1 // Formatting library for C++ - chrono support
2 //
3 // Copyright (c) 2012 - present, Victor Zverovich
4 // All rights reserved.
5 //
6 // For the license information refer to format.h.
7
8 #ifndef FMT_CHRONO_H_
9 #define FMT_CHRONO_H_
10
11 #include <algorithm>
12 #include <chrono>
13 #include <cmath> // std::isfinite
14 #include <cstring> // std::memcpy
15 #include <ctime>
16 #include <iterator>
17 #include <locale>
18 #include <ostream>
19 #include <type_traits>
20
21 #include "ostream.h" // formatbuf
22
23 FMT_BEGIN_NAMESPACE
24
25 // Check if std::chrono::local_t is available.
26 #ifndef FMT_USE_LOCAL_TIME
27 # ifdef __cpp_lib_chrono
28 # define FMT_USE_LOCAL_TIME (__cpp_lib_chrono >= 201907L)
29 # else
30 # define FMT_USE_LOCAL_TIME 0
31 # endif
32 #endif
33
34 // Check if std::chrono::utc_timestamp is available.
35 #ifndef FMT_USE_UTC_TIME
36 # ifdef __cpp_lib_chrono
37 # define FMT_USE_UTC_TIME (__cpp_lib_chrono >= 201907L)
38 # else
39 # define FMT_USE_UTC_TIME 0
40 # endif
41 #endif
42
43 // Enable tzset.
44 #ifndef FMT_USE_TZSET
45 // UWP doesn't provide _tzset.
46 # if FMT_HAS_INCLUDE("winapifamily.h")
47 # include <winapifamily.h>
48 # endif
49 # if defined(_WIN32) && (!defined(WINAPI_FAMILY) || \
50 (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP))
51 # define FMT_USE_TZSET 1
52 # else
53 # define FMT_USE_TZSET 0
54 # endif
55 #endif
56
57 // Enable safe chrono durations, unless explicitly disabled.
58 #ifndef FMT_SAFE_DURATION_CAST
59 # define FMT_SAFE_DURATION_CAST 1
60 #endif
61 #if FMT_SAFE_DURATION_CAST
62
63 // For conversion between std::chrono::durations without undefined
64 // behaviour or erroneous results.
65 // This is a stripped down version of duration_cast, for inclusion in fmt.
66 // See https://github.com/pauldreik/safe_duration_cast
67 //
68 // Copyright Paul Dreik 2019
69 namespace safe_duration_cast {
70
71 template <typename To, typename From,
72 FMT_ENABLE_IF(!std::is_same<From, To>::value &&
73 std::numeric_limits<From>::is_signed ==
74 std::numeric_limits<To>::is_signed)>
75 FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
76 -> To {
77 ec = 0;
78 using F = std::numeric_limits<From>;
79 using T = std::numeric_limits<To>;
80 static_assert(F::is_integer, "From must be integral");
81 static_assert(T::is_integer, "To must be integral");
82
83 // A and B are both signed, or both unsigned.
84 if (detail::const_check(F::digits <= T::digits)) {
85 // From fits in To without any problem.
86 } else {
87 // From does not always fit in To, resort to a dynamic check.
88 if (from < (T::min)() || from > (T::max)()) {
89 // outside range.
90 ec = 1;
91 return {};
92 }
93 }
94 return static_cast<To>(from);
95 }
96
97 /**
98 * converts From to To, without loss. If the dynamic value of from
99 * can't be converted to To without loss, ec is set.
100 */
101 template <typename To, typename From,
102 FMT_ENABLE_IF(!std::is_same<From, To>::value &&
103 std::numeric_limits<From>::is_signed !=
104 std::numeric_limits<To>::is_signed)>
105 FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
106 -> To {
107 ec = 0;
108 using F = std::numeric_limits<From>;
109 using T = std::numeric_limits<To>;
110 static_assert(F::is_integer, "From must be integral");
111 static_assert(T::is_integer, "To must be integral");
112
113 if (detail::const_check(F::is_signed && !T::is_signed)) {
114 // From may be negative, not allowed!
115 if (fmt::detail::is_negative(from)) {
116 ec = 1;
117 return {};
118 }
119 // From is positive. Can it always fit in To?
120 if (detail::const_check(F::digits > T::digits) &&
121 from > static_cast<From>(detail::max_value<To>())) {
122 ec = 1;
123 return {};
124 }
125 }
126
127 if (detail::const_check(!F::is_signed && T::is_signed &&
128 F::digits >= T::digits) &&
129 from > static_cast<From>(detail::max_value<To>())) {
130 ec = 1;
131 return {};
132 }
133 return static_cast<To>(from); // Lossless conversion.
134 }
135
136 template <typename To, typename From,
137 FMT_ENABLE_IF(std::is_same<From, To>::value)>
138 FMT_CONSTEXPR auto lossless_integral_conversion(const From from, int& ec)
139 -> To {
140 ec = 0;
141 return from;
142 } // function
143
144 // clang-format off
145 /**
146 * converts From to To if possible, otherwise ec is set.
147 *
148 * input | output
149 * ---------------------------------|---------------
150 * NaN | NaN
151 * Inf | Inf
152 * normal, fits in output | converted (possibly lossy)
153 * normal, does not fit in output | ec is set
154 * subnormal | best effort
155 * -Inf | -Inf
156 */
157 // clang-format on
158 template <typename To, typename From,
159 FMT_ENABLE_IF(!std::is_same<From, To>::value)>
160 FMT_CONSTEXPR auto safe_float_conversion(const From from, int& ec) -> To {
161 ec = 0;
162 using T = std::numeric_limits<To>;
163 static_assert(std::is_floating_point<From>::value, "From must be floating");
164 static_assert(std::is_floating_point<To>::value, "To must be floating");
165
166 // catch the only happy case
167 if (std::isfinite(from)) {
168 if (from >= T::lowest() && from <= (T::max)()) {
169 return static_cast<To>(from);
170 }
171 // not within range.
172 ec = 1;
173 return {};
174 }
175
176 // nan and inf will be preserved
177 return static_cast<To>(from);
178 } // function
179
180 template <typename To, typename From,
181 FMT_ENABLE_IF(std::is_same<From, To>::value)>
182 FMT_CONSTEXPR auto safe_float_conversion(const From from, int& ec) -> To {
183 ec = 0;
184 static_assert(std::is_floating_point<From>::value, "From must be floating");
185 return from;
186 }
187
188 /**
189 * safe duration cast between integral durations
190 */
191 template <typename To, typename FromRep, typename FromPeriod,
192 FMT_ENABLE_IF(std::is_integral<FromRep>::value),
193 FMT_ENABLE_IF(std::is_integral<typename To::rep>::value)>
194 auto safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
195 int& ec) -> To {
196 using From = std::chrono::duration<FromRep, FromPeriod>;
197 ec = 0;
198 // the basic idea is that we need to convert from count() in the from type
199 // to count() in the To type, by multiplying it with this:
200 struct Factor
201 : std::ratio_divide<typename From::period, typename To::period> {};
202
203 static_assert(Factor::num > 0, "num must be positive");
204 static_assert(Factor::den > 0, "den must be positive");
205
206 // the conversion is like this: multiply from.count() with Factor::num
207 // /Factor::den and convert it to To::rep, all this without
208 // overflow/underflow. let's start by finding a suitable type that can hold
209 // both To, From and Factor::num
210 using IntermediateRep =
211 typename std::common_type<typename From::rep, typename To::rep,
212 decltype(Factor::num)>::type;
213
214 // safe conversion to IntermediateRep
215 IntermediateRep count =
216 lossless_integral_conversion<IntermediateRep>(from.count(), ec);
217 if (ec) return {};
218 // multiply with Factor::num without overflow or underflow
219 if (detail::const_check(Factor::num != 1)) {
220 const auto max1 = detail::max_value<IntermediateRep>() / Factor::num;
221 if (count > max1) {
222 ec = 1;
223 return {};
224 }
225 const auto min1 =
226 (std::numeric_limits<IntermediateRep>::min)() / Factor::num;
227 if (detail::const_check(!std::is_unsigned<IntermediateRep>::value) &&
228 count < min1) {
229 ec = 1;
230 return {};
231 }
232 count *= Factor::num;
233 }
234
235 if (detail::const_check(Factor::den != 1)) count /= Factor::den;
236 auto tocount = lossless_integral_conversion<typename To::rep>(count, ec);
237 return ec ? To() : To(tocount);
238 }
239
240 /**
241 * safe duration_cast between floating point durations
242 */
243 template <typename To, typename FromRep, typename FromPeriod,
244 FMT_ENABLE_IF(std::is_floating_point<FromRep>::value),
245 FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)>
246 auto safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
247 int& ec) -> To {
248 using From = std::chrono::duration<FromRep, FromPeriod>;
249 ec = 0;
250 if (std::isnan(from.count())) {
251 // nan in, gives nan out. easy.
252 return To{std::numeric_limits<typename To::rep>::quiet_NaN()};
253 }
254 // maybe we should also check if from is denormal, and decide what to do about
255 // it.
256
257 // +-inf should be preserved.
258 if (std::isinf(from.count())) {
259 return To{from.count()};
260 }
261
262 // the basic idea is that we need to convert from count() in the from type
263 // to count() in the To type, by multiplying it with this:
264 struct Factor
265 : std::ratio_divide<typename From::period, typename To::period> {};
266
267 static_assert(Factor::num > 0, "num must be positive");
268 static_assert(Factor::den > 0, "den must be positive");
269
270 // the conversion is like this: multiply from.count() with Factor::num
271 // /Factor::den and convert it to To::rep, all this without
272 // overflow/underflow. let's start by finding a suitable type that can hold
273 // both To, From and Factor::num
274 using IntermediateRep =
275 typename std::common_type<typename From::rep, typename To::rep,
276 decltype(Factor::num)>::type;
277
278 // force conversion of From::rep -> IntermediateRep to be safe,
279 // even if it will never happen be narrowing in this context.
280 IntermediateRep count =
281 safe_float_conversion<IntermediateRep>(from.count(), ec);
282 if (ec) {
283 return {};
284 }
285
286 // multiply with Factor::num without overflow or underflow
287 if (detail::const_check(Factor::num != 1)) {
288 constexpr auto max1 = detail::max_value<IntermediateRep>() /
289 static_cast<IntermediateRep>(Factor::num);
290 if (count > max1) {
291 ec = 1;
292 return {};
293 }
294 constexpr auto min1 = std::numeric_limits<IntermediateRep>::lowest() /
295 static_cast<IntermediateRep>(Factor::num);
296 if (count < min1) {
297 ec = 1;
298 return {};
299 }
300 count *= static_cast<IntermediateRep>(Factor::num);
301 }
302
303 // this can't go wrong, right? den>0 is checked earlier.
