1 ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file provides the interface for the sampled PGO profile loader base 11 /// implementation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 16 #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/IntrusiveRefCntPtr.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/PostDominators.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/PseudoProbe.h" 38 #include "llvm/ProfileData/SampleProf.h" 39 #include "llvm/ProfileData/SampleProfReader.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/GenericDomTree.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/SampleProfileInference.h" 44 #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" 45 46 namespace llvm { 47 using namespace sampleprof; 48 using namespace sampleprofutil; 49 using ProfileCount = Function::ProfileCount; 50 51 namespace vfs { 52 class FileSystem; 53 } // namespace vfs 54 55 #define DEBUG_TYPE "sample-profile-impl" 56 57 namespace afdo_detail { 58 59 template <typename BlockT> struct IRTraits; 60 template <> struct IRTraits<BasicBlock> { 61 using InstructionT = Instruction; 62 using BasicBlockT = BasicBlock; 63 using FunctionT = Function; 64 using BlockFrequencyInfoT = BlockFrequencyInfo; 65 using LoopT = Loop; 66 using LoopInfoPtrT = std::unique_ptr<LoopInfo>; 67 using DominatorTreePtrT = std::unique_ptr<DominatorTree>; 68 using PostDominatorTreeT = PostDominatorTree; 69 using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>; 70 using OptRemarkEmitterT = OptimizationRemarkEmitter; 71 using OptRemarkAnalysisT = OptimizationRemarkAnalysis; 72 using PredRangeT = pred_range; 73 using SuccRangeT = succ_range; 74 static Function &getFunction(Function &F) { return F; } 75 static const BasicBlock *getEntryBB(const Function *F) { 76 return &F->getEntryBlock(); 77 } 78 static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); } 79 static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); } 80 }; 81 82 } // end namespace afdo_detail 83 84 // This class serves sample counts correlation for SampleProfileLoader by 85 // analyzing pseudo probes and their function descriptors injected by 86 // SampleProfileProber. 87 class PseudoProbeManager { 88 DenseMap<uint64_t, PseudoProbeDescriptor> GUIDToProbeDescMap; 89 90 public: 91 PseudoProbeManager(const Module &M) { 92 if (NamedMDNode *FuncInfo = 93 M.getNamedMetadata(PseudoProbeDescMetadataName)) { 94 for (const auto *Operand : FuncInfo->operands()) { 95 const auto *MD = cast<MDNode>(Operand); 96 auto GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)) 97 ->getZExtValue(); 98 auto Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)) 99 ->getZExtValue(); 100 GUIDToProbeDescMap.try_emplace(GUID, PseudoProbeDescriptor(GUID, Hash)); 101 } 102 } 103 } 104 105 const PseudoProbeDescriptor *getDesc(uint64_t GUID) const { 106 auto I = GUIDToProbeDescMap.find(GUID); 107 return I == GUIDToProbeDescMap.end() ? nullptr : &I->second; 108 } 109 110 const PseudoProbeDescriptor *getDesc(StringRef FProfileName) const { 111 return getDesc(Function::getGUID(FProfileName)); 112 } 113 114 const PseudoProbeDescriptor *getDesc(const Function &F) const { 115 return getDesc(Function::getGUID(FunctionSamples::getCanonicalFnName(F))); 116 } 117 118 bool profileIsHashMismatched(const PseudoProbeDescriptor &FuncDesc, 119 const FunctionSamples &Samples) const { 120 return FuncDesc.getFunctionHash() != Samples.getFunctionHash(); 121 } 122 123 bool moduleIsProbed(const Module &M) const { 124 return M.getNamedMetadata(PseudoProbeDescMetadataName); 125 } 126 127 bool profileIsValid(const Function &F, const FunctionSamples &Samples) const { 128 const auto *Desc = getDesc(F); 129 bool IsAvailableExternallyLinkage = 130 GlobalValue::isAvailableExternallyLinkage(F.getLinkage()); 131 // Always check the function attribute to determine checksum mismatch for 132 // `available_externally` functions even if their desc are available. This 133 // is because the desc is computed based on the original internal function 134 // and it's substituted by the `available_externally` function during link 135 // time. However, when unstable IR or ODR violation issue occurs, the 136 // definitions of the same function across different translation units could 137 // be different and result in different checksums. So we should use the 138 // state from the new (available_externally) function, which is saved in its 139 // attribute. 140 // TODO: If the function's profile only exists as nested inlinee profile in 141 // a different module, we don't have the attr mismatch state(unknown), we 142 // need to fix it later. 