• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/CodeGen/GlobalISel/CallLowering.h - Call lowering ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file describes how to lower LLVM calls to machine code calls.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_GLOBALISEL_CALLLOWERING_H
15 #define LLVM_CODEGEN_GLOBALISEL_CALLLOWERING_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/TargetCallingConv.h"
22 #include "llvm/CodeGenTypes/LowLevelType.h"
23 #include "llvm/CodeGenTypes/MachineValueType.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <cstdint>
29 #include <functional>
30 
31 namespace llvm {
32 
33 class AttributeList;
34 class CallBase;
35 class DataLayout;
36 class Function;
37 class FunctionLoweringInfo;
38 class MachineIRBuilder;
39 class MachineFunction;
40 struct MachinePointerInfo;
41 class MachineRegisterInfo;
42 class TargetLowering;
43 
44 class CallLowering {
45   const TargetLowering *TLI;
46 
47   virtual void anchor();
48 public:
49   struct BaseArgInfo {
50     Type *Ty;
51     SmallVector<ISD::ArgFlagsTy, 4> Flags;
52     bool IsFixed;
53 
54     BaseArgInfo(Type *Ty,
55                 ArrayRef<ISD::ArgFlagsTy> Flags = ArrayRef<ISD::ArgFlagsTy>(),
56                 bool IsFixed = true)
TyBaseArgInfo57         : Ty(Ty), Flags(Flags.begin(), Flags.end()), IsFixed(IsFixed) {}
58 
BaseArgInfoBaseArgInfo59     BaseArgInfo() : Ty(nullptr), IsFixed(false) {}
60   };
61 
62   struct ArgInfo : public BaseArgInfo {
63     SmallVector<Register, 4> Regs;
64     // If the argument had to be split into multiple parts according to the
65     // target calling convention, then this contains the original vregs
66     // if the argument was an incoming arg.
67     SmallVector<Register, 2> OrigRegs;
68 
69     /// Optionally track the original IR value for the argument. This may not be
70     /// meaningful in all contexts. This should only be used on for forwarding
71     /// through to use for aliasing information in MachinePointerInfo for memory
72     /// arguments.
73     const Value *OrigValue = nullptr;
74 
75     /// Index original Function's argument.
76     unsigned OrigArgIndex;
77 
78     /// Sentinel value for implicit machine-level input arguments.
79     static const unsigned NoArgIndex = UINT_MAX;
80 
81     ArgInfo(ArrayRef<Register> Regs, Type *Ty, unsigned OrigIndex,
82             ArrayRef<ISD::ArgFlagsTy> Flags = ArrayRef<ISD::ArgFlagsTy>(),
83             bool IsFixed = true, const Value *OrigValue = nullptr)
BaseArgInfoArgInfo84         : BaseArgInfo(Ty, Flags, IsFixed), Regs(Regs.begin(), Regs.end()),
85           OrigValue(OrigValue), OrigArgIndex(OrigIndex) {
86       if (!Regs.empty() && Flags.empty())
87         this->Flags.push_back(ISD::ArgFlagsTy());
88       // FIXME: We should have just one way of saying "no register".
89       assert(((Ty->isVoidTy() || Ty->isEmptyTy()) ==
90               (Regs.empty() || Regs[0] == 0)) &&
91              "only void types should have no register");
92     }
93 
94     ArgInfo(ArrayRef<Register> Regs, const Value &OrigValue, unsigned OrigIndex,
95             ArrayRef<ISD::ArgFlagsTy> Flags = ArrayRef<ISD::ArgFlagsTy>(),
96             bool IsFixed = true)
97       : ArgInfo(Regs, OrigValue.getType(), OrigIndex, Flags, IsFixed, &OrigValue) {}
98 
99     ArgInfo() = default;
100   };
101 
102   struct CallLoweringInfo {
103     /// Calling convention to be used for the call.
104     CallingConv::ID CallConv = CallingConv::C;
105 
106     /// Destination of the call. It should be either a register, globaladdress,
107     /// or externalsymbol.