304 if (detail::const_check(Factor::den != 1)) {
305 using common_t = typename std::common_type<IntermediateRep, intmax_t>::type;
306 count /= static_cast<common_t>(Factor::den);
307 }
308
309 // convert to the to type, safely
310 using ToRep = typename To::rep;
311
312 const ToRep tocount = safe_float_conversion<ToRep>(count, ec);
313 if (ec) {
314 return {};
315 }
316 return To{tocount};
317 }
318 } // namespace safe_duration_cast
319 #endif
320
321 // Prevents expansion of a preceding token as a function-style macro.
322 // Usage: f FMT_NOMACRO()
323 #define FMT_NOMACRO
324
325 namespace detail {
326 template <typename T = void> struct null {};
327 inline auto localtime_r FMT_NOMACRO(...) -> null<> { return null<>(); }
328 inline auto localtime_s(...) -> null<> { return null<>(); }
329 inline auto gmtime_r(...) -> null<> { return null<>(); }
330 inline auto gmtime_s(...) -> null<> { return null<>(); }
331
332 inline auto get_classic_locale() -> const std::locale& {
333 static const auto& locale = std::locale::classic();
334 return locale;
335 }
336
337 template <typename CodeUnit> struct codecvt_result {
338 static constexpr const size_t max_size = 32;
339 CodeUnit buf[max_size];
340 CodeUnit* end;
341 };
342
343 template <typename CodeUnit>
write_codecvt(codecvt_result<CodeUnit> & out,string_view in_buf,const std::locale & loc)344 void write_codecvt(codecvt_result<CodeUnit>& out, string_view in_buf,
345 const std::locale& loc) {
346 #if FMT_CLANG_VERSION
347 # pragma clang diagnostic push
348 # pragma clang diagnostic ignored "-Wdeprecated"
349 auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc);
350 # pragma clang diagnostic pop
351 #else
352 auto& f = std::use_facet<std::codecvt<CodeUnit, char, std::mbstate_t>>(loc);
353 #endif
354 auto mb = std::mbstate_t();
355 const char* from_next = nullptr;
356 auto result = f.in(mb, in_buf.begin(), in_buf.end(), from_next,
357 std::begin(out.buf), std::end(out.buf), out.end);
358 if (result != std::codecvt_base::ok)
359 FMT_THROW(format_error("failed to format time"));
360 }
361
362 template <typename OutputIt>
363 auto write_encoded_tm_str(OutputIt out, string_view in, const std::locale& loc)
364 -> OutputIt {
365 if (detail::is_utf8() && loc != get_classic_locale()) {
366 // char16_t and char32_t codecvts are broken in MSVC (linkage errors) and
367 // gcc-4.
368 #if FMT_MSC_VERSION != 0 || \
369 (defined(__GLIBCXX__) && !defined(_GLIBCXX_USE_DUAL_ABI))
370 // The _GLIBCXX_USE_DUAL_ABI macro is always defined in libstdc++ from gcc-5
371 // and newer.
372 using code_unit = wchar_t;
373 #else
374 using code_unit = char32_t;
375 #endif
376
377 using unit_t = codecvt_result<code_unit>;
378 unit_t unit;
379 write_codecvt(unit, in, loc);
380 // In UTF-8 is used one to four one-byte code units.
381 auto u =
382 to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>();
383 if (!u.convert({unit.buf, to_unsigned(unit.end - unit.buf)}))
384 FMT_THROW(format_error("failed to format time"));
385 return copy_str<char>(u.c_str(), u.c_str() + u.size(), out);
386 }
387 return copy_str<char>(in.data(), in.data() + in.size(), out);
388 }
389
390 template <typename Char, typename OutputIt,
391 FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
392 auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
393 -> OutputIt {
394 codecvt_result<Char> unit;
395 write_codecvt(unit, sv, loc);
396 return copy_str<Char>(unit.buf, unit.end, out);
397 }
398
399 template <typename Char, typename OutputIt,
400 FMT_ENABLE_IF(std::is_same<Char, char>::value)>
401 auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
402 -> OutputIt {
403 return write_encoded_tm_str(out, sv, loc);
404 }
405
406 template <typename Char>
do_write(buffer<Char> & buf,const std::tm & time,const std::locale & loc,char format,char modifier)407 inline void do_write(buffer<Char>& buf, const std::tm& time,
408 const std::locale& loc, char format, char modifier) {
409 auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf);
410 auto&& os = std::basic_ostream<Char>(&format_buf);
411 os.imbue(loc);
412 const auto& facet = std::use_facet<std::time_put<Char>>(loc);
413 auto end = facet.put(os, os, Char(' '), &time, format, modifier);
414 if (end.failed()) FMT_THROW(format_error("failed to format time"));
415 }
416
417 template <typename Char, typename OutputIt,
418 FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
419 auto write(OutputIt out, const std::tm& time, const std::locale& loc,
420 char format, char modifier = 0) -> OutputIt {
421 auto&& buf = get_buffer<Char>(out);
422 do_write<Char>(buf, time, loc, format, modifier);
423 return get_iterator(buf, out);
424 }
425
426 template <typename Char, typename OutputIt,
427 FMT_ENABLE_IF(std::is_same<Char, char>::value)>
428 auto write(OutputIt out, const std::tm& time, const std::locale& loc,
429 char format, char modifier = 0) -> OutputIt {
430 auto&& buf = basic_memory_buffer<Char>();
431 do_write<char>(buf, time, loc, format, modifier);
432 return write_encoded_tm_str(out, string_view(buf.data(), buf.size()), loc);
433 }
434
435 template <typename Rep1, typename Rep2>
436 struct is_same_arithmetic_type
437 : public std::integral_constant<bool,
438 (std::is_integral<Rep1>::value &&
439 std::is_integral<Rep2>::value) ||
440 (std::is_floating_point<Rep1>::value &&
441 std::is_floating_point<Rep2>::value)> {
442 };
443
444 template <
445 typename To, typename FromRep, typename FromPeriod,
446 FMT_ENABLE_IF(is_same_arithmetic_type<FromRep, typename To::rep>::value)>
447 auto fmt_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To {
448 #if FMT_SAFE_DURATION_CAST
449 // Throwing version of safe_duration_cast is only available for
450 // integer to integer or float to float casts.
451 int ec;
452 To to = safe_duration_cast::safe_duration_cast<To>(from, ec);
453 if (ec) FMT_THROW(format_error("cannot format duration"));
454 return to;
455 #else
456 // Standard duration cast, may overflow.
457 return std::chrono::duration_cast<To>(from);
458 #endif
459 }
460
461 template <
462 typename To, typename FromRep, typename FromPeriod,
463 FMT_ENABLE_IF(!is_same_arithmetic_type<FromRep, typename To::rep>::value)>
464 auto fmt_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) -> To {
465 // Mixed integer <-> float cast is not supported by safe_duration_cast.
466 return std::chrono::duration_cast<To>(from);
467 }
468
469 template <typename Duration>
470 auto to_time_t(
471 std::chrono::time_point<std::chrono::system_clock, Duration> time_point)
472 -> std::time_t {
473 // Cannot use std::chrono::system_clock::to_time_t since this would first
474 // require a cast to std::chrono::system_clock::time_point, which could
475 // overflow.
476 return fmt_duration_cast<std::chrono::duration<std::time_t>>(
477 time_point.time_since_epoch())
478 .count();
479 }
480 } // namespace detail
481
482 FMT_BEGIN_EXPORT
483
484 /**
485 Converts given time since epoch as ``std::time_t`` value into calendar time,
486 expressed in local time. Unlike ``std::localtime``, this function is
487 thread-safe on most platforms.
488 */
489 inline auto localtime(std::time_t time) -> std::tm {
490 struct dispatcher {
491 std::time_t time_;
492 std::tm tm_;
493
dispatcherdispatcher494 dispatcher(std::time_t t) : time_(t) {}
495
496 auto run() -> bool {
497 using namespace fmt::detail;
498 return handle(localtime_r(&time_, &tm_));
499 }
500
501 auto handle(std::tm* tm) -> bool { return tm != nullptr; }
502
503 auto handle(detail::null<>) -> bool {
504 using namespace fmt::detail;
505 return fallback(localtime_s(&tm_, &time_));
506 }
507
508 auto fallback(int res) -> bool { return res == 0; }
509
510 #if !FMT_MSC_VERSION
511 auto fallback(detail::null<>) -> bool {
512 using namespace fmt::detail;
513 std::tm* tm = std::localtime(&time_);
514 if (tm) tm_ = *tm;
515 return tm != nullptr;
516 }
517 #endif
518 };
519 dispatcher lt(time);
520 // Too big time values may be unsupported.
521 if (!lt.run()) FMT_THROW(format_error("time_t value out of range"));
522 return lt.tm_;
523 }
524
525 #if FMT_USE_LOCAL_TIME
526 template <typename Duration>
527 inline auto localtime(std::chrono::local_time<Duration> time) -> std::tm {
528 return localtime(
529 detail::to_time_t(std::chrono::current_zone()->to_sys(time)));
530 }
531 #endif
532
533 /**
534 Converts given time since epoch as ``std::time_t`` value into calendar time,
535 expressed in Coordinated Universal Time (UTC). Unlike ``std::gmtime``, this
536 function is thread-safe on most platforms.
537 */
538 inline auto gmtime(std::time_t time) -> std::tm {
539 struct dispatcher {
540 std::time_t time_;
541 std::tm tm_;
542
dispatcherdispatcher543 dispatcher(std::time_t t) : time_(t) {}
544
545 auto run() -> bool {
546 using namespace fmt::detail;
547 return handle(gmtime_r(&time_, &tm_));
548 }
549
550 auto handle(std::tm* tm) -> bool { return tm != nullptr; }
551
552 auto handle(detail::null<>) -> bool {
553 using namespace fmt::detail;
554 return fallback(gmtime_s(&tm_, &time_));
555 }
556
557 auto fallback(int res) -> bool { return res == 0; }
558
559 #if !FMT_MSC_VERSION
560 auto fallback(detail::null<>) -> bool {
561 std::tm* tm = std::gmtime(&time_);
562 if (tm) tm_ = *tm;
563 return tm != nullptr;
564 }
565 #endif
566 };
567 auto gt = dispatcher(time);
568 // Too big time values may be unsupported.
569 if (!gt.run()) FMT_THROW(format_error("time_t value out of range"));
570 return gt.tm_;
571 }
572
573 template <typename Duration>
574 inline auto gmtime(
575 std::chrono::time_point<std::chrono::system_clock, Duration> time_point)
576 -> std::tm {
577 return gmtime(detail::to_time_t(time_point));
578 }
579
580 namespace detail {
581
582 // Writes two-digit numbers a, b and c separated by sep to buf.
583 // The method by Pavel Novikov based on
584 // https://johnnylee-sde.github.io/Fast-unsigned-integer-to-time-string/.
write_digit2_separated(char * buf,unsigned a,unsigned b,unsigned c,char sep)585 inline void write_digit2_separated(char* buf, unsigned a, unsigned b,
586 unsigned c, char sep) {
587 unsigned long long digits =
588 a | (b << 24) | (static_cast<unsigned long long>(c) << 48);
589 // Convert each value to BCD.