143 if (IsAvailableExternallyLinkage || !Desc) 144 return !F.hasFnAttribute("profile-checksum-mismatch"); 145 146 return Desc && !profileIsHashMismatched(*Desc, Samples); 147 } 148 }; 149 150 151 152 extern cl::opt<bool> SampleProfileUseProfi; 153 154 static inline bool skipProfileForFunction(const Function &F) { 155 return F.isDeclaration() || !F.hasFnAttribute("use-sample-profile"); 156 } 157 158 template <typename FT> class SampleProfileLoaderBaseImpl { 159 public: 160 SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName, 161 IntrusiveRefCntPtr<vfs::FileSystem> FS) 162 : Filename(Name), RemappingFilename(RemapName), FS(std::move(FS)) {} 163 void dump() { Reader->dump(); } 164 165 using NodeRef = typename GraphTraits<FT *>::NodeRef; 166 using BT = std::remove_pointer_t<NodeRef>; 167 using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT; 168 using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT; 169 using BlockFrequencyInfoT = 170 typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT; 171 using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT; 172 using LoopT = typename afdo_detail::IRTraits<BT>::LoopT; 173 using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT; 174 using DominatorTreePtrT = 175 typename afdo_detail::IRTraits<BT>::DominatorTreePtrT; 176 using PostDominatorTreePtrT = 177 typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT; 178 using PostDominatorTreeT = 179 typename afdo_detail::IRTraits<BT>::PostDominatorTreeT; 180 using OptRemarkEmitterT = 181 typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT; 182 using OptRemarkAnalysisT = 183 typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT; 184 using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT; 185 using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT; 186 187 using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>; 188 using EquivalenceClassMap = 189 DenseMap<const BasicBlockT *, const BasicBlockT *>; 190 using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>; 191 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 192 using BlockEdgeMap = 193 DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>; 194 195 protected: 196 ~SampleProfileLoaderBaseImpl() = default; 197 friend class SampleCoverageTracker; 198 199 Function &getFunction(FunctionT &F) { 200 return afdo_detail::IRTraits<BT>::getFunction(F); 201 } 202 const BasicBlockT *getEntryBB(const FunctionT *F) { 203 return afdo_detail::IRTraits<BT>::getEntryBB(F); 204 } 205 PredRangeT getPredecessors(BasicBlockT *BB) { 206 return afdo_detail::IRTraits<BT>::getPredecessors(BB); 207 } 208 SuccRangeT getSuccessors(BasicBlockT *BB) { 209 return afdo_detail::IRTraits<BT>::getSuccessors(BB); 210 } 211 212 unsigned getFunctionLoc(FunctionT &Func); 213 virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst); 214 ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst); 215 virtual ErrorOr<uint64_t> getProbeWeight(const InstructionT &Inst); 216 ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB); 217 mutable DenseMap<const DILocation *, const FunctionSamples *> 218 DILocation2SampleMap; 219 virtual const FunctionSamples * 220 findFunctionSamples(const InstructionT &I) const; 221 void printEdgeWeight(raw_ostream &OS, Edge E); 222 void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const; 223 void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB); 224 bool computeBlockWeights(FunctionT &F); 225 void findEquivalenceClasses(FunctionT &F); 226 void findEquivalencesFor(BasicBlockT *BB1, 227 ArrayRef<BasicBlockT *> Descendants, 228 PostDominatorTreeT *DomTree); 229 void propagateWeights(FunctionT &F); 230 void applyProfi(FunctionT &F, BlockEdgeMap &Successors, 231 BlockWeightMap &SampleBlockWeights, 232 BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights); 233 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 234 void buildEdges(FunctionT &F); 235 bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount); 236 void clearFunctionData(bool ResetDT = true); 237 void computeDominanceAndLoopInfo(FunctionT &F); 238 bool 239 computeAndPropagateWeights(FunctionT &F, 240 const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 241 void initWeightPropagation(FunctionT &F, 242 const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 243 void 244 finalizeWeightPropagation(FunctionT &F, 245 const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 246 void emitCoverageRemarks(FunctionT &F); 247 248 /// Map basic blocks to their computed weights. 249 /// 250 /// The weight of a basic block is defined to be the maximum 251 /// of all the instruction weights in that block. 252 BlockWeightMap BlockWeights; 253 254 /// Map edges to their computed weights. 255 /// 256 /// Edge weights are computed by propagating basic block weights in 257 /// SampleProfile::propagateWeights. 258 EdgeWeightMap EdgeWeights; 259 260 /// Set of visited blocks during propagation. 261 SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks; 262 263 /// Set of visited edges during propagation. 264 SmallSet<Edge, 32> VisitedEdges; 265 266 /// Equivalence classes for block weights. 267 /// 268 /// Two blocks BB1 and BB2 are in the same equivalence class if they 269 /// dominate and post-dominate each other, and they are in the same loop 270 /// nest. When this happens, the two blocks are guaranteed to execute 271 /// the same number of times. 272 EquivalenceClassMap EquivalenceClass; 273 274 /// Dominance, post-dominance and loop information. 275 DominatorTreePtrT DT; 276 PostDominatorTreePtrT PDT; 277 LoopInfoPtrT LI; 278 279 /// Predecessors for each basic block in the CFG. 280 BlockEdgeMap Predecessors; 281 282 /// Successors for each basic block in the CFG. 283 BlockEdgeMap Successors; 284 285 /// Profile coverage tracker. 286 SampleCoverageTracker CoverageTracker; 287 288 /// Profile reader object. 289 std::unique_ptr<SampleProfileReader> Reader; 290 291 /// Synthetic samples created by duplicating the samples of inlined functions 292 /// from the original profile as if they were top level sample profiles. 293 /// Use std::map because insertion may happen while its content is referenced. 