108     MachineOperand Callee = MachineOperand::CreateImm(0);
109 
110     /// Descriptor for the return type of the function.
111     ArgInfo OrigRet;
112 
113     /// List of descriptors of the arguments passed to the function.
114     SmallVector<ArgInfo, 32> OrigArgs;
115 
116     /// Valid if the call has a swifterror inout parameter, and contains the
117     /// vreg that the swifterror should be copied into after the call.
118     Register SwiftErrorVReg;
119 
120     /// Valid if the call is a controlled convergent operation.
121     Register ConvergenceCtrlToken;
122 
123     /// Original IR callsite corresponding to this call, if available.
124     const CallBase *CB = nullptr;
125 
126     MDNode *KnownCallees = nullptr;
127 
128     /// True if the call must be tail call optimized.
129     bool IsMustTailCall = false;
130 
131     /// True if the call passes all target-independent checks for tail call
132     /// optimization.
133     bool IsTailCall = false;
134 
135     /// True if the call was lowered as a tail call. This is consumed by the
136     /// legalizer. This allows the legalizer to lower libcalls as tail calls.
137     bool LoweredTailCall = false;
138 
139     /// True if the call is to a vararg function.
140     bool IsVarArg = false;
141 
142     /// True if the function's return value can be lowered to registers.
143     bool CanLowerReturn = true;
144 
145     /// VReg to hold the hidden sret parameter.
146     Register DemoteRegister;
147 
148     /// The stack index for sret demotion.
149     int DemoteStackIndex;
150 
151     /// Expected type identifier for indirect calls with a CFI check.
152     const ConstantInt *CFIType = nullptr;
153 
154     /// True if this call results in convergent operations.
155     bool IsConvergent = true;
156   };
157 
158   /// Argument handling is mostly uniform between the four places that
159   /// make these decisions: function formal arguments, call
160   /// instruction args, call instruction returns and function
161   /// returns. However, once a decision has been made on where an
162   /// argument should go, exactly what happens can vary slightly. This
163   /// class abstracts the differences.
164   ///
165   /// ValueAssigner should not depend on any specific function state, and
166   /// only determine the types and locations for arguments.
167   struct ValueAssigner {
168     ValueAssigner(bool IsIncoming, CCAssignFn *AssignFn_,
169                   CCAssignFn *AssignFnVarArg_ = nullptr)
AssignFnValueAssigner170         : AssignFn(AssignFn_), AssignFnVarArg(AssignFnVarArg_),
171           IsIncomingArgumentHandler(IsIncoming) {
172 
173       // Some targets change the handler depending on whether the call is
174       // varargs or not. If
175       if (!AssignFnVarArg)
176         AssignFnVarArg = AssignFn;
177     }
178 
179     virtual ~ValueAssigner() = default;
180 
181     /// Returns true if the handler is dealing with incoming arguments,
182     /// i.e. those that move values from some physical location to vregs.
isIncomingArgumentHandlerValueAssigner183     bool isIncomingArgumentHandler() const {
184       return IsIncomingArgumentHandler;
185     }
186 
187     /// Wrap call to (typically tablegenerated CCAssignFn). This may be
188     /// overridden to track additional state information as arguments are
189     /// assigned or apply target specific hacks around the legacy
190     /// infrastructure.
assignArgValueAssigner191     virtual bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
192                            CCValAssign::LocInfo LocInfo, const ArgInfo &Info,
193                            ISD::ArgFlagsTy Flags, CCState &State) {
194       if (getAssignFn(State.isVarArg())(ValNo, ValVT, LocVT, LocInfo, Flags,
195                                         State))
196         return true;
197       StackSize = State.getStackSize();
198       return false;
199     }
200 
201     /// Assignment function to use for a general call.
202     CCAssignFn *AssignFn;
203 
204     /// Assignment function to use for a variadic call. This is usually the same
205     /// as AssignFn on most targets.