590 // We have x = a * 10 + b and we want to convert it to BCD y = a * 16 + b.
591 // The difference is
592 // y - x = a * 6
593 // a can be found from x:
594 // a = floor(x / 10)
595 // then
596 // y = x + a * 6 = x + floor(x / 10) * 6
597 // floor(x / 10) is (x * 205) >> 11 (needs 16 bits).
598 digits += (((digits * 205) >> 11) & 0x000f00000f00000f) * 6;
599 // Put low nibbles to high bytes and high nibbles to low bytes.
600 digits = ((digits & 0x00f00000f00000f0) >> 4) |
601 ((digits & 0x000f00000f00000f) << 8);
602 auto usep = static_cast<unsigned long long>(sep);
603 // Add ASCII '0' to each digit byte and insert separators.
604 digits |= 0x3030003030003030 | (usep << 16) | (usep << 40);
605
606 constexpr const size_t len = 8;
607 if (const_check(is_big_endian())) {
608 char tmp[len];
609 std::memcpy(tmp, &digits, len);
610 std::reverse_copy(tmp, tmp + len, buf);
611 } else {
612 std::memcpy(buf, &digits, len);
613 }
614 }
615
616 template <typename Period>
617 FMT_CONSTEXPR inline auto get_units() -> const char* {
618 if (std::is_same<Period, std::atto>::value) return "as";
619 if (std::is_same<Period, std::femto>::value) return "fs";
620 if (std::is_same<Period, std::pico>::value) return "ps";
621 if (std::is_same<Period, std::nano>::value) return "ns";
622 if (std::is_same<Period, std::micro>::value) return "µs";
623 if (std::is_same<Period, std::milli>::value) return "ms";
624 if (std::is_same<Period, std::centi>::value) return "cs";
625 if (std::is_same<Period, std::deci>::value) return "ds";
626 if (std::is_same<Period, std::ratio<1>>::value) return "s";
627 if (std::is_same<Period, std::deca>::value) return "das";
628 if (std::is_same<Period, std::hecto>::value) return "hs";
629 if (std::is_same<Period, std::kilo>::value) return "ks";
630 if (std::is_same<Period, std::mega>::value) return "Ms";
631 if (std::is_same<Period, std::giga>::value) return "Gs";
632 if (std::is_same<Period, std::tera>::value) return "Ts";
633 if (std::is_same<Period, std::peta>::value) return "Ps";
634 if (std::is_same<Period, std::exa>::value) return "Es";
635 if (std::is_same<Period, std::ratio<60>>::value) return "min";
636 if (std::is_same<Period, std::ratio<3600>>::value) return "h";
637 if (std::is_same<Period, std::ratio<86400>>::value) return "d";
638 return nullptr;
639 }
640
641 enum class numeric_system {
642 standard,
643 // Alternative numeric system, e.g. 十二 instead of 12 in ja_JP locale.
644 alternative
645 };
646
647 // Glibc extensions for formatting numeric values.
648 enum class pad_type {
649 unspecified,
650 // Do not pad a numeric result string.
651 none,
652 // Pad a numeric result string with zeros even if the conversion specifier
653 // character uses space-padding by default.
654 zero,
655 // Pad a numeric result string with spaces.
656 space,
657 };
658
659 template <typename OutputIt>
660 auto write_padding(OutputIt out, pad_type pad, int width) -> OutputIt {
661 if (pad == pad_type::none) return out;
662 return std::fill_n(out, width, pad == pad_type::space ? ' ' : '0');
663 }
664
665 template <typename OutputIt>
666 auto write_padding(OutputIt out, pad_type pad) -> OutputIt {
667 if (pad != pad_type::none) *out++ = pad == pad_type::space ? ' ' : '0';
668 return out;
669 }
670
671 // Parses a put_time-like format string and invokes handler actions.
672 template <typename Char, typename Handler>
673 FMT_CONSTEXPR auto parse_chrono_format(const Char* begin, const Char* end,
674 Handler&& handler) -> const Char* {
675 if (begin == end || *begin == '}') return begin;
676 if (*begin != '%') FMT_THROW(format_error("invalid format"));
677 auto ptr = begin;
678 pad_type pad = pad_type::unspecified;
679 while (ptr != end) {
680 auto c = *ptr;
681 if (c == '}') break;
682 if (c != '%') {
683 ++ptr;
684 continue;
685 }
686 if (begin != ptr) handler.on_text(begin, ptr);
687 ++ptr; // consume '%'
688 if (ptr == end) FMT_THROW(format_error("invalid format"));
689 c = *ptr;
690 switch (c) {
691 case '_':
692 pad = pad_type::space;
693 ++ptr;
694 break;
695 case '-':
696 pad = pad_type::none;
697 ++ptr;
698 break;
699 case '0':
700 pad = pad_type::zero;
701 ++ptr;
702 break;
703 }
704 if (ptr == end) FMT_THROW(format_error("invalid format"));
705 c = *ptr++;
706 switch (c) {
707 case '%':
708 handler.on_text(ptr - 1, ptr);
709 break;
710 case 'n': {
711 const Char newline[] = {'\n'};
712 handler.on_text(newline, newline + 1);
713 break;
714 }
715 case 't': {
716 const Char tab[] = {'\t'};
717 handler.on_text(tab, tab + 1);
718 break;
719 }
720 // Year:
721 case 'Y':
722 handler.on_year(numeric_system::standard);
723 break;
724 case 'y':
725 handler.on_short_year(numeric_system::standard);
726 break;
727 case 'C':
728 handler.on_century(numeric_system::standard);
729 break;
730 case 'G':
731 handler.on_iso_week_based_year();
732 break;
733 case 'g':
734 handler.on_iso_week_based_short_year();
735 break;
736 // Day of the week:
737 case 'a':
738 handler.on_abbr_weekday();
739 break;
740 case 'A':
741 handler.on_full_weekday();
742 break;
743 case 'w':
744 handler.on_dec0_weekday(numeric_system::standard);
745 break;
746 case 'u':
747 handler.on_dec1_weekday(numeric_system::standard);
748 break;
749 // Month:
750 case 'b':
751 case 'h':
752 handler.on_abbr_month();
753 break;
754 case 'B':
755 handler.on_full_month();
756 break;
757 case 'm':
758 handler.on_dec_month(numeric_system::standard);
759 break;
760 // Day of the year/month:
761 case 'U':
762 handler.on_dec0_week_of_year(numeric_system::standard);
763 break;
764 case 'W':
765 handler.on_dec1_week_of_year(numeric_system::standard);
766 break;
767 case 'V':
768 handler.on_iso_week_of_year(numeric_system::standard);
769 break;
770 case 'j':
771 handler.on_day_of_year();
772 break;
773 case 'd':
774 handler.on_day_of_month(numeric_system::standard);
775 break;
776 case 'e':
777 handler.on_day_of_month_space(numeric_system::standard);
778 break;
779 // Hour, minute, second:
780 case 'H':
781 handler.on_24_hour(numeric_system::standard, pad);
782 break;
783 case 'I':
784 handler.on_12_hour(numeric_system::standard, pad);
785 break;
786 case 'M':
787 handler.on_minute(numeric_system::standard, pad);
788 break;
789 case 'S':
790 handler.on_second(numeric_system::standard, pad);
791 break;
792 // Other:
793 case 'c':
794 handler.on_datetime(numeric_system::standard);
795 break;
796 case 'x':
797 handler.on_loc_date(numeric_system::standard);
798 break;
799 case 'X':
800 handler.on_loc_time(numeric_system::standard);
801 break;
802 case 'D':
803 handler.on_us_date();
804 break;
805 case 'F':
806 handler.on_iso_date();
807 break;
808 case 'r':
809 handler.on_12_hour_time();
810 break;
811 case 'R':
812 handler.on_24_hour_time();
813 break;
814 case 'T':
815 handler.on_iso_time();
816 break;
817 case 'p':
818 handler.on_am_pm();
819 break;
820 case 'Q':
821 handler.on_duration_value();
822 break;
823 case 'q':
824 handler.on_duration_unit();
825 break;
826 case 'z':
827 handler.on_utc_offset(numeric_system::standard);
828 break;
829 case 'Z':
830 handler.on_tz_name();
831 break;
832 // Alternative representation:
833 case 'E': {
834 if (ptr == end) FMT_THROW(format_error("invalid format"));
835 c = *ptr++;
836 switch (c) {
837 case 'Y':
838 handler.on_year(numeric_system::alternative);
839 break;
840 case 'y':
841 handler.on_offset_year();
842 break;
843 case 'C':
844 handler.on_century(numeric_system::alternative);
845 break;
846 case 'c':
847 handler.on_datetime(numeric_system::alternative);
848 break;
849 case 'x':
850 handler.on_loc_date(numeric_system::alternative);
851 break;
852 case 'X':
853 handler.on_loc_time(numeric_system::alternative);
854 break;
855 case 'z':
856 handler.on_utc_offset(numeric_system::alternative);
857 break;
858 default:
859 FMT_THROW(format_error("invalid format"));
860 }
861 break;
862 }
863 case 'O':
864 if (ptr == end) FMT_THROW(format_error("invalid format"));
865 c = *ptr++;
866 switch (c) {
867 case 'y':
868 handler.on_short_year(numeric_system::alternative);
869 break;
870 case 'm':
871 handler.on_dec_month(numeric_system::alternative);
872 break;
873 case 'U':
874 handler.on_dec0_week_of_year(numeric_system::alternative);
875 break;
876 case 'W':
877 handler.on_dec1_week_of_year(numeric_system::alternative);
878 break;
879 case 'V':
880 handler.on_iso_week_of_year(numeric_system::alternative);
881 break;
882 case 'd':
883 handler.on_day_of_month(numeric_system::alternative);
884 break;
885 case 'e':
886 handler.on_day_of_month_space(numeric_system::alternative);
887 break;
888 case 'w':
889 handler.on_dec0_weekday(numeric_system::alternative);
890 break;
891 case 'u':
892 handler.on_dec1_weekday(numeric_system::alternative);
893 break;
894 case 'H':
895 handler.on_24_hour(numeric_system::alternative, pad);
896 break;
897 case 'I':
898 handler.on_12_hour(numeric_system::alternative, pad);
899 break;
900 case 'M':
901 handler.on_minute(numeric_system::alternative, pad);
902 break;
903 case 'S':
904 handler.on_second(numeric_system::alternative, pad);
905 break;
906 case 'z':
907 handler.on_utc_offset(numeric_system::alternative);
908 break;
909 default:
910 FMT_THROW(format_error("invalid format"));