294 std::map<SampleContext, FunctionSamples> OutlineFunctionSamples; 295 296 // A pseudo probe helper to correlate the imported sample counts. 297 std::unique_ptr<PseudoProbeManager> ProbeManager; 298 299 /// Samples collected for the body of this function. 300 FunctionSamples *Samples = nullptr; 301 302 /// Name of the profile file to load. 303 std::string Filename; 304 305 /// Name of the profile remapping file to load. 306 std::string RemappingFilename; 307 308 /// VirtualFileSystem to load profile files from. 309 IntrusiveRefCntPtr<vfs::FileSystem> FS; 310 311 /// Profile Summary Info computed from sample profile. 312 ProfileSummaryInfo *PSI = nullptr; 313 314 /// Optimization Remark Emitter used to emit diagnostic remarks. 315 OptRemarkEmitterT *ORE = nullptr; 316 }; 317 318 /// Clear all the per-function data used to load samples and propagate weights. 319 template <typename BT> 320 void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) { 321 BlockWeights.clear(); 322 EdgeWeights.clear(); 323 VisitedBlocks.clear(); 324 VisitedEdges.clear(); 325 EquivalenceClass.clear(); 326 if (ResetDT) { 327 DT = nullptr; 328 PDT = nullptr; 329 LI = nullptr; 330 } 331 Predecessors.clear(); 332 Successors.clear(); 333 CoverageTracker.clear(); 334 } 335 336 #ifndef NDEBUG 337 /// Print the weight of edge \p E on stream \p OS. 338 /// 339 /// \param OS Stream to emit the output to. 340 /// \param E Edge to print. 341 template <typename BT> 342 void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) { 343 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 344 << "]: " << EdgeWeights[E] << "\n"; 345 } 346 347 /// Print the equivalence class of block \p BB on stream \p OS. 348 /// 349 /// \param OS Stream to emit the output to. 350 /// \param BB Block to print. 351 template <typename BT> 352 void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence( 353 raw_ostream &OS, const BasicBlockT *BB) { 354 const BasicBlockT *Equiv = EquivalenceClass[BB]; 355 OS << "equivalence[" << BB->getName() 356 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 357 } 358 359 /// Print the weight of block \p BB on stream \p OS. 360 /// 361 /// \param OS Stream to emit the output to. 362 /// \param BB Block to print. 363 template <typename BT> 364 void SampleProfileLoaderBaseImpl<BT>::printBlockWeight( 365 raw_ostream &OS, const BasicBlockT *BB) const { 366 const auto &I = BlockWeights.find(BB); 367 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 368 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 369 } 370 #endif 371 372 /// Get the weight for an instruction. 373 /// 374 /// The "weight" of an instruction \p Inst is the number of samples 375 /// collected on that instruction at runtime. To retrieve it, we 376 /// need to compute the line number of \p Inst relative to the start of its 377 /// function. We use HeaderLineno to compute the offset. We then 378 /// look up the samples collected for \p Inst using BodySamples. 379 /// 380 /// \param Inst Instruction to query. 381 /// 382 /// \returns the weight of \p Inst. 383 template <typename BT> 384 ErrorOr<uint64_t> 385 SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) { 386 if (FunctionSamples::ProfileIsProbeBased) 387 return getProbeWeight(Inst); 388 return getInstWeightImpl(Inst); 389 } 390 391 template <typename BT> 392 ErrorOr<uint64_t> 393 SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) { 394 const FunctionSamples *FS = findFunctionSamples(Inst); 395 if (!FS) 396 return std::error_code(); 397 398 const DebugLoc &DLoc = Inst.getDebugLoc(); 399 if (!DLoc) 400 return std::error_code(); 401 402 const DILocation *DIL = DLoc; 403 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 404 uint32_t Discriminator; 405 if (EnableFSDiscriminator) 406 Discriminator = DIL->getDiscriminator(); 407 else 408 Discriminator = DIL->getBaseDiscriminator(); 409 410 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 411 if (R) { 412 bool FirstMark = 413 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 414 if (FirstMark) { 415 ORE->emit([&]() { 416 OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 417 Remark << "Applied " << ore::NV("NumSamples", *R); 418 Remark << " samples from profile (offset: "; 419 Remark << ore::NV("LineOffset", LineOffset); 420 if (Discriminator) { 421 Remark << "."; 422 Remark << ore::NV("Discriminator", Discriminator); 423 } 424 Remark << ")"; 425 return Remark; 426 }); 427 } 428 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":" 429 << Inst << " (line offset: " << LineOffset << "." 430 << Discriminator << " - weight: " << R.get() << ")\n"); 431 } 432 return R; 433 } 434 435 // Here use error_code to represent: 1) The dangling probe. 2) Ignore the weight 436 // of non-probe instruction. So if all instructions of the BB give error_code, 437 // tell the inference algorithm to infer the BB weight. 438 template <typename BT> 439 ErrorOr<uint64_t> 440 SampleProfileLoaderBaseImpl<BT>::getProbeWeight(const InstructionT &Inst) { 441 assert(FunctionSamples::ProfileIsProbeBased && 442 "Profile is not pseudo probe based"); 443 std::optional<PseudoProbe> Probe = extractProbe(Inst); 444 // Ignore the non-probe instruction. If none of the instruction in the BB is 445 // probe, we choose to infer the BB's weight. 