206     CCAssignFn *AssignFnVarArg;
207 
208     /// The size of the currently allocated portion of the stack.
209     uint64_t StackSize = 0;
210 
211     /// Select the appropriate assignment function depending on whether this is
212     /// a variadic call.
getAssignFnValueAssigner213     CCAssignFn *getAssignFn(bool IsVarArg) const {
214       return IsVarArg ? AssignFnVarArg : AssignFn;
215     }
216 
217   private:
218     const bool IsIncomingArgumentHandler;
219     virtual void anchor();
220   };
221 
222   struct IncomingValueAssigner : public ValueAssigner {
223     IncomingValueAssigner(CCAssignFn *AssignFn_,
224                           CCAssignFn *AssignFnVarArg_ = nullptr)
ValueAssignerIncomingValueAssigner225         : ValueAssigner(true, AssignFn_, AssignFnVarArg_) {}
226   };
227 
228   struct OutgoingValueAssigner : public ValueAssigner {
229     OutgoingValueAssigner(CCAssignFn *AssignFn_,
230                           CCAssignFn *AssignFnVarArg_ = nullptr)
ValueAssignerOutgoingValueAssigner231         : ValueAssigner(false, AssignFn_, AssignFnVarArg_) {}
232   };
233 
234   struct ValueHandler {
235     MachineIRBuilder &MIRBuilder;
236     MachineRegisterInfo &MRI;
237     const bool IsIncomingArgumentHandler;
238 
ValueHandlerValueHandler239     ValueHandler(bool IsIncoming, MachineIRBuilder &MIRBuilder,
240                  MachineRegisterInfo &MRI)
241         : MIRBuilder(MIRBuilder), MRI(MRI),
242           IsIncomingArgumentHandler(IsIncoming) {}
243 
244     virtual ~ValueHandler() = default;
245 
246     /// Returns true if the handler is dealing with incoming arguments,
247     /// i.e. those that move values from some physical location to vregs.
isIncomingArgumentHandlerValueHandler248     bool isIncomingArgumentHandler() const {
249       return IsIncomingArgumentHandler;
250     }
251 
252     /// Materialize a VReg containing the address of the specified
253     /// stack-based object. This is either based on a FrameIndex or
254     /// direct SP manipulation, depending on the context. \p MPO
255     /// should be initialized to an appropriate description of the
256     /// address created.
257     virtual Register getStackAddress(uint64_t MemSize, int64_t Offset,
258                                      MachinePointerInfo &MPO,
259                                      ISD::ArgFlagsTy Flags) = 0;
260 
261     /// Return the in-memory size to write for the argument at \p VA. This may
262     /// be smaller than the allocated stack slot size.
263     ///
264     /// This is overridable primarily for targets to maintain compatibility with
265     /// hacks around the existing DAG call lowering infrastructure.
266     virtual LLT getStackValueStoreType(const DataLayout &DL,
267                                        const CCValAssign &VA,
268                                        ISD::ArgFlagsTy Flags) const;
269 
270     /// The specified value has been assigned to a physical register,
271     /// handle the appropriate COPY (either to or from) and mark any
272     /// relevant uses/defines as needed.
273     virtual void assignValueToReg(Register ValVReg, Register PhysReg,
274                                   const CCValAssign &VA) = 0;
275 
276     /// The specified value has been assigned to a stack
277     /// location. Load or store it there, with appropriate extension
278     /// if necessary.
279     virtual void assignValueToAddress(Register ValVReg, Register Addr,
280                                       LLT MemTy, const MachinePointerInfo &MPO,
281                                       const CCValAssign &VA) = 0;
282 
283     /// An overload which takes an ArgInfo if additional information about the
284     /// arg is needed. \p ValRegIndex is the index in \p Arg.Regs for the value
285     /// to store.
assignValueToAddressValueHandler286     virtual void assignValueToAddress(const ArgInfo &Arg, unsigned ValRegIndex,
287                                       Register Addr, LLT MemTy,
288                                       const MachinePointerInfo &MPO,
289                                       const CCValAssign &VA) {
290       assignValueToAddress(Arg.Regs[ValRegIndex], Addr, MemTy, MPO, VA);
291     }
292 
293     /// Handle custom values, which may be passed into one or more of \p VAs.
