with or without the optional `Environment` parameter).
245 // FIXME: Make all classes derived from `DataflowAnalysis` take an `Environment`
246 // parameter in their constructor so that we can get rid of this abomination.
247 template <typename AnalysisT>
248 auto createAnalysis(ASTContext &ASTCtx, Environment &Env)
249     -> decltype(AnalysisT(ASTCtx, Env)) {
250   return AnalysisT(ASTCtx, Env);
251 }
252 template <typename AnalysisT>
253 auto createAnalysis(ASTContext &ASTCtx, Environment &Env)
254     -> decltype(AnalysisT(ASTCtx)) {
255   return AnalysisT(ASTCtx);
256 }
257 
258 /// Runs a dataflow analysis over the given function and then runs `Diagnoser`
259 /// over the results. Returns a list of diagnostics for `FuncDecl` or an
260 /// error. Currently, errors can occur (at least) because the analysis requires
261 /// too many iterations over the CFG or the SAT solver times out.
262 ///
263 /// The default value of `MaxSATIterations` was chosen based on the following
264 /// observations:
265 /// - Non-pathological calls to the solver typically require only a few hundred
266 ///   iterations.
267 /// - This limit is still low enough to keep runtimes acceptable (on typical
268 ///   machines) in cases where we hit the limit.
269 ///
270 /// `MaxBlockVisits` caps the number of block visits during analysis. See
271 /// `runDataflowAnalysis` for a full description and explanation of the default
272 /// value.
273 template <typename AnalysisT, typename Diagnostic>
274 llvm::Expected<llvm::SmallVector<Diagnostic>> diagnoseFunction(
275     const FunctionDecl &FuncDecl, ASTContext &ASTCtx,
276     llvm::function_ref<llvm::SmallVector<Diagnostic>(
277         const CFGElement &, ASTContext &,
278         const TransferStateForDiagnostics<typename AnalysisT::Lattice> &)>
279         Diagnoser,
280     std::int64_t MaxSATIterations = 1'000'000'000,
281     std::int32_t MaxBlockVisits = 20'000) {
282   llvm::Expected<AdornedCFG> Context = AdornedCFG::build(FuncDecl);
283   if (!Context)
284     return Context.takeError();
285 
286   auto Solver = std::make_unique<WatchedLiteralsSolver>(MaxSATIterations);
287   DataflowAnalysisContext AnalysisContext(*Solver);
288   Environment Env(AnalysisContext, FuncDecl);
289   AnalysisT Analysis = createAnalysis<AnalysisT>(ASTCtx, Env);
290   llvm::SmallVector<Diagnostic> Diagnostics;
291   if (llvm::Error Err =
292           runTypeErasedDataflowAnalysis(
293               *Context, Analysis, Env,
294               [&ASTCtx, &Diagnoser, &Diagnostics](
295                   const CFGElement &Elt,
296                   const TypeErasedDataflowAnalysisState &State) mutable {
297                 auto EltDiagnostics = Diagnoser(
298                     Elt, ASTCtx,
299                     TransferStateForDiagnostics<typename AnalysisT::Lattice>(
300                         llvm::any_cast<const typename AnalysisT::Lattice &>(
301                             State.Lattice.Value),
302                         State.Env));
303                 llvm::move(EltDiagnostics, std::back_inserter(Diagnostics));
304               },
305               MaxBlockVisits)
306               .takeError())
307     return std::move(Err);
308 
309   if (Solver->reachedLimit())
310     return llvm::createStringError(llvm::errc::interrupted,
311                                    "SAT solver timed out");
312 
313   return Diagnostics;
314 }
315 
316 /// Abstract base class for dataflow "models": reusable analysis components that
317 /// model a particular aspect of program semantics in the `Environment`. For
318 /// example, a model may capture a type and its related functions.
319 class DataflowModel : public Environment::ValueModel {
320 public:
321   /// Return value indicates whether the model processed the `Element`.
322   virtual bool transfer(const CFGElement &Element, Environment &Env) = 0;
323 };
324 
325 } // namespace dataflow
326 } // namespace clang
327 
328 #endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_DATAFLOWANALYSIS_H
329