446 if (!Probe) 447 return std::error_code(); 448 449 const FunctionSamples *FS = findFunctionSamples(Inst); 450 // If none of the instruction has FunctionSample, we choose to return zero 451 // value sample to indicate the BB is cold. This could happen when the 452 // instruction is from inlinee and no profile data is found. 453 // FIXME: This should not be affected by the source drift issue as 1) if the 454 // newly added function is top-level inliner, it won't match the CFG checksum 455 // in the function profile or 2) if it's the inlinee, the inlinee should have 456 // a profile, otherwise it wouldn't be inlined. For non-probe based profile, 457 // we can improve it by adding a switch for profile-sample-block-accurate for 458 // block level counts in the future. 459 if (!FS) 460 return 0; 461 462 auto R = FS->findSamplesAt(Probe->Id, Probe->Discriminator); 463 if (R) { 464 uint64_t Samples = R.get() * Probe->Factor; 465 bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples); 466 if (FirstMark) { 467 ORE->emit([&]() { 468 OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 469 Remark << "Applied " << ore::NV("NumSamples", Samples); 470 Remark << " samples from profile (ProbeId="; 471 Remark << ore::NV("ProbeId", Probe->Id); 472 if (Probe->Discriminator) { 473 Remark << "."; 474 Remark << ore::NV("Discriminator", Probe->Discriminator); 475 } 476 Remark << ", Factor="; 477 Remark << ore::NV("Factor", Probe->Factor); 478 Remark << ", OriginalSamples="; 479 Remark << ore::NV("OriginalSamples", R.get()); 480 Remark << ")"; 481 return Remark; 482 }); 483 } 484 LLVM_DEBUG({dbgs() << " " << Probe->Id; 485 if (Probe->Discriminator) 486 dbgs() << "." << Probe->Discriminator; 487 dbgs() << ":" << Inst << " - weight: " << R.get() 488 << " - factor: " << format("%0.2f", Probe->Factor) << ")\n";}); 489 return Samples; 490 } 491 return R; 492 } 493 494 /// Compute the weight of a basic block. 495 /// 496 /// The weight of basic block \p BB is the maximum weight of all the 497 /// instructions in BB. 498 /// 499 /// \param BB The basic block to query. 500 /// 501 /// \returns the weight for \p BB. 502 template <typename BT> 503 ErrorOr<uint64_t> 504 SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) { 505 uint64_t Max = 0; 506 bool HasWeight = false; 507 for (auto &I : *BB) { 508 const ErrorOr<uint64_t> &R = getInstWeight(I); 509 if (R) { 510 Max = std::max(Max, R.get()); 511 HasWeight = true; 512 } 513 } 514 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 515 } 516 517 /// Compute and store the weights of every basic block. 518 /// 519 /// This populates the BlockWeights map by computing 520 /// the weights of every basic block in the CFG. 521 /// 522 /// \param F The function to query. 523 template <typename BT> 524 bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) { 525 bool Changed = false; 526 LLVM_DEBUG(dbgs() << "Block weights\n"); 527 for (const auto &BB : F) { 528 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 529 if (Weight) { 530 BlockWeights[&BB] = Weight.get(); 531 VisitedBlocks.insert(&BB); 532 Changed = true; 533 } 534 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 535 } 536 537 return Changed; 538 } 539 540 /// Get the FunctionSamples for an instruction. 541 /// 542 /// The FunctionSamples of an instruction \p Inst is the inlined instance 543 /// in which that instruction is coming from. We traverse the inline stack 544 /// of that instruction, and match it with the tree nodes in the profile. 545 /// 546 /// \param Inst Instruction to query. 547 /// 548 /// \returns the FunctionSamples pointer to the inlined instance. 549 template <typename BT> 550 const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples( 551 const InstructionT &Inst) const { 552 const DILocation *DIL = Inst.getDebugLoc(); 553 if (!DIL) 554 return Samples; 555 556 auto it = DILocation2SampleMap.try_emplace(DIL, nullptr); 557 if (it.second) { 558 it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper()); 559 } 560 return it.first->second; 561 } 562 563 /// Find equivalence classes for the given block. 564 /// 565 /// This finds all the blocks that are guaranteed to execute the same 566 /// number of times as \p BB1. To do this, it traverses all the 567 /// descendants of \p BB1 in the dominator or post-dominator tree. 568 /// 569 /// A block BB2 will be in the same equivalence class as \p BB1 if 570 /// the following holds: 571 /// 572 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 573 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 574 /// dominate BB1 in the post-dominator tree. 575 /// 576 /// 2- Both BB2 and \p BB1 must be in the same loop. 577 /// 578 /// For every block BB2 that meets those two requirements, we set BB2's 579 /// equivalence class to \p BB1. 580 /// 581 /// \param BB1 Block to check. 582 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 583 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 584 /// with blocks from \p BB1's dominator tree, then 585 /// this is the post-dominator tree, and vice versa. 586 template <typename BT> 587 void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor( 588 BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants, 589 PostDominatorTreeT *DomTree) { 590 const BasicBlockT *EC = EquivalenceClass[BB1]; 591 uint64_t Weight = BlockWeights[EC]; 592 for (const auto *BB2 : Descendants) { 593 bool IsDomParent = DomTree->dominates(BB2, BB1); 594 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 595 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 596 EquivalenceClass[BB2] = EC; 597 // If BB2 is visited, then the entire EC should be marked as visited. 