911 }
912 break;
913 default:
914 FMT_THROW(format_error("invalid format"));
915 }
916 begin = ptr;
917 }
918 if (begin != ptr) handler.on_text(begin, ptr);
919 return ptr;
920 }
921
922 template <typename Derived> struct null_chrono_spec_handler {
unsupportednull_chrono_spec_handler923 FMT_CONSTEXPR void unsupported() {
924 static_cast<Derived*>(this)->unsupported();
925 }
on_yearnull_chrono_spec_handler926 FMT_CONSTEXPR void on_year(numeric_system) { unsupported(); }
on_short_yearnull_chrono_spec_handler927 FMT_CONSTEXPR void on_short_year(numeric_system) { unsupported(); }
on_offset_yearnull_chrono_spec_handler928 FMT_CONSTEXPR void on_offset_year() { unsupported(); }
on_centurynull_chrono_spec_handler929 FMT_CONSTEXPR void on_century(numeric_system) { unsupported(); }
on_iso_week_based_yearnull_chrono_spec_handler930 FMT_CONSTEXPR void on_iso_week_based_year() { unsupported(); }
on_iso_week_based_short_yearnull_chrono_spec_handler931 FMT_CONSTEXPR void on_iso_week_based_short_year() { unsupported(); }
on_abbr_weekdaynull_chrono_spec_handler932 FMT_CONSTEXPR void on_abbr_weekday() { unsupported(); }
on_full_weekdaynull_chrono_spec_handler933 FMT_CONSTEXPR void on_full_weekday() { unsupported(); }
on_dec0_weekdaynull_chrono_spec_handler934 FMT_CONSTEXPR void on_dec0_weekday(numeric_system) { unsupported(); }
on_dec1_weekdaynull_chrono_spec_handler935 FMT_CONSTEXPR void on_dec1_weekday(numeric_system) { unsupported(); }
on_abbr_monthnull_chrono_spec_handler936 FMT_CONSTEXPR void on_abbr_month() { unsupported(); }
on_full_monthnull_chrono_spec_handler937 FMT_CONSTEXPR void on_full_month() { unsupported(); }
on_dec_monthnull_chrono_spec_handler938 FMT_CONSTEXPR void on_dec_month(numeric_system) { unsupported(); }
on_dec0_week_of_yearnull_chrono_spec_handler939 FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) { unsupported(); }
on_dec1_week_of_yearnull_chrono_spec_handler940 FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) { unsupported(); }
on_iso_week_of_yearnull_chrono_spec_handler941 FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) { unsupported(); }
on_day_of_yearnull_chrono_spec_handler942 FMT_CONSTEXPR void on_day_of_year() { unsupported(); }
on_day_of_monthnull_chrono_spec_handler943 FMT_CONSTEXPR void on_day_of_month(numeric_system) { unsupported(); }
on_day_of_month_spacenull_chrono_spec_handler944 FMT_CONSTEXPR void on_day_of_month_space(numeric_system) { unsupported(); }
on_24_hournull_chrono_spec_handler945 FMT_CONSTEXPR void on_24_hour(numeric_system) { unsupported(); }
on_12_hournull_chrono_spec_handler946 FMT_CONSTEXPR void on_12_hour(numeric_system) { unsupported(); }
on_minutenull_chrono_spec_handler947 FMT_CONSTEXPR void on_minute(numeric_system) { unsupported(); }
on_secondnull_chrono_spec_handler948 FMT_CONSTEXPR void on_second(numeric_system) { unsupported(); }
on_datetimenull_chrono_spec_handler949 FMT_CONSTEXPR void on_datetime(numeric_system) { unsupported(); }
on_loc_datenull_chrono_spec_handler950 FMT_CONSTEXPR void on_loc_date(numeric_system) { unsupported(); }
on_loc_timenull_chrono_spec_handler951 FMT_CONSTEXPR void on_loc_time(numeric_system) { unsupported(); }
on_us_datenull_chrono_spec_handler952 FMT_CONSTEXPR void on_us_date() { unsupported(); }
on_iso_datenull_chrono_spec_handler953 FMT_CONSTEXPR void on_iso_date() { unsupported(); }
on_12_hour_timenull_chrono_spec_handler954 FMT_CONSTEXPR void on_12_hour_time() { unsupported(); }
on_24_hour_timenull_chrono_spec_handler955 FMT_CONSTEXPR void on_24_hour_time() { unsupported(); }
on_iso_timenull_chrono_spec_handler956 FMT_CONSTEXPR void on_iso_time() { unsupported(); }
on_am_pmnull_chrono_spec_handler957 FMT_CONSTEXPR void on_am_pm() { unsupported(); }
on_duration_valuenull_chrono_spec_handler958 FMT_CONSTEXPR void on_duration_value() { unsupported(); }
on_duration_unitnull_chrono_spec_handler959 FMT_CONSTEXPR void on_duration_unit() { unsupported(); }
on_utc_offsetnull_chrono_spec_handler960 FMT_CONSTEXPR void on_utc_offset(numeric_system) { unsupported(); }
on_tz_namenull_chrono_spec_handler961 FMT_CONSTEXPR void on_tz_name() { unsupported(); }
962 };
963
964 struct tm_format_checker : null_chrono_spec_handler<tm_format_checker> {
unsupportedtm_format_checker965 FMT_NORETURN void unsupported() { FMT_THROW(format_error("no format")); }
966
967 template <typename Char>
on_texttm_format_checker968 FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
on_yeartm_format_checker969 FMT_CONSTEXPR void on_year(numeric_system) {}
on_short_yeartm_format_checker970 FMT_CONSTEXPR void on_short_year(numeric_system) {}
on_offset_yeartm_format_checker971 FMT_CONSTEXPR void on_offset_year() {}
on_centurytm_format_checker972 FMT_CONSTEXPR void on_century(numeric_system) {}
on_iso_week_based_yeartm_format_checker973 FMT_CONSTEXPR void on_iso_week_based_year() {}
on_iso_week_based_short_yeartm_format_checker974 FMT_CONSTEXPR void on_iso_week_based_short_year() {}
on_abbr_weekdaytm_format_checker975 FMT_CONSTEXPR void on_abbr_weekday() {}
on_full_weekdaytm_format_checker976 FMT_CONSTEXPR void on_full_weekday() {}
on_dec0_weekdaytm_format_checker977 FMT_CONSTEXPR void on_dec0_weekday(numeric_system) {}
on_dec1_weekdaytm_format_checker978 FMT_CONSTEXPR void on_dec1_weekday(numeric_system) {}
on_abbr_monthtm_format_checker979 FMT_CONSTEXPR void on_abbr_month() {}
on_full_monthtm_format_checker980 FMT_CONSTEXPR void on_full_month() {}
on_dec_monthtm_format_checker981 FMT_CONSTEXPR void on_dec_month(numeric_system) {}
on_dec0_week_of_yeartm_format_checker982 FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) {}
on_dec1_week_of_yeartm_format_checker983 FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) {}
on_iso_week_of_yeartm_format_checker984 FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) {}
on_day_of_yeartm_format_checker985 FMT_CONSTEXPR void on_day_of_year() {}
on_day_of_monthtm_format_checker986 FMT_CONSTEXPR void on_day_of_month(numeric_system) {}
on_day_of_month_spacetm_format_checker987 FMT_CONSTEXPR void on_day_of_month_space(numeric_system) {}
on_24_hourtm_format_checker988 FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
on_12_hourtm_format_checker989 FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
on_minutetm_format_checker990 FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
on_secondtm_format_checker991 FMT_CONSTEXPR void on_second(numeric_system, pad_type) {}
on_datetimetm_format_checker992 FMT_CONSTEXPR void on_datetime(numeric_system) {}
on_loc_datetm_format_checker993 FMT_CONSTEXPR void on_loc_date(numeric_system) {}
on_loc_timetm_format_checker994 FMT_CONSTEXPR void on_loc_time(numeric_system) {}
on_us_datetm_format_checker995 FMT_CONSTEXPR void on_us_date() {}
on_iso_datetm_format_checker996 FMT_CONSTEXPR void on_iso_date() {}
on_12_hour_timetm_format_checker997 FMT_CONSTEXPR void on_12_hour_time() {}
on_24_hour_timetm_format_checker998 FMT_CONSTEXPR void on_24_hour_time() {}
on_iso_timetm_format_checker999 FMT_CONSTEXPR void on_iso_time() {}
on_am_pmtm_format_checker1000 FMT_CONSTEXPR void on_am_pm() {}
on_utc_offsettm_format_checker1001 FMT_CONSTEXPR void on_utc_offset(numeric_system) {}
on_tz_nametm_format_checker1002 FMT_CONSTEXPR void on_tz_name() {}
1003 };
1004
1005 inline auto tm_wday_full_name(int wday) -> const char* {
1006 static constexpr const char* full_name_list[] = {
1007 "Sunday", "Monday", "Tuesday", "Wednesday",
1008 "Thursday", "Friday", "Saturday"};
1009 return wday >= 0 && wday <= 6 ? full_name_list[wday] : "?";
1010 }
1011 inline auto tm_wday_short_name(int wday) -> const char* {
1012 static constexpr const char* short_name_list[] = {"Sun", "Mon", "Tue", "Wed",
1013 "Thu", "Fri", "Sat"};
1014 return wday >= 0 && wday <= 6 ? short_name_list[wday] : "???";
1015 }
1016
1017 inline auto tm_mon_full_name(int mon) -> const char* {
1018 static constexpr const char* full_name_list[] = {
1019 "January", "February", "March", "April", "May", "June",
1020 "July", "August", "September", "October", "November", "December"};
1021 return mon >= 0 && mon <= 11 ? full_name_list[mon] : "?";
1022 }
1023 inline auto tm_mon_short_name(int mon) -> const char* {
1024 static constexpr const char* short_name_list[] = {
1025 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1026 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
1027 };
1028 return mon >= 0 && mon <= 11 ? short_name_list[mon] : "???";
1029 }
1030
1031 template <typename T, typename = void>
1032 struct has_member_data_tm_gmtoff : std::false_type {};
1033 template <typename T>
1034 struct has_member_data_tm_gmtoff<T, void_t<decltype(T::tm_gmtoff)>>
1035 : std::true_type {};
1036
1037 template <typename T, typename = void>
1038 struct has_member_data_tm_zone : std::false_type {};
1039 template <typename T>
1040 struct has_member_data_tm_zone<T, void_t<decltype(T::tm_zone)>>
1041 : std::true_type {};
1042
1043 #if FMT_USE_TZSET
1044 inline void tzset_once() {
1045 static bool init = []() -> bool {
1046 _tzset();
1047 return true;
1048 }();
1049 ignore_unused(init);
1050 }
1051 #endif
1052
1053 // Converts value to Int and checks that it's in the range [0, upper).
