• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2021 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Code generated by addchain. DO NOT EDIT.
6
7package fiat
8
9// Invert sets e = 1/x, and returns e.
10//
11// If x == 0, Invert returns e = 0.
12func (e *P521Element) Invert(x *P521Element) *P521Element {
13	// Inversion is implemented as exponentiation with exponent p − 2.
14	// The sequence of 13 multiplications and 520 squarings is derived from the
15	// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
16	//
17	//	_10       = 2*1
18	//	_11       = 1 + _10
19	//	_1100     = _11 << 2
20	//	_1111     = _11 + _1100
21	//	_11110000 = _1111 << 4
22	//	_11111111 = _1111 + _11110000
23	//	x16       = _11111111 << 8 + _11111111
24	//	x32       = x16 << 16 + x16
25	//	x64       = x32 << 32 + x32
26	//	x65       = 2*x64 + 1
27	//	x129      = x65 << 64 + x64
28	//	x130      = 2*x129 + 1
29	//	x259      = x130 << 129 + x129
30	//	x260      = 2*x259 + 1
31	//	x519      = x260 << 259 + x259
32	//	return      x519 << 2 + 1
33	//
34
35	var z = new(P521Element).Set(e)
36	var t0 = new(P521Element)
37
38	z.Square(x)
39	z.Mul(x, z)
40	t0.Square(z)
41	for s := 1; s < 2; s++ {
42		t0.Square(t0)
43	}
44	z.Mul(z, t0)
45	t0.Square(z)
46	for s := 1; s < 4; s++ {
47		t0.Square(t0)
48	}
49	z.Mul(z, t0)
50	t0.Square(z)
51	for s := 1; s < 8; s++ {
52		t0.Square(t0)
53	}
54	z.Mul(z, t0)
55	t0.Square(z)
56	for s := 1; s < 16; s++ {
57		t0.Square(t0)
58	}
59	z.Mul(z, t0)
60	t0.Square(z)
61	for s := 1; s < 32; s++ {
62		t0.Square(t0)
63	}
64	z.Mul(z, t0)
65	t0.Square(z)
66	t0.Mul(x, t0)
67	for s := 0; s < 64; s++ {
68		t0.Square(t0)
69	}
70	z.Mul(z, t0)
71	t0.Square(z)
72	t0.Mul(x, t0)
73	for s := 0; s < 129; s++ {
74		t0.Square(t0)
75	}
76	z.Mul(z, t0)
77	t0.Square(z)
78	t0.Mul(x, t0)
79	for s := 0; s < 259; s++ {
80		t0.Square(t0)
81	}
82	z.Mul(z, t0)
83	for s := 0; s < 2; s++ {
84		z.Square(z)
85	}
86	z.Mul(x, z)
87
88	return e.Set(z)
89}
90