598 if (VisitedBlocks.count(BB2)) { 599 VisitedBlocks.insert(EC); 600 } 601 602 // If BB2 is heavier than BB1, make BB2 have the same weight 603 // as BB1. 604 // 605 // Note that we don't worry about the opposite situation here 606 // (when BB2 is lighter than BB1). We will deal with this 607 // during the propagation phase. Right now, we just want to 608 // make sure that BB1 has the largest weight of all the 609 // members of its equivalence set. 610 Weight = std::max(Weight, BlockWeights[BB2]); 611 } 612 } 613 const BasicBlockT *EntryBB = getEntryBB(EC->getParent()); 614 if (EC == EntryBB) { 615 BlockWeights[EC] = Samples->getHeadSamples() + 1; 616 } else { 617 BlockWeights[EC] = Weight; 618 } 619 } 620 621 /// Find equivalence classes. 622 /// 623 /// Since samples may be missing from blocks, we can fill in the gaps by setting 624 /// the weights of all the blocks in the same equivalence class to the same 625 /// weight. To compute the concept of equivalence, we use dominance and loop 626 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 627 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 628 /// 629 /// \param F The function to query. 630 template <typename BT> 631 void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) { 632 SmallVector<BasicBlockT *, 8> DominatedBBs; 633 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 634 // Find equivalence sets based on dominance and post-dominance information. 635 for (auto &BB : F) { 636 BasicBlockT *BB1 = &BB; 637 638 // Compute BB1's equivalence class once. 639 if (EquivalenceClass.count(BB1)) { 640 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 641 continue; 642 } 643 644 // By default, blocks are in their own equivalence class. 645 EquivalenceClass[BB1] = BB1; 646 647 // Traverse all the blocks dominated by BB1. We are looking for 648 // every basic block BB2 such that: 649 // 650 // 1- BB1 dominates BB2. 651 // 2- BB2 post-dominates BB1. 652 // 3- BB1 and BB2 are in the same loop nest. 653 // 654 // If all those conditions hold, it means that BB2 is executed 655 // as many times as BB1, so they are placed in the same equivalence 656 // class by making BB2's equivalence class be BB1. 657 DominatedBBs.clear(); 658 DT->getDescendants(BB1, DominatedBBs); 659 findEquivalencesFor(BB1, DominatedBBs, &*PDT); 660 661 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 662 } 663 664 // Assign weights to equivalence classes. 665 // 666 // All the basic blocks in the same equivalence class will execute 667 // the same number of times. Since we know that the head block in 668 // each equivalence class has the largest weight, assign that weight 669 // to all the blocks in that equivalence class. 670 LLVM_DEBUG( 671 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 672 for (auto &BI : F) { 673 const BasicBlockT *BB = &BI; 674 const BasicBlockT *EquivBB = EquivalenceClass[BB]; 675 if (BB != EquivBB) 676 BlockWeights[BB] = BlockWeights[EquivBB]; 677 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 678 } 679 } 680 681 /// Visit the given edge to decide if it has a valid weight. 682 /// 683 /// If \p E has not been visited before, we copy to \p UnknownEdge 684 /// and increment the count of unknown edges. 685 /// 686 /// \param E Edge to visit. 687 /// \param NumUnknownEdges Current number of unknown edges. 688 /// \param UnknownEdge Set if E has not been visited before. 689 /// 690 /// \returns E's weight, if known. Otherwise, return 0. 691 template <typename BT> 692 uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E, 693 unsigned *NumUnknownEdges, 694 Edge *UnknownEdge) { 695 if (!VisitedEdges.count(E)) { 696 (*NumUnknownEdges)++; 697 *UnknownEdge = E; 698 return 0; 699 } 700 701 return EdgeWeights[E]; 702 } 703 704 /// Propagate weights through incoming/outgoing edges. 705 /// 706 /// If the weight of a basic block is known, and there is only one edge 707 /// with an unknown weight, we can calculate the weight of that edge. 708 /// 709 /// Similarly, if all the edges have a known count, we can calculate the 710 /// count of the basic block, if needed. 711 /// 712 /// \param F Function to process. 713 /// \param UpdateBlockCount Whether we should update basic block counts that 714 /// has already been annotated. 715 /// 716 /// \returns True if new weights were assigned to edges or blocks. 717 template <typename BT> 718 bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges( 719 FunctionT &F, bool UpdateBlockCount) { 720 bool Changed = false; 721 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 722 for (const auto &BI : F) { 723 const BasicBlockT *BB = &BI; 724 const BasicBlockT *EC = EquivalenceClass[BB]; 725 726 // Visit all the predecessor and successor edges to determine 727 // which ones have a weight assigned already. Note that it doesn't 728 // matter that we only keep track of a single unknown edge. The 729 // only case we are interested in handling is when only a single 730 // edge is unknown (see setEdgeOrBlockWeight). 731 for (unsigned i = 0; i < 2; i++) { 732 uint64_t TotalWeight = 0; 733 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 734 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 735 736 if (i == 0) { 737 // First, visit all predecessor edges. 