1054 template <typename T, typename Int, FMT_ENABLE_IF(std::is_integral<T>::value)>
1055 inline auto to_nonnegative_int(T value, Int upper) -> Int {
1056 if (!std::is_unsigned<Int>::value &&
1057 (value < 0 || to_unsigned(value) > to_unsigned(upper))) {
1058 FMT_THROW(fmt::format_error("chrono value is out of range"));
1059 }
1060 return static_cast<Int>(value);
1061 }
1062 template <typename T, typename Int, FMT_ENABLE_IF(!std::is_integral<T>::value)>
1063 inline auto to_nonnegative_int(T value, Int upper) -> Int {
1064 if (value < 0 || value > static_cast<T>(upper))
1065 FMT_THROW(format_error("invalid value"));
1066 return static_cast<Int>(value);
1067 }
1068
1069 constexpr auto pow10(std::uint32_t n) -> long long {
1070 return n == 0 ? 1 : 10 * pow10(n - 1);
1071 }
1072
1073 // Counts the number of fractional digits in the range [0, 18] according to the
1074 // C++20 spec. If more than 18 fractional digits are required then returns 6 for
1075 // microseconds precision.
1076 template <long long Num, long long Den, int N = 0,
1077 bool Enabled = (N < 19) && (Num <= max_value<long long>() / 10)>
1078 struct count_fractional_digits {
1079 static constexpr int value =
1080 Num % Den == 0 ? N : count_fractional_digits<Num * 10, Den, N + 1>::value;
1081 };
1082
1083 // Base case that doesn't instantiate any more templates
1084 // in order to avoid overflow.
1085 template <long long Num, long long Den, int N>
1086 struct count_fractional_digits<Num, Den, N, false> {
1087 static constexpr int value = (Num % Den == 0) ? N : 6;
1088 };
1089
1090 // Format subseconds which are given as an integer type with an appropriate
1091 // number of digits.
1092 template <typename Char, typename OutputIt, typename Duration>
1093 void write_fractional_seconds(OutputIt& out, Duration d, int precision = -1) {
1094 constexpr auto num_fractional_digits =
1095 count_fractional_digits<Duration::period::num,
1096 Duration::period::den>::value;
1097
1098 using subsecond_precision = std::chrono::duration<
1099 typename std::common_type<typename Duration::rep,
1100 std::chrono::seconds::rep>::type,
1101 std::ratio<1, detail::pow10(num_fractional_digits)>>;
1102
1103 const auto fractional = d - fmt_duration_cast<std::chrono::seconds>(d);
1104 const auto subseconds =
1105 std::chrono::treat_as_floating_point<
1106 typename subsecond_precision::rep>::value
1107 ? fractional.count()
1108 : fmt_duration_cast<subsecond_precision>(fractional).count();
1109 auto n = static_cast<uint32_or_64_or_128_t<long long>>(subseconds);
1110 const int num_digits = detail::count_digits(n);
1111
1112 int leading_zeroes = (std::max)(0, num_fractional_digits - num_digits);
1113 if (precision < 0) {
1114 FMT_ASSERT(!std::is_floating_point<typename Duration::rep>::value, "");
1115 if (std::ratio_less<typename subsecond_precision::period,
1116 std::chrono::seconds::period>::value) {
1117 *out++ = '.';
1118 out = std::fill_n(out, leading_zeroes, '0');
1119 out = format_decimal<Char>(out, n, num_digits).end;
1120 }
1121 } else {
1122 *out++ = '.';
1123 leading_zeroes = (std::min)(leading_zeroes, precision);
1124 out = std::fill_n(out, leading_zeroes, '0');
1125 int remaining = precision - leading_zeroes;
1126 if (remaining != 0 && remaining < num_digits) {
1127 n /= to_unsigned(detail::pow10(to_unsigned(num_digits - remaining)));
1128 out = format_decimal<Char>(out, n, remaining).end;
1129 return;
1130 }
1131 out = format_decimal<Char>(out, n, num_digits).end;
1132 remaining -= num_digits;
1133 out = std::fill_n(out, remaining, '0');
1134 }
1135 }
1136
1137 // Format subseconds which are given as a floating point type with an
1138 // appropriate number of digits. We cannot pass the Duration here, as we
1139 // explicitly need to pass the Rep value in the chrono_formatter.
1140 template <typename Duration>
1141 void write_floating_seconds(memory_buffer& buf, Duration duration,
1142 int num_fractional_digits = -1) {
1143 using rep = typename Duration::rep;
1144 FMT_ASSERT(std::is_floating_point<rep>::value, "");
1145
1146 auto val = duration.count();
1147
1148 if (num_fractional_digits < 0) {
1149 // For `std::round` with fallback to `round`:
1150 // On some toolchains `std::round` is not available (e.g. GCC 6).
1151 using namespace std;
1152 num_fractional_digits =
1153 count_fractional_digits<Duration::period::num,
1154 Duration::period::den>::value;
1155 if (num_fractional_digits < 6 && static_cast<rep>(round(val)) != val)
1156 num_fractional_digits = 6;
1157 }
1158
1159 fmt::format_to(std::back_inserter(buf), FMT_STRING("{:.{}f}"),
1160 std::fmod(val * static_cast<rep>(Duration::period::num) /
1161 static_cast<rep>(Duration::period::den),
1162 static_cast<rep>(60)),
1163 num_fractional_digits);
1164 }
1165
1166 template <typename OutputIt, typename Char,
1167 typename Duration = std::chrono::seconds>
1168 class tm_writer {
1169 private:
1170 static constexpr int days_per_week = 7;
1171
1172 const std::locale& loc_;
1173 const bool is_classic_;
1174 OutputIt out_;
1175 const Duration* subsecs_;
1176 const std::tm& tm_;
1177
1178 auto tm_sec() const noexcept -> int {
1179 FMT_ASSERT(tm_.tm_sec >= 0 && tm_.tm_sec <= 61, "");
1180 return tm_.tm_sec;
1181 }
1182 auto tm_min() const noexcept -> int {
1183 FMT_ASSERT(tm_.tm_min >= 0 && tm_.tm_min <= 59, "");
1184 return tm_.tm_min;
1185 }
1186 auto tm_hour() const noexcept -> int {
1187 FMT_ASSERT(tm_.tm_hour >= 0 && tm_.tm_hour <= 23, "");
1188 return tm_.tm_hour;
1189 }
1190 auto tm_mday() const noexcept -> int {
1191 FMT_ASSERT(tm_.tm_mday >= 1 && tm_.tm_mday <= 31, "");
1192 return tm_.tm_mday;
1193 }
1194 auto tm_mon() const noexcept -> int {
1195 FMT_ASSERT(tm_.tm_mon >= 0 && tm_.tm_mon <= 11, "");
1196 return tm_.tm_mon;
1197 }
1198 auto tm_year() const noexcept -> long long { return 1900ll + tm_.tm_year; }
1199 auto tm_wday() const noexcept -> int {
1200 FMT_ASSERT(tm_.tm_wday >= 0 && tm_.tm_wday <= 6, "");
1201 return tm_.tm_wday;
1202 }
1203 auto tm_yday() const noexcept -> int {
1204 FMT_ASSERT(tm_.tm_yday >= 0 && tm_.tm_yday <= 365, "");
1205 return tm_.tm_yday;
1206 }
1207
1208 auto tm_hour12() const noexcept -> int {
1209 const auto h = tm_hour();
1210 const auto z = h < 12 ? h : h - 12;
1211 return z == 0 ? 12 : z;
1212 }
1213
1214 // POSIX and the C Standard are unclear or inconsistent about what %C and %y
1215 // do if the year is negative or exceeds 9999. Use the convention that %C
1216 // concatenated with %y yields the same output as %Y, and that %Y contains at
1217 // least 4 characters, with more only if necessary.
1218 auto split_year_lower(long long year) const noexcept -> int {
1219 auto l = year % 100;
1220 if (l < 0) l = -l; // l in [0, 99]
1221 return static_cast<int>(l);
1222 }
1223
1224 // Algorithm: https://en.wikipedia.org/wiki/ISO_week_date.
1225 auto iso_year_weeks(long long curr_year) const noexcept -> int {
1226 const auto prev_year = curr_year - 1;
1227 const auto curr_p =
1228 (curr_year + curr_year / 4 - curr_year / 100 + curr_year / 400) %
1229 days_per_week;
1230 const auto prev_p =
1231 (prev_year + prev_year / 4 - prev_year / 100 + prev_year / 400) %
1232 days_per_week;
1233 return 52 + ((curr_p == 4 || prev_p == 3) ? 1 : 0);
1234 }
1235 auto iso_week_num(int tm_yday, int tm_wday) const noexcept -> int {
1236 return (tm_yday + 11 - (tm_wday == 0 ? days_per_week : tm_wday)) /
1237 days_per_week;
1238 }
1239 auto tm_iso_week_year() const noexcept -> long long {
1240 const auto year = tm_year();
1241 const auto w = iso_week_num(tm_yday(), tm_wday());
1242 if (w < 1) return year - 1;
1243 if (w > iso_year_weeks(year)) return year + 1;
1244 return year;
1245 }
1246 auto tm_iso_week_of_year() const noexcept -> int {
1247 const auto year = tm_year();
1248 const auto w = iso_week_num(tm_yday(), tm_wday());
1249 if (w < 1) return iso_year_weeks(year - 1);
1250 if (w > iso_year_weeks(year)) return 1;
1251 return w;
1252 }
1253
1254 void write1(int value) {
1255 *out_++ = static_cast<char>('0' + to_unsigned(value) % 10);
1256 }
1257 void write2(int value) {
1258 const char* d = digits2(to_unsigned(value) % 100);
1259 *out_++ = *d++;
1260 *out_++ = *d;
1261 }
1262 void write2(int value, pad_type pad) {
1263 unsigned int v = to_unsigned(value) % 100;
1264 if (v >= 10) {
1265 const char* d = digits2(v);
1266 *out_++ = *d++;
1267 *out_++ = *d;
1268 } else {
1269 out_ = detail::write_padding(out_, pad);
1270 *out_++ = static_cast<char>('0' + v);
1271 }
1272 }
1273
1274 void write_year_extended(long long year) {
1275 // At least 4 characters.