294     /// \p If the handler wants the assignments to be delayed until after
295     /// mem loc assignments, then it sets \p Thunk to the thunk to do the
296     /// assignment.
297     /// \return The number of \p VAs that have been assigned including the
298     ///         first one, and which should therefore be skipped from further
299     ///         processing.
300     virtual unsigned assignCustomValue(ArgInfo &Arg, ArrayRef<CCValAssign> VAs,
301                                        std::function<void()> *Thunk = nullptr) {
302       // This is not a pure virtual method because not all targets need to worry
303       // about custom values.
304       llvm_unreachable("Custom values not supported");
305     }
306 
307     /// Do a memory copy of \p MemSize bytes from \p SrcPtr to \p DstPtr. This
308     /// is necessary for outgoing stack-passed byval arguments.
309     void
310     copyArgumentMemory(const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
311                        const MachinePointerInfo &DstPtrInfo, Align DstAlign,
312                        const MachinePointerInfo &SrcPtrInfo, Align SrcAlign,
313                        uint64_t MemSize, CCValAssign &VA) const;
314 
315     /// Extend a register to the location type given in VA, capped at extending
316     /// to at most MaxSize bits. If MaxSizeBits is 0 then no maximum is set.
317     Register extendRegister(Register ValReg, const CCValAssign &VA,
318                             unsigned MaxSizeBits = 0);
319   };
320 
321   /// Base class for ValueHandlers used for arguments coming into the current
322   /// function, or for return values received from a call.
323   struct IncomingValueHandler : public ValueHandler {
IncomingValueHandlerIncomingValueHandler324     IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
325         : ValueHandler(/*IsIncoming*/ true, MIRBuilder, MRI) {}
326 
327     /// Insert G_ASSERT_ZEXT/G_ASSERT_SEXT or other hint instruction based on \p
328     /// VA, returning the new register if a hint was inserted.
329     Register buildExtensionHint(const CCValAssign &VA, Register SrcReg,
330                                 LLT NarrowTy);
331 
332     /// Provides a default implementation for argument handling.
333     void assignValueToReg(Register ValVReg, Register PhysReg,
334                           const CCValAssign &VA) override;
335   };
336 
337   /// Base class for ValueHandlers used for arguments passed to a function call,
338   /// or for return values.
339   struct OutgoingValueHandler : public ValueHandler {
OutgoingValueHandlerOutgoingValueHandler340     OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
341         : ValueHandler(/*IsIncoming*/ false, MIRBuilder, MRI) {}
342   };
343 
344 protected:
345   /// Getter for generic TargetLowering class.
getTLI()346   const TargetLowering *getTLI() const {
347     return TLI;
348   }
349 
350   /// Getter for target specific TargetLowering class.
351   template <class XXXTargetLowering>
getTLI()352     const XXXTargetLowering *getTLI() const {
353     return static_cast<const XXXTargetLowering *>(TLI);
354   }
355 
356   /// \returns Flags corresponding to the attributes on the \p ArgIdx-th
357   /// parameter of \p Call.
358   ISD::ArgFlagsTy getAttributesForArgIdx(const CallBase &Call,
359                                          unsigned ArgIdx) const;
360 
361   /// \returns Flags corresponding to the attributes on the return from \p Call.
362   ISD::ArgFlagsTy getAttributesForReturn(const CallBase &Call) const;
363 
364   /// Adds flags to \p Flags based off of the attributes in \p Attrs.
365   /// \p OpIdx is the index in \p Attrs to add flags from.