738 NumTotalEdges = Predecessors[BB].size(); 739 for (auto *Pred : Predecessors[BB]) { 740 Edge E = std::make_pair(Pred, BB); 741 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 742 if (E.first == E.second) 743 SelfReferentialEdge = E; 744 } 745 if (NumTotalEdges == 1) { 746 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 747 } 748 } else { 749 // On the second round, visit all successor edges. 750 NumTotalEdges = Successors[BB].size(); 751 for (auto *Succ : Successors[BB]) { 752 Edge E = std::make_pair(BB, Succ); 753 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 754 } 755 if (NumTotalEdges == 1) { 756 SingleEdge = std::make_pair(BB, Successors[BB][0]); 757 } 758 } 759 760 // After visiting all the edges, there are three cases that we 761 // can handle immediately: 762 // 763 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 764 // In this case, we simply check that the sum of all the edges 765 // is the same as BB's weight. If not, we change BB's weight 766 // to match. Additionally, if BB had not been visited before, 767 // we mark it visited. 768 // 769 // - Only one edge is unknown and BB has already been visited. 770 // In this case, we can compute the weight of the edge by 771 // subtracting the total block weight from all the known 772 // edge weights. If the edges weight more than BB, then the 773 // edge of the last remaining edge is set to zero. 774 // 775 // - There exists a self-referential edge and the weight of BB is 776 // known. In this case, this edge can be based on BB's weight. 777 // We add up all the other known edges and set the weight on 778 // the self-referential edge as we did in the previous case. 779 // 780 // In any other case, we must continue iterating. Eventually, 781 // all edges will get a weight, or iteration will stop when 782 // it reaches SampleProfileMaxPropagateIterations. 783 if (NumUnknownEdges <= 1) { 784 uint64_t &BBWeight = BlockWeights[EC]; 785 if (NumUnknownEdges == 0) { 786 if (!VisitedBlocks.count(EC)) { 787 // If we already know the weight of all edges, the weight of the 788 // basic block can be computed. It should be no larger than the sum 789 // of all edge weights. 790 if (TotalWeight > BBWeight) { 791 BBWeight = TotalWeight; 792 Changed = true; 793 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 794 << " known. Set weight for block: "; 795 printBlockWeight(dbgs(), BB);); 796 } 797 } else if (NumTotalEdges == 1 && 798 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 799 // If there is only one edge for the visited basic block, use the 800 // block weight to adjust edge weight if edge weight is smaller. 801 EdgeWeights[SingleEdge] = BlockWeights[EC]; 802 Changed = true; 803 } 804 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 805 // If there is a single unknown edge and the block has been 806 // visited, then we can compute E's weight. 807 if (BBWeight >= TotalWeight) 808 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 809 else 810 EdgeWeights[UnknownEdge] = 0; 811 const BasicBlockT *OtherEC; 812 if (i == 0) 813 OtherEC = EquivalenceClass[UnknownEdge.first]; 814 else 815 OtherEC = EquivalenceClass[UnknownEdge.second]; 816 // Edge weights should never exceed the BB weights it connects. 817 if (VisitedBlocks.count(OtherEC) && 818 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 819 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 820 VisitedEdges.insert(UnknownEdge); 821 Changed = true; 822 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 823 printEdgeWeight(dbgs(), UnknownEdge)); 824 } 825 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 826 // If a block Weights 0, all its in/out edges should weight 0. 827 if (i == 0) { 828 for (auto *Pred : Predecessors[BB]) { 829 Edge E = std::make_pair(Pred, BB); 830 EdgeWeights[E] = 0; 831 VisitedEdges.insert(E); 832 } 833 } else { 834 for (auto *Succ : Successors[BB]) { 835 Edge E = std::make_pair(BB, Succ); 836 EdgeWeights[E] = 0; 837 VisitedEdges.insert(E); 838 } 839 } 840 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 841 uint64_t &BBWeight = BlockWeights[BB]; 842 // We have a self-referential edge and the weight of BB is known. 843 if (BBWeight >= TotalWeight) 844 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 845 else 846 EdgeWeights[SelfReferentialEdge] = 0; 847 VisitedEdges.insert(SelfReferentialEdge); 848 Changed = true; 849 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 850 printEdgeWeight(dbgs(), SelfReferentialEdge)); 851 } 852 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 853 BlockWeights[EC] = TotalWeight; 854 VisitedBlocks.insert(EC); 855 Changed = true; 856 } 857 } 858 } 859 860 return Changed; 861 } 862 863 /// Build in/out edge lists for each basic block in the CFG. 864 /// 865 /// We are interested in unique edges. If a block B1 has multiple 866 /// edges to another block B2, we only add a single B1->B2 edge. 867 template <typename BT> 868 void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) { 869 for (auto &BI : F) { 870 BasicBlockT *B1 = &BI; 871 872 // Add predecessors for B1. 873 SmallPtrSet<BasicBlockT *, 16> Visited; 874 if (!Predecessors[B1].empty()) 875 llvm_unreachable("Found a stale predecessors list in a basic block."); 876 for (auto *B2 : getPredecessors(B1)) 877 if (Visited.insert(B2).second) 878 Predecessors[B1].push_back(B2); 879 880 // Add successors for B1. 