1276 int width = 4;
1277 if (year < 0) {
1278 *out_++ = '-';
1279 year = 0 - year;
1280 --width;
1281 }
1282 uint32_or_64_or_128_t<long long> n = to_unsigned(year);
1283 const int num_digits = count_digits(n);
1284 if (width > num_digits) out_ = std::fill_n(out_, width - num_digits, '0');
1285 out_ = format_decimal<Char>(out_, n, num_digits).end;
1286 }
1287 void write_year(long long year) {
1288 if (year >= 0 && year < 10000) {
1289 write2(static_cast<int>(year / 100));
1290 write2(static_cast<int>(year % 100));
1291 } else {
1292 write_year_extended(year);
1293 }
1294 }
1295
1296 void write_utc_offset(long offset, numeric_system ns) {
1297 if (offset < 0) {
1298 *out_++ = '-';
1299 offset = -offset;
1300 } else {
1301 *out_++ = '+';
1302 }
1303 offset /= 60;
1304 write2(static_cast<int>(offset / 60));
1305 if (ns != numeric_system::standard) *out_++ = ':';
1306 write2(static_cast<int>(offset % 60));
1307 }
1308 template <typename T, FMT_ENABLE_IF(has_member_data_tm_gmtoff<T>::value)>
1309 void format_utc_offset_impl(const T& tm, numeric_system ns) {
1310 write_utc_offset(tm.tm_gmtoff, ns);
1311 }
1312 template <typename T, FMT_ENABLE_IF(!has_member_data_tm_gmtoff<T>::value)>
1313 void format_utc_offset_impl(const T& tm, numeric_system ns) {
1314 #if defined(_WIN32) && defined(_UCRT)
1315 # if FMT_USE_TZSET
1316 tzset_once();
1317 # endif
1318 long offset = 0;
1319 _get_timezone(&offset);
1320 if (tm.tm_isdst) {
1321 long dstbias = 0;
1322 _get_dstbias(&dstbias);
1323 offset += dstbias;
1324 }
1325 write_utc_offset(-offset, ns);
1326 #else
1327 if (ns == numeric_system::standard) return format_localized('z');
1328
1329 // Extract timezone offset from timezone conversion functions.
1330 std::tm gtm = tm;
1331 std::time_t gt = std::mktime(>m);
1332 std::tm ltm = gmtime(gt);
1333 std::time_t lt = std::mktime(<m);
1334 long offset = gt - lt;
1335 write_utc_offset(offset, ns);
1336 #endif
1337 }
1338
1339 template <typename T, FMT_ENABLE_IF(has_member_data_tm_zone<T>::value)>
1340 void format_tz_name_impl(const T& tm) {
1341 if (is_classic_)
1342 out_ = write_tm_str<Char>(out_, tm.tm_zone, loc_);
1343 else
1344 format_localized('Z');
1345 }
1346 template <typename T, FMT_ENABLE_IF(!has_member_data_tm_zone<T>::value)>
1347 void format_tz_name_impl(const T&) {
1348 format_localized('Z');
1349 }
1350
1351 void format_localized(char format, char modifier = 0) {
1352 out_ = write<Char>(out_, tm_, loc_, format, modifier);
1353 }
1354
1355 public:
1356 tm_writer(const std::locale& loc, OutputIt out, const std::tm& tm,
1357 const Duration* subsecs = nullptr)
1358 : loc_(loc),
1359 is_classic_(loc_ == get_classic_locale()),
1360 out_(out),
1361 subsecs_(subsecs),
1362 tm_(tm) {}
1363
1364 auto out() const -> OutputIt { return out_; }
1365
1366 FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
1367 out_ = copy_str<Char>(begin, end, out_);
1368 }
1369
1370 void on_abbr_weekday() {
1371 if (is_classic_)
1372 out_ = write(out_, tm_wday_short_name(tm_wday()));
1373 else
1374 format_localized('a');
1375 }
1376 void on_full_weekday() {
1377 if (is_classic_)
1378 out_ = write(out_, tm_wday_full_name(tm_wday()));
1379 else
1380 format_localized('A');
1381 }
1382 void on_dec0_weekday(numeric_system ns) {
1383 if (is_classic_ || ns == numeric_system::standard) return write1(tm_wday());
1384 format_localized('w', 'O');
1385 }
1386 void on_dec1_weekday(numeric_system ns) {
1387 if (is_classic_ || ns == numeric_system::standard) {
1388 auto wday = tm_wday();
1389 write1(wday == 0 ? days_per_week : wday);
1390 } else {
1391 format_localized('u', 'O');
1392 }
1393 }
1394
1395 void on_abbr_month() {
1396 if (is_classic_)
1397 out_ = write(out_, tm_mon_short_name(tm_mon()));
1398 else
1399 format_localized('b');
1400 }
1401 void on_full_month() {
1402 if (is_classic_)
1403 out_ = write(out_, tm_mon_full_name(tm_mon()));
1404 else
1405 format_localized('B');
1406 }
1407
1408 void on_datetime(numeric_system ns) {
1409 if (is_classic_) {
1410 on_abbr_weekday();
1411 *out_++ = ' ';
1412 on_abbr_month();
1413 *out_++ = ' ';
1414 on_day_of_month_space(numeric_system::standard);
1415 *out_++ = ' ';
1416 on_iso_time();
1417 *out_++ = ' ';
1418 on_year(numeric_system::standard);
1419 } else {
1420 format_localized('c', ns == numeric_system::standard ? '\0' : 'E');
1421 }
1422 }
1423 void on_loc_date(numeric_system ns) {
1424 if (is_classic_)
1425 on_us_date();
1426 else
1427 format_localized('x', ns == numeric_system::standard ? '\0' : 'E');
1428 }
1429 void on_loc_time(numeric_system ns) {
1430 if (is_classic_)
1431 on_iso_time();
1432 else
1433 format_localized('X', ns == numeric_system::standard ? '\0' : 'E');
1434 }
1435 void on_us_date() {
1436 char buf[8];
1437 write_digit2_separated(buf, to_unsigned(tm_mon() + 1),
1438 to_unsigned(tm_mday()),
1439 to_unsigned(split_year_lower(tm_year())), '/');
1440 out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
1441 }
1442 void on_iso_date() {
1443 auto year = tm_year();
1444 char buf[10];
1445 size_t offset = 0;
1446 if (year >= 0 && year < 10000) {
1447 copy2(buf, digits2(static_cast<size_t>(year / 100)));
1448 } else {
1449 offset = 4;
1450 write_year_extended(year);
1451 year = 0;
1452 }
1453 write_digit2_separated(buf + 2, static_cast<unsigned>(year % 100),
1454 to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()),
1455 '-');
1456 out_ = copy_str<Char>(std::begin(buf) + offset, std::end(buf), out_);
1457 }
1458
1459 void on_utc_offset(numeric_system ns) { format_utc_offset_impl(tm_, ns); }
1460 void on_tz_name() { format_tz_name_impl(tm_); }
1461
1462 void on_year(numeric_system ns) {
1463 if (is_classic_ || ns == numeric_system::standard)
1464 return write_year(tm_year());
1465 format_localized('Y', 'E');
1466 }
1467 void on_short_year(numeric_system ns) {
1468 if (is_classic_ || ns == numeric_system::standard)
1469 return write2(split_year_lower(tm_year()));
1470 format_localized('y', 'O');
1471 }
1472 void on_offset_year() {
1473 if (is_classic_) return write2(split_year_lower(tm_year()));
1474 format_localized('y', 'E');
1475 }
1476
1477 void on_century(numeric_system ns) {
1478 if (is_classic_ || ns == numeric_system::standard) {
1479 auto year = tm_year();
1480 auto upper = year / 100;
1481 if (year >= -99 && year < 0) {
1482 // Zero upper on negative year.
1483 *out_++ = '-';
1484 *out_++ = '0';
1485 } else if (upper >= 0 && upper < 100) {
1486 write2(static_cast<int>(upper));
1487 } else {
1488 out_ = write<Char>(out_, upper);
1489 }
1490 } else {
1491 format_localized('C', 'E');
1492 }
1493 }
1494
1495 void on_dec_month(numeric_system ns) {
1496 if (is_classic_ || ns == numeric_system::standard)
1497 return write2(tm_mon() + 1);
1498 format_localized('m', 'O');
1499 }
1500
1501 void on_dec0_week_of_year(numeric_system ns) {
1502 if (is_classic_ || ns == numeric_system::standard)
1503 return write2((tm_yday() + days_per_week - tm_wday()) / days_per_week);
1504 format_localized('U', 'O');
1505 }
1506 void on_dec1_week_of_year(numeric_system ns) {
1507 if (is_classic_ || ns == numeric_system::standard) {
1508 auto wday = tm_wday();
1509 write2((tm_yday() + days_per_week -
1510 (wday == 0 ? (days_per_week - 1) : (wday - 1))) /
1511 days_per_week);
1512 } else {
1513 format_localized('W', 'O');
1514 }
1515 }
1516 void on_iso_week_of_year(numeric_system ns) {
1517 if (is_classic_ || ns == numeric_system::standard)
1518 return write2(tm_iso_week_of_year());
1519 format_localized('V', 'O');
1520 }
1521
1522 void on_iso_week_based_year() { write_year(tm_iso_week_year()); }
1523 void on_iso_week_based_short_year() {
1524 write2(split_year_lower(tm_iso_week_year()));
1525 }
1526
1527 void on_day_of_year() {
1528 auto yday = tm_yday() + 1;
1529 write1(yday / 100);
1530 write2(yday % 100);
1531 }
1532 void on_day_of_month(numeric_system ns) {
1533 if (is_classic_ || ns == numeric_system::standard) return write2(tm_mday());
1534 format_localized('d', 'O');
1535 }
1536 void on_day_of_month_space(numeric_system ns) {
1537 if (is_classic_ || ns == numeric_system::standard) {
1538 auto mday = to_unsigned(tm_mday()) % 100;
1539 const char* d2 = digits2(mday);
1540 *out_++ = mday < 10 ? ' ' : d2[0];
1541 *out_++ = d2[1];
1542 } else {
1543 format_localized('e', 'O');
1544 }
1545 }
1546
1547 void on_24_hour(numeric_system ns, pad_type pad) {
1548 if (is_classic_ || ns == numeric_system::standard)
1549 return write2(tm_hour(), pad);
1550 format_localized('H', 'O');
1551 }
1552 void on_12_hour(numeric_system ns, pad_type pad) {
1553 if (is_classic_ || ns == numeric_system::standard)
1554 return write2(tm_hour12(), pad);
1555 format_localized('I', 'O');
1556 }
1557 void on_minute(numeric_system ns, pad_type pad) {
1558 if (is_classic_ || ns == numeric_system::standard)
1559 return write2(tm_min(), pad);
1560 format_localized('M', 'O');
1561 }
1562
1563 void on_second(numeric_system ns, pad_type pad) {
1564 if (is_classic_ || ns == numeric_system::standard) {
1565 write2(tm_sec(), pad);
1566 if (subsecs_) {
1567 if (std::is_floating_point<typename Duration::rep>::value) {
1568 auto buf = memory_buffer();
1569 write_floating_seconds(buf, *subsecs_);
1570 if (buf.size() > 1) {
1571 // Remove the leading "0", write something like ".123".
1572 out_ = std::copy(buf.begin() + 1, buf.end(), out_);
1573 }
1574 } else {
1575 write_fractional_seconds<Char>(out_, *subsecs_);
1576 }
1577 }
1578 } else {
1579 // Currently no formatting of subseconds when a locale is set.