366   void addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
367                                  const AttributeList &Attrs,
368                                  unsigned OpIdx) const;
369 
370   template <typename FuncInfoTy>
371   void setArgFlags(ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL,
372                    const FuncInfoTy &FuncInfo) const;
373 
374   /// Break \p OrigArgInfo into one or more pieces the calling convention can
375   /// process, returned in \p SplitArgs. For example, this should break structs
376   /// down into individual fields.
377   ///
378   /// If \p Offsets is non-null, it points to a vector to be filled in
379   /// with the in-memory offsets of each of the individual values.
380   void splitToValueTypes(const ArgInfo &OrigArgInfo,
381                          SmallVectorImpl<ArgInfo> &SplitArgs,
382                          const DataLayout &DL, CallingConv::ID CallConv,
383                          SmallVectorImpl<uint64_t> *Offsets = nullptr) const;
384 
385   /// Analyze the argument list in \p Args, using \p Assigner to populate \p
386   /// CCInfo. This will determine the types and locations to use for passed or
387   /// returned values. This may resize fields in \p Args if the value is split
388   /// across multiple registers or stack slots.
389   ///
390   /// This is independent of the function state and can be used
391   /// to determine how a call would pass arguments without needing to change the
392   /// function. This can be used to check if arguments are suitable for tail
393   /// call lowering.
394   ///
395   /// \return True if everything has succeeded, false otherwise.
396   bool determineAssignments(ValueAssigner &Assigner,
397                             SmallVectorImpl<ArgInfo> &Args,
398                             CCState &CCInfo) const;
399 
400   /// Invoke ValueAssigner::assignArg on each of the given \p Args and then use
401   /// \p Handler to move them to the assigned locations.
402   ///
403   /// \return True if everything has succeeded, false otherwise.
404   bool determineAndHandleAssignments(
405       ValueHandler &Handler, ValueAssigner &Assigner,
406       SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
407       CallingConv::ID CallConv, bool IsVarArg,
408       ArrayRef<Register> ThisReturnRegs = std::nullopt) const;
409 
410   /// Use \p Handler to insert code to handle the argument/return values
411   /// represented by \p Args. It's expected determineAssignments previously
412   /// processed these arguments to populate \p CCState and \p ArgLocs.
413   bool
414   handleAssignments(ValueHandler &Handler, SmallVectorImpl<ArgInfo> &Args,
415                     CCState &CCState, SmallVectorImpl<CCValAssign> &ArgLocs,
416                     MachineIRBuilder &MIRBuilder,
417                     ArrayRef<Register> ThisReturnRegs = std::nullopt) const;
418 
419   /// Check whether parameters to a call that are passed in callee saved
420   /// registers are the same as from the calling function.  This needs to be
421   /// checked for tail call eligibility.
422   bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
423                             const uint32_t *CallerPreservedMask,
424                             const SmallVectorImpl<CCValAssign> &ArgLocs,
425                             const SmallVectorImpl<ArgInfo> &OutVals) const;
426 
427   /// \returns True if the calling convention for a callee and its caller pass
428   /// results in the same way. Typically used for tail call eligibility checks.
429   ///
430   /// \p Info is the CallLoweringInfo for the call.
431   /// \p MF is the MachineFunction for the caller.
432   /// \p InArgs contains the results of the call.
433   /// \p CalleeAssigner specifies the target's handling of the argument types
434   /// for the callee.
435   /// \p CallerAssigner specifies the target's handling of the
436   /// argument types for the caller.
437   bool resultsCompatible(CallLoweringInfo &Info, MachineFunction &MF,
438                          SmallVectorImpl<ArgInfo> &InArgs,
439                          ValueAssigner &CalleeAssigner,
440                          ValueAssigner &CallerAssigner) const;
441 
442 public:
CallLowering(const TargetLowering * TLI)443   CallLowering(const TargetLowering *TLI) : TLI(TLI) {}
444   virtual ~CallLowering() = default;
445 
446   /// \return true if the target is capable of handling swifterror values that
447   /// have been promoted to a specified register. The extended versions of
448   /// lowerReturn and lowerCall should be implemented.
supportSwiftError()449   virtual bool supportSwiftError() const {
450     return false;
451   }
452 
453   /// Load the returned value from the stack into virtual registers in \p VRegs.