881 Visited.clear(); 882 if (!Successors[B1].empty()) 883 llvm_unreachable("Found a stale successors list in a basic block."); 884 for (auto *B2 : getSuccessors(B1)) 885 if (Visited.insert(B2).second) 886 Successors[B1].push_back(B2); 887 } 888 } 889 890 /// Propagate weights into edges 891 /// 892 /// The following rules are applied to every block BB in the CFG: 893 /// 894 /// - If BB has a single predecessor/successor, then the weight 895 /// of that edge is the weight of the block. 896 /// 897 /// - If all incoming or outgoing edges are known except one, and the 898 /// weight of the block is already known, the weight of the unknown 899 /// edge will be the weight of the block minus the sum of all the known 900 /// edges. If the sum of all the known edges is larger than BB's weight, 901 /// we set the unknown edge weight to zero. 902 /// 903 /// - If there is a self-referential edge, and the weight of the block is 904 /// known, the weight for that edge is set to the weight of the block 905 /// minus the weight of the other incoming edges to that block (if 906 /// known). 907 template <typename BT> 908 void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) { 909 // Flow-based profile inference is only usable with BasicBlock instantiation 910 // of SampleProfileLoaderBaseImpl. 911 if (SampleProfileUseProfi) { 912 // Prepare block sample counts for inference. 913 BlockWeightMap SampleBlockWeights; 914 for (const auto &BI : F) { 915 ErrorOr<uint64_t> Weight = getBlockWeight(&BI); 916 if (Weight) 917 SampleBlockWeights[&BI] = Weight.get(); 918 } 919 // Fill in BlockWeights and EdgeWeights using an inference algorithm. 920 applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights); 921 } else { 922 bool Changed = true; 923 unsigned I = 0; 924 925 // If BB weight is larger than its corresponding loop's header BB weight, 926 // use the BB weight to replace the loop header BB weight. 927 for (auto &BI : F) { 928 BasicBlockT *BB = &BI; 929 LoopT *L = LI->getLoopFor(BB); 930 if (!L) { 931 continue; 932 } 933 BasicBlockT *Header = L->getHeader(); 934 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 935 BlockWeights[Header] = BlockWeights[BB]; 936 } 937 } 938 939 // Propagate until we converge or we go past the iteration limit. 940 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 941 Changed = propagateThroughEdges(F, false); 942 } 943 944 // The first propagation propagates BB counts from annotated BBs to unknown 945 // BBs. The 2nd propagation pass resets edges weights, and use all BB 946 // weights to propagate edge weights. 947 VisitedEdges.clear(); 948 Changed = true; 949 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 950 Changed = propagateThroughEdges(F, false); 951 } 952 953 // The 3rd propagation pass allows adjust annotated BB weights that are 954 // obviously wrong. 955 Changed = true; 956 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 957 Changed = propagateThroughEdges(F, true); 958 } 959 } 960 } 961 962 template <typename FT> 963 void SampleProfileLoaderBaseImpl<FT>::applyProfi( 964 FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights, 965 BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) { 966 auto Infer = SampleProfileInference<FT>(F, Successors, SampleBlockWeights); 967 Infer.apply(BlockWeights, EdgeWeights); 968 } 969 970 /// Generate branch weight metadata for all branches in \p F. 971 /// 972 /// Branch weights are computed out of instruction samples using a 973 /// propagation heuristic. Propagation proceeds in 3 phases: 974 /// 975 /// 1- Assignment of block weights. All the basic blocks in the function 976 /// are initial assigned the same weight as their most frequently 977 /// executed instruction. 978 /// 979 /// 2- Creation of equivalence classes. Since samples may be missing from 980 /// blocks, we can fill in the gaps by setting the weights of all the 981 /// blocks in the same equivalence class to the same weight. To compute 982 /// the concept of equivalence, we use dominance and loop information. 983 /// Two blocks B1 and B2 are in the same equivalence class if B1 984 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 985 /// 986 /// 3- Propagation of block weights into edges. This uses a simple 987 /// propagation heuristic. The following rules are applied to every 988 /// block BB in the CFG: 989 /// 990 /// - If BB has a single predecessor/successor, then the weight 991 /// of that edge is the weight of the block. 992 /// 993 /// - If all the edges are known except one, and the weight of the 994 /// block is already known, the weight of the unknown edge will 995 /// be the weight of the block minus the sum of all the known 996 /// edges. If the sum of all the known edges is larger than BB's weight, 997 /// we set the unknown edge weight to zero. 998 /// 999 /// - If there is a self-referential edge, and the weight of the block is 1000 /// known, the weight for that edge is set to the weight of the block 1001 /// minus the weight of the other incoming edges to that block (if 1002 /// known). 1003 /// 1004 /// Since this propagation is not guaranteed to finalize for every CFG, we 1005 /// only allow it to proceed for a limited number of iterations (controlled 1006 /// by -sample-profile-max-propagate-iterations). 1007 /// 1008 /// FIXME: Try to replace this propagation heuristic with a scheme 1009 /// that is guaranteed to finalize. A work-list approach similar to 1010 /// the standard value propagation algorithm used by SSA-CCP might 1011 /// work here. 1012 /// 1013 /// \param F The function to query. 