1580 format_localized('S', 'O');
1581 }
1582 }
1583
1584 void on_12_hour_time() {
1585 if (is_classic_) {
1586 char buf[8];
1587 write_digit2_separated(buf, to_unsigned(tm_hour12()),
1588 to_unsigned(tm_min()), to_unsigned(tm_sec()), ':');
1589 out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
1590 *out_++ = ' ';
1591 on_am_pm();
1592 } else {
1593 format_localized('r');
1594 }
1595 }
1596 void on_24_hour_time() {
1597 write2(tm_hour());
1598 *out_++ = ':';
1599 write2(tm_min());
1600 }
1601 void on_iso_time() {
1602 on_24_hour_time();
1603 *out_++ = ':';
1604 on_second(numeric_system::standard, pad_type::unspecified);
1605 }
1606
1607 void on_am_pm() {
1608 if (is_classic_) {
1609 *out_++ = tm_hour() < 12 ? 'A' : 'P';
1610 *out_++ = 'M';
1611 } else {
1612 format_localized('p');
1613 }
1614 }
1615
1616 // These apply to chrono durations but not tm.
1617 void on_duration_value() {}
1618 void on_duration_unit() {}
1619 };
1620
1621 struct chrono_format_checker : null_chrono_spec_handler<chrono_format_checker> {
1622 bool has_precision_integral = false;
1623
1624 FMT_NORETURN void unsupported() { FMT_THROW(format_error("no date")); }
1625
1626 template <typename Char>
1627 FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
1628 FMT_CONSTEXPR void on_day_of_year() {}
1629 FMT_CONSTEXPR void on_24_hour(numeric_system, pad_type) {}
1630 FMT_CONSTEXPR void on_12_hour(numeric_system, pad_type) {}
1631 FMT_CONSTEXPR void on_minute(numeric_system, pad_type) {}
1632 FMT_CONSTEXPR void on_second(numeric_system, pad_type) {}
1633 FMT_CONSTEXPR void on_12_hour_time() {}
1634 FMT_CONSTEXPR void on_24_hour_time() {}
1635 FMT_CONSTEXPR void on_iso_time() {}
1636 FMT_CONSTEXPR void on_am_pm() {}
1637 FMT_CONSTEXPR void on_duration_value() const {
1638 if (has_precision_integral) {
1639 FMT_THROW(format_error("precision not allowed for this argument type"));
1640 }
1641 }
1642 FMT_CONSTEXPR void on_duration_unit() {}
1643 };
1644
1645 template <typename T,
1646 FMT_ENABLE_IF(std::is_integral<T>::value&& has_isfinite<T>::value)>
1647 inline auto isfinite(T) -> bool {
1648 return true;
1649 }
1650
1651 template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
1652 inline auto mod(T x, int y) -> T {
1653 return x % static_cast<T>(y);
1654 }
1655 template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
1656 inline auto mod(T x, int y) -> T {
1657 return std::fmod(x, static_cast<T>(y));
1658 }
1659
1660 // If T is an integral type, maps T to its unsigned counterpart, otherwise
1661 // leaves it unchanged (unlike std::make_unsigned).
1662 template <typename T, bool INTEGRAL = std::is_integral<T>::value>
1663 struct make_unsigned_or_unchanged {
1664 using type = T;
1665 };
1666
1667 template <typename T> struct make_unsigned_or_unchanged<T, true> {
1668 using type = typename std::make_unsigned<T>::type;
1669 };
1670
1671 template <typename Rep, typename Period,
1672 FMT_ENABLE_IF(std::is_integral<Rep>::value)>
1673 inline auto get_milliseconds(std::chrono::duration<Rep, Period> d)
1674 -> std::chrono::duration<Rep, std::milli> {
1675 // this may overflow and/or the result may not fit in the
1676 // target type.
1677 #if FMT_SAFE_DURATION_CAST
1678 using CommonSecondsType =
1679 typename std::common_type<decltype(d), std::chrono::seconds>::type;
1680 const auto d_as_common = fmt_duration_cast<CommonSecondsType>(d);
1681 const auto d_as_whole_seconds =
1682 fmt_duration_cast<std::chrono::seconds>(d_as_common);
1683 // this conversion should be nonproblematic
1684 const auto diff = d_as_common - d_as_whole_seconds;
1685 const auto ms =
1686 fmt_duration_cast<std::chrono::duration<Rep, std::milli>>(diff);
1687 return ms;
1688 #else
1689 auto s = fmt_duration_cast<std::chrono::seconds>(d);
1690 return fmt_duration_cast<std::chrono::milliseconds>(d - s);
1691 #endif
1692 }
1693
1694 template <typename Char, typename Rep, typename OutputIt,
1695 FMT_ENABLE_IF(std::is_integral<Rep>::value)>
1696 auto format_duration_value(OutputIt out, Rep val, int) -> OutputIt {
1697 return write<Char>(out, val);
1698 }
1699
1700 template <typename Char, typename Rep, typename OutputIt,
1701 FMT_ENABLE_IF(std::is_floating_point<Rep>::value)>
1702 auto format_duration_value(OutputIt out, Rep val, int precision) -> OutputIt {
1703 auto specs = format_specs<Char>();
1704 specs.precision = precision;
1705 specs.type = precision >= 0 ? presentation_type::fixed_lower
1706 : presentation_type::general_lower;
1707 return write<Char>(out, val, specs);
1708 }
1709
1710 template <typename Char, typename OutputIt>
1711 auto copy_unit(string_view unit, OutputIt out, Char) -> OutputIt {
1712 return std::copy(unit.begin(), unit.end(), out);
1713 }
1714
1715 template <typename OutputIt>
1716 auto copy_unit(string_view unit, OutputIt out, wchar_t) -> OutputIt {
1717 // This works when wchar_t is UTF-32 because units only contain characters
1718 // that have the same representation in UTF-16 and UTF-32.
1719 utf8_to_utf16 u(unit);
1720 return std::copy(u.c_str(), u.c_str() + u.size(), out);
1721 }
1722
1723 template <typename Char, typename Period, typename OutputIt>
1724 auto format_duration_unit(OutputIt out) -> OutputIt {
1725 if (const char* unit = get_units<Period>())
1726 return copy_unit(string_view(unit), out, Char());
1727 *out++ = '[';
1728 out = write<Char>(out, Period::num);
1729 if (const_check(Period::den != 1)) {
1730 *out++ = '/';
1731 out = write<Char>(out, Period::den);
1732 }
1733 *out++ = ']';
1734 *out++ = 's';
1735 return out;
1736 }
1737
1738 class get_locale {
1739 private:
1740 union {
1741 std::locale locale_;
1742 };
1743 bool has_locale_ = false;
1744
1745 public:
1746 get_locale(bool localized, locale_ref loc) : has_locale_(localized) {
1747 if (localized)
1748 ::new (&locale_) std::locale(loc.template get<std::locale>());
1749 }
1750 ~get_locale() {
1751 if (has_locale_) locale_.~locale();
1752 }
1753 operator const std::locale&() const {
1754 return has_locale_ ? locale_ : get_classic_locale();
1755 }
1756 };
1757
1758 template <typename FormatContext, typename OutputIt, typename Rep,
1759 typename Period>
1760 struct chrono_formatter {
1761 FormatContext& context;
1762 OutputIt out;
1763 int precision;
1764 bool localized = false;
1765 // rep is unsigned to avoid overflow.
1766 using rep =
1767 conditional_t<std::is_integral<Rep>::value && sizeof(Rep) < sizeof(int),
1768 unsigned, typename make_unsigned_or_unchanged<Rep>::type>;
1769 rep val;
1770 using seconds = std::chrono::duration<rep>;
1771 seconds s;
1772 using milliseconds = std::chrono::duration<rep, std::milli>;
1773 bool negative;
1774
1775 using char_type = typename FormatContext::char_type;
1776 using tm_writer_type = tm_writer<OutputIt, char_type>;
1777
1778 chrono_formatter(FormatContext& ctx, OutputIt o,
1779 std::chrono::duration<Rep, Period> d)
1780 : context(ctx),
1781 out(o),
1782 val(static_cast<rep>(d.count())),
1783 negative(false) {
1784 if (d.count() < 0) {
1785 val = 0 - val;
1786 negative = true;
1787 }
1788
1789 // this may overflow and/or the result may not fit in the
1790 // target type.
1791 // might need checked conversion (rep!=Rep)
1792 s = fmt_duration_cast<seconds>(std::chrono::duration<rep, Period>(val));
1793 }
1794
1795 // returns true if nan or inf, writes to out.
1796 auto handle_nan_inf() -> bool {
1797 if (isfinite(val)) {
1798 return false;
1799 }
1800 if (isnan(val)) {
1801 write_nan();
1802 return true;
1803 }
1804 // must be +-inf
1805 if (val > 0) {
1806 write_pinf();
1807 } else {
1808 write_ninf();
1809 }
1810 return true;
1811 }
1812
1813 auto days() const -> Rep { return static_cast<Rep>(s.count() / 86400); }
1814 auto hour() const -> Rep {
1815 return static_cast<Rep>(mod((s.count() / 3600), 24));
1816 }
1817
1818 auto hour12() const -> Rep {
1819 Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12));
1820 return hour <= 0 ? 12 : hour;
1821 }
1822
1823 auto minute() const -> Rep {
1824 return static_cast<Rep>(mod((s.count() / 60), 60));
1825 }
1826 auto second() const -> Rep { return static_cast<Rep>(mod(s.count(), 60)); }
1827
1828 auto time() const -> std::tm {
1829 auto time = std::tm();
1830 time.tm_hour = to_nonnegative_int(hour(), 24);
1831 time.tm_min = to_nonnegative_int(minute(), 60);
1832 time.tm_sec = to_nonnegative_int(second(), 60);
1833 return time;
1834 }
1835
1836 void write_sign() {
1837 if (negative) {
1838 *out++ = '-';
1839 negative = false;
1840 }
1841 }
1842
1843 void write(Rep value, int width, pad_type pad = pad_type::unspecified) {
1844 write_sign();
1845 if (isnan(value)) return write_nan();
1846 uint32_or_64_or_128_t<int> n =
1847 to_unsigned(to_nonnegative_int(value, max_value<int>()));
1848 int num_digits = detail::count_digits(n);
1849 if (width > num_digits) {
1850 out = detail::write_padding(out, pad, width - num_digits);
1851 }
1852 out = format_decimal<char_type>(out, n, num_digits).end;
1853 }
1854
1855 void write_nan() { std::copy_n("nan", 3, out); }
1856 void write_pinf() { std::copy_n("inf", 3, out); }
1857 void write_ninf() { std::copy_n("-inf", 4, out); }
1858
1859 template <typename Callback, typename... Args>
1860 void format_tm(const tm& time, Callback cb, Args... args) {
1861 if (isnan(val)) return write_nan();
1862 get_locale loc(localized, context.locale());
1863 auto w = tm_writer_type(loc, out, time);
1864 (w.*cb)(args...);
1865 out = w.out();
1866 }
1867
1868 void on_text(const char_type* begin, const char_type* end) {
1869 std::copy(begin, end, out);
1870 }
1871
1872 // These are not implemented because durations don't have date information.