454   /// It uses the frame index \p FI and the start offset from \p DemoteReg.
455   /// The loaded data size will be determined from \p RetTy.
456   void insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
457                        ArrayRef<Register> VRegs, Register DemoteReg,
458                        int FI) const;
459 
460   /// Store the return value given by \p VRegs into stack starting at the offset
461   /// specified in \p DemoteReg.
462   void insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
463                         ArrayRef<Register> VRegs, Register DemoteReg) const;
464 
465   /// Insert the hidden sret ArgInfo to the beginning of \p SplitArgs.
466   /// This function should be called from the target specific
467   /// lowerFormalArguments when \p F requires the sret demotion.
468   void insertSRetIncomingArgument(const Function &F,
469                                   SmallVectorImpl<ArgInfo> &SplitArgs,
470                                   Register &DemoteReg, MachineRegisterInfo &MRI,
471                                   const DataLayout &DL) const;
472 
473   /// For the call-base described by \p CB, insert the hidden sret ArgInfo to
474   /// the OrigArgs field of \p Info.
475   void insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
476                                   const CallBase &CB,
477                                   CallLoweringInfo &Info) const;
478 
479   /// \return True if the return type described by \p Outs can be returned
480   /// without performing sret demotion.
481   bool checkReturn(CCState &CCInfo, SmallVectorImpl<BaseArgInfo> &Outs,
482                    CCAssignFn *Fn) const;
483 
484   /// Get the type and the ArgFlags for the split components of \p RetTy as
485   /// returned by \c ComputeValueVTs.
486   void getReturnInfo(CallingConv::ID CallConv, Type *RetTy, AttributeList Attrs,
487                      SmallVectorImpl<BaseArgInfo> &Outs,
488                      const DataLayout &DL) const;
489 
490   /// Toplevel function to check the return type based on the target calling
491   /// convention. \return True if the return value of \p MF can be returned
492   /// without performing sret demotion.
493   bool checkReturnTypeForCallConv(MachineFunction &MF) const;
494 
495   /// This hook must be implemented to check whether the return values
496   /// described by \p Outs can fit into the return registers. If false
497   /// is returned, an sret-demotion is performed.
canLowerReturn(MachineFunction & MF,CallingConv::ID CallConv,SmallVectorImpl<BaseArgInfo> & Outs,bool IsVarArg)498   virtual bool canLowerReturn(MachineFunction &MF, CallingConv::ID CallConv,
499                               SmallVectorImpl<BaseArgInfo> &Outs,
500                               bool IsVarArg) const {
501     return true;
502   }
503 
504   /// This hook must be implemented to lower outgoing return values, described
505   /// by \p Val, into the specified virtual registers \p VRegs.
506   /// This hook is used by GlobalISel.
507   ///
508   /// \p FLI is required for sret demotion.
509   ///
510   /// \p SwiftErrorVReg is non-zero if the function has a swifterror parameter
511   /// that needs to be implicitly returned.
512   ///
513   /// \return True if the lowering succeeds, false otherwise.
lowerReturn(MachineIRBuilder & MIRBuilder,const Value * Val,ArrayRef<Register> VRegs,FunctionLoweringInfo & FLI,Register SwiftErrorVReg)514   virtual bool lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val,
515                            ArrayRef<Register> VRegs, FunctionLoweringInfo &FLI,
516                            Register SwiftErrorVReg) const {
517     if (!supportSwiftError()) {
518       assert(SwiftErrorVReg == 0 && "attempt to use unsupported swifterror");
519       return lowerReturn(MIRBuilder, Val, VRegs, FLI);
520     }
521     return false;
522   }
523 
524   /// This hook behaves as the extended lowerReturn function, but for targets
525   /// that do not support swifterror value promotion.