1014 /// 1015 /// \returns true if \p F was modified. Returns false, otherwise. 1016 template <typename BT> 1017 bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights( 1018 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1019 bool Changed = (InlinedGUIDs.size() != 0); 1020 1021 // Compute basic block weights. 1022 Changed |= computeBlockWeights(F); 1023 1024 if (Changed) { 1025 // Initialize propagation. 1026 initWeightPropagation(F, InlinedGUIDs); 1027 1028 // Propagate weights to all edges. 1029 propagateWeights(F); 1030 1031 // Post-process propagated weights. 1032 finalizeWeightPropagation(F, InlinedGUIDs); 1033 } 1034 1035 return Changed; 1036 } 1037 1038 template <typename BT> 1039 void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation( 1040 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1041 // Add an entry count to the function using the samples gathered at the 1042 // function entry. 1043 // Sets the GUIDs that are inlined in the profiled binary. This is used 1044 // for ThinLink to make correct liveness analysis, and also make the IR 1045 // match the profiled binary before annotation. 1046 getFunction(F).setEntryCount( 1047 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1048 &InlinedGUIDs); 1049 1050 if (!SampleProfileUseProfi) { 1051 // Compute dominance and loop info needed for propagation. 1052 computeDominanceAndLoopInfo(F); 1053 1054 // Find equivalence classes. 1055 findEquivalenceClasses(F); 1056 } 1057 1058 // Before propagation starts, build, for each block, a list of 1059 // unique predecessors and successors. This is necessary to handle 1060 // identical edges in multiway branches. Since we visit all blocks and all 1061 // edges of the CFG, it is cleaner to build these lists once at the start 1062 // of the pass. 1063 buildEdges(F); 1064 } 1065 1066 template <typename BT> 1067 void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation( 1068 FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 1069 // If we utilize a flow-based count inference, then we trust the computed 1070 // counts and set the entry count as computed by the algorithm. This is 1071 // primarily done to sync the counts produced by profi and BFI inference, 1072 // which uses the entry count for mass propagation. 1073 // If profi produces a zero-value for the entry count, we fallback to 1074 // Samples->getHeadSamples() + 1 to avoid functions with zero count. 1075 if (SampleProfileUseProfi) { 1076 const BasicBlockT *EntryBB = getEntryBB(&F); 1077 ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB); 1078 if (BlockWeights[EntryBB] > 0) { 1079 getFunction(F).setEntryCount( 1080 ProfileCount(BlockWeights[EntryBB], Function::PCT_Real), 1081 &InlinedGUIDs); 1082 } 1083 } 1084 } 1085 1086 template <typename BT> 1087 void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) { 1088 // If coverage checking was requested, compute it now. 1089 const Function &Func = getFunction(F); 1090 if (SampleProfileRecordCoverage) { 1091 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1092 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1093 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1094 if (Coverage < SampleProfileRecordCoverage) { 1095 Func.getContext().diagnose(DiagnosticInfoSampleProfile( 1096 Func.getSubprogram()->getFilename(), getFunctionLoc(F), 1097 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1098 Twine(Coverage) + "%) were applied", 1099 DS_Warning)); 1100 } 1101 } 1102 1103 if (SampleProfileSampleCoverage) { 1104 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1105 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1106 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1107 if (Coverage < SampleProfileSampleCoverage) { 1108 Func.getContext().diagnose(DiagnosticInfoSampleProfile( 1109 Func.getSubprogram()->getFilename(), getFunctionLoc(F), 1110 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1111 Twine(Coverage) + "%) were applied", 1112 DS_Warning)); 1113 } 1114 } 1115 } 1116 1117 /// Get the line number for the function header. 1118 /// 1119 /// This looks up function \p F in the current compilation unit and 1120 /// retrieves the line number where the function is defined. This is 1121 /// line 0 for all the samples read from the profile file. Every line 1122 /// number is relative to this line. 1123 /// 1124 /// \param F Function object to query. 1125 /// 1126 /// \returns the line number where \p F is defined. If it returns 0, 1127 /// it means that there is no debug information available for \p F. 1128 template <typename BT> 1129 unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) { 1130 const Function &Func = getFunction(F); 1131 if (DISubprogram *S = Func.getSubprogram()) 1132 return S->getLine(); 1133 1134 if (NoWarnSampleUnused) 1135 return 0; 1136 1137 // If the start of \p F is missing, emit a diagnostic to inform the user 1138 // about the missed opportunity. 1139 Func.getContext().diagnose(DiagnosticInfoSampleProfile( 1140 "No debug information found in function " + Func.getName() + 1141 ": Function profile not used", 1142 DS_Warning)); 1143 return 0; 1144 } 1145 1146 #undef DEBUG_TYPE 1147 1148 } // namespace llvm 1149 #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 1150