lowerReturn(MachineIRBuilder & MIRBuilder,const Value * Val,ArrayRef<Register> VRegs,FunctionLoweringInfo & FLI)526   virtual bool lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val,
527                            ArrayRef<Register> VRegs,
528                            FunctionLoweringInfo &FLI) const {
529     return false;
530   }
531 
fallBackToDAGISel(const MachineFunction & MF)532   virtual bool fallBackToDAGISel(const MachineFunction &MF) const {
533     return false;
534   }
535 
536   /// This hook must be implemented to lower the incoming (formal)
537   /// arguments, described by \p VRegs, for GlobalISel. Each argument
538   /// must end up in the related virtual registers described by \p VRegs.
539   /// In other words, the first argument should end up in \c VRegs[0],
540   /// the second in \c VRegs[1], and so on. For each argument, there will be one
541   /// register for each non-aggregate type, as returned by \c computeValueLLTs.
542   /// \p MIRBuilder is set to the proper insertion for the argument
543   /// lowering. \p FLI is required for sret demotion.
544   ///
545   /// \return True if the lowering succeeded, false otherwise.
lowerFormalArguments(MachineIRBuilder & MIRBuilder,const Function & F,ArrayRef<ArrayRef<Register>> VRegs,FunctionLoweringInfo & FLI)546   virtual bool lowerFormalArguments(MachineIRBuilder &MIRBuilder,
547                                     const Function &F,
548                                     ArrayRef<ArrayRef<Register>> VRegs,
549                                     FunctionLoweringInfo &FLI) const {
550     return false;
551   }
552 
553   /// This hook must be implemented to lower the given call instruction,
554   /// including argument and return value marshalling.
555   ///
556   ///
557   /// \return true if the lowering succeeded, false otherwise.
lowerCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info)558   virtual bool lowerCall(MachineIRBuilder &MIRBuilder,
559                          CallLoweringInfo &Info) const {
560     return false;
561   }
562 
563   /// Lower the given call instruction, including argument and return value
564   /// marshalling.
565   ///
566   /// \p CI is the call/invoke instruction.
567   ///
568   /// \p ResRegs are the registers where the call's return value should be
569   /// stored (or 0 if there is no return value). There will be one register for
570   /// each non-aggregate type, as returned by \c computeValueLLTs.
571   ///
572   /// \p ArgRegs is a list of lists of virtual registers containing each
573   /// argument that needs to be passed (argument \c i should be placed in \c
574   /// ArgRegs[i]). For each argument, there will be one register for each
575   /// non-aggregate type, as returned by \c computeValueLLTs.
576   ///
577   /// \p SwiftErrorVReg is non-zero if the call has a swifterror inout
578   /// parameter, and contains the vreg that the swifterror should be copied into
579   /// after the call.
580   ///
581   /// \p GetCalleeReg is a callback to materialize a register for the callee if
582   /// the target determines it cannot jump to the destination based purely on \p
583   /// CI. This might be because \p CI is indirect, or because of the limited
584   /// range of an immediate jump.
585   ///
586   /// \return true if the lowering succeeded, false otherwise.
587   bool lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &Call,
588                  ArrayRef<Register> ResRegs,
589                  ArrayRef<ArrayRef<Register>> ArgRegs, Register SwiftErrorVReg,
590                  Register ConvergenceCtrlToken,
591                  std::function<unsigned()> GetCalleeReg) const;
592 
593   /// For targets which want to use big-endian can enable it with
594   /// enableBigEndian() hook
enableBigEndian()595   virtual bool enableBigEndian() const { return false; }
596 
597   /// For targets which support the "returned" parameter attribute, returns
598   /// true if the given type is a valid one to use with "returned".
isTypeIsValidForThisReturn(EVT Ty)599   virtual bool isTypeIsValidForThisReturn(EVT Ty) const { return false; }
600 };
601 
602 } // end namespace llvm
603 
604 #endif // LLVM_CODEGEN_GLOBALISEL_CALLLOWERING_H
605