1873 void on_abbr_weekday() {}
1874 void on_full_weekday() {}
1875 void on_dec0_weekday(numeric_system) {}
1876 void on_dec1_weekday(numeric_system) {}
1877 void on_abbr_month() {}
1878 void on_full_month() {}
1879 void on_datetime(numeric_system) {}
1880 void on_loc_date(numeric_system) {}
1881 void on_loc_time(numeric_system) {}
1882 void on_us_date() {}
1883 void on_iso_date() {}
1884 void on_utc_offset(numeric_system) {}
1885 void on_tz_name() {}
1886 void on_year(numeric_system) {}
1887 void on_short_year(numeric_system) {}
1888 void on_offset_year() {}
1889 void on_century(numeric_system) {}
1890 void on_iso_week_based_year() {}
1891 void on_iso_week_based_short_year() {}
1892 void on_dec_month(numeric_system) {}
1893 void on_dec0_week_of_year(numeric_system) {}
1894 void on_dec1_week_of_year(numeric_system) {}
1895 void on_iso_week_of_year(numeric_system) {}
1896 void on_day_of_month(numeric_system) {}
1897 void on_day_of_month_space(numeric_system) {}
1898
1899 void on_day_of_year() {
1900 if (handle_nan_inf()) return;
1901 write(days(), 0);
1902 }
1903
1904 void on_24_hour(numeric_system ns, pad_type pad) {
1905 if (handle_nan_inf()) return;
1906
1907 if (ns == numeric_system::standard) return write(hour(), 2, pad);
1908 auto time = tm();
1909 time.tm_hour = to_nonnegative_int(hour(), 24);
1910 format_tm(time, &tm_writer_type::on_24_hour, ns, pad);
1911 }
1912
1913 void on_12_hour(numeric_system ns, pad_type pad) {
1914 if (handle_nan_inf()) return;
1915
1916 if (ns == numeric_system::standard) return write(hour12(), 2, pad);
1917 auto time = tm();
1918 time.tm_hour = to_nonnegative_int(hour12(), 12);
1919 format_tm(time, &tm_writer_type::on_12_hour, ns, pad);
1920 }
1921
1922 void on_minute(numeric_system ns, pad_type pad) {
1923 if (handle_nan_inf()) return;
1924
1925 if (ns == numeric_system::standard) return write(minute(), 2, pad);
1926 auto time = tm();
1927 time.tm_min = to_nonnegative_int(minute(), 60);
1928 format_tm(time, &tm_writer_type::on_minute, ns, pad);
1929 }
1930
1931 void on_second(numeric_system ns, pad_type pad) {
1932 if (handle_nan_inf()) return;
1933
1934 if (ns == numeric_system::standard) {
1935 if (std::is_floating_point<rep>::value) {
1936 auto buf = memory_buffer();
1937 write_floating_seconds(buf, std::chrono::duration<rep, Period>(val),
1938 precision);
1939 if (negative) *out++ = '-';
1940 if (buf.size() < 2 || buf[1] == '.') {
1941 out = detail::write_padding(out, pad);
1942 }
1943 out = std::copy(buf.begin(), buf.end(), out);
1944 } else {
1945 write(second(), 2, pad);
1946 write_fractional_seconds<char_type>(
1947 out, std::chrono::duration<rep, Period>(val), precision);
1948 }
1949 return;
1950 }
1951 auto time = tm();
1952 time.tm_sec = to_nonnegative_int(second(), 60);
1953 format_tm(time, &tm_writer_type::on_second, ns, pad);
1954 }
1955
1956 void on_12_hour_time() {
1957 if (handle_nan_inf()) return;
1958 format_tm(time(), &tm_writer_type::on_12_hour_time);
1959 }
1960
1961 void on_24_hour_time() {
1962 if (handle_nan_inf()) {
1963 *out++ = ':';
1964 handle_nan_inf();
1965 return;
1966 }
1967
1968 write(hour(), 2);
1969 *out++ = ':';
1970 write(minute(), 2);
1971 }
1972
1973 void on_iso_time() {
1974 on_24_hour_time();
1975 *out++ = ':';
1976 if (handle_nan_inf()) return;
1977 on_second(numeric_system::standard, pad_type::unspecified);
1978 }
1979
1980 void on_am_pm() {
1981 if (handle_nan_inf()) return;
1982 format_tm(time(), &tm_writer_type::on_am_pm);
1983 }
1984
1985 void on_duration_value() {
1986 if (handle_nan_inf()) return;
1987 write_sign();
1988 out = format_duration_value<char_type>(out, val, precision);
1989 }
1990
1991 void on_duration_unit() {
1992 out = format_duration_unit<char_type, Period>(out);
1993 }
1994 };
1995
1996 } // namespace detail
1997
1998 #if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907
1999 using weekday = std::chrono::weekday;
2000 #else
2001 // A fallback version of weekday.
2002 class weekday {
2003 private:
2004 unsigned char value;
2005
2006 public:
2007 weekday() = default;
2008 explicit constexpr weekday(unsigned wd) noexcept
2009 : value(static_cast<unsigned char>(wd != 7 ? wd : 0)) {}
2010 constexpr auto c_encoding() const noexcept -> unsigned { return value; }
2011 };
2012
2013 class year_month_day {};
2014 #endif
2015
2016 // A rudimentary weekday formatter.
2017 template <typename Char> struct formatter<weekday, Char> {
2018 private:
2019 bool localized = false;
2020
2021 public:
2022 FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
2023 -> decltype(ctx.begin()) {
2024 auto begin = ctx.begin(), end = ctx.end();
2025 if (begin != end && *begin == 'L') {
2026 ++begin;
2027 localized = true;
2028 }
2029 return begin;
2030 }
2031
2032 template <typename FormatContext>
2033 auto format(weekday wd, FormatContext& ctx) const -> decltype(ctx.out()) {
2034 auto time = std::tm();
2035 time.tm_wday = static_cast<int>(wd.c_encoding());
2036 detail::get_locale loc(localized, ctx.locale());
2037 auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
2038 w.on_abbr_weekday();
2039 return w.out();
2040 }
2041 };
2042
2043 template <typename Rep, typename Period, typename Char>
2044 struct formatter<std::chrono::duration<Rep, Period>, Char> {
2045 private:
2046 format_specs<Char> specs_;
2047 detail::arg_ref<Char> width_ref_;
2048 detail::arg_ref<Char> precision_ref_;
2049 bool localized_ = false;
2050 basic_string_view<Char> format_str_;
2051
2052 public:
2053 FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
2054 -> decltype(ctx.begin()) {
2055 auto it = ctx.begin(), end = ctx.end();
2056 if (it == end || *it == '}') return it;
2057
2058 it = detail::parse_align(it, end, specs_);
2059 if (it == end) return it;
2060
2061 it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx);
2062 if (it == end) return it;
2063
2064 auto checker = detail::chrono_format_checker();
2065 if (*it == '.') {
2066 checker.has_precision_integral = !std::is_floating_point<Rep>::value;
2067 it = detail::parse_precision(it, end, specs_.precision, precision_ref_,
2068 ctx);
2069 }
2070 if (it != end && *it == 'L') {
2071 localized_ = true;
2072 ++it;
2073 }
2074 end = detail::parse_chrono_format(it, end, checker);
2075 format_str_ = {it, detail::to_unsigned(end - it)};
2076 return end;
2077 }
2078
2079 template <typename FormatContext>
2080 auto format(std::chrono::duration<Rep, Period> d, FormatContext& ctx) const
2081 -> decltype(ctx.out()) {
2082 auto specs = specs_;
2083 auto precision = specs.precision;
2084 specs.precision = -1;
2085 auto begin = format_str_.begin(), end = format_str_.end();
2086 // As a possible future optimization, we could avoid extra copying if width
2087 // is not specified.
2088 auto buf = basic_memory_buffer<Char>();
2089 auto out = std::back_inserter(buf);
2090 detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_,
2091 ctx);
2092 detail::handle_dynamic_spec<detail::precision_checker>(precision,
2093 precision_ref_, ctx);
2094 if (begin == end || *begin == '}') {
2095 out = detail::format_duration_value<Char>(out, d.count(), precision);
2096 detail::format_duration_unit<Char, Period>(out);
2097 } else {
2098 using chrono_formatter =
2099 detail::chrono_formatter<FormatContext, decltype(out), Rep, Period>;
2100 auto f = chrono_formatter(ctx, out, d);
2101 f.precision = precision;
2102 f.localized = localized_;
2103 detail::parse_chrono_format(begin, end, f);
2104 }
2105 return detail::write(
2106 ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
2107 }
2108 };
2109
2110 template <typename Char, typename Duration>
2111 struct formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
2112 Char> : formatter<std::tm, Char> {
2113 FMT_CONSTEXPR formatter() {
2114 this->format_str_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
2115 }
2116
2117 template <typename FormatContext>
2118 auto format(std::chrono::time_point<std::chrono::system_clock, Duration> val,
2119 FormatContext& ctx) const -> decltype(ctx.out()) {
2120 using period = typename Duration::period;
2121 if (detail::const_check(
2122 period::num != 1 || period::den != 1 ||
2123 std::is_floating_point<typename Duration::rep>::value)) {
2124 const auto epoch = val.time_since_epoch();
2125 auto subsecs = detail::fmt_duration_cast<Duration>(
2126 epoch - detail::fmt_duration_cast<std::chrono::seconds>(epoch));
2127
2128 if (subsecs.count() < 0) {
2129 auto second =
2130 detail::fmt_duration_cast<Duration>(std::chrono::seconds(1));
2131 if (epoch.count() < ((Duration::min)() + second).count())
2132 FMT_THROW(format_error("duration is too small"));
2133 subsecs += second;
2134 val -= second;
2135 }
2136
2137 return formatter<std::tm, Char>::do_format(gmtime(val), ctx, &subsecs);
2138 }
2139
2140 return formatter<std::tm, Char>::format(gmtime(val), ctx);
2141 }
2142 };
2143
2144 #if FMT_USE_LOCAL_TIME
2145 template <typename Char, typename Duration>
2146 struct formatter<std::chrono::local_time<Duration>, Char>
2147 : formatter<std::tm, Char> {
2148 FMT_CONSTEXPR formatter() {
2149 this->format_str_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
2150 }
2151
2152 template <typename FormatContext>
2153 auto format(std::chrono::local_time<Duration> val, FormatContext& ctx) const
2154 -> decltype(ctx.out()) {
2155 using period = typename Duration::period;
2156 if (period::num != 1 || period::den != 1 ||
2157 std::is_floating_point<typename Duration::rep>::value) {
2158 const auto epoch = val.time_since_epoch();
2159 const auto subsecs = detail::fmt_duration_cast<Duration>(
2160 epoch - detail::fmt_duration_cast<std::chrono::seconds>(epoch));
2161
2162 return formatter<std::tm, Char>::do_format(localtime(val), ctx, &subsecs);
2163 }
2164
2165 return formatter<std::tm, Char>::format(localtime(val), ctx);
2166 }
2167 };
2168 #endif
2169
2170 #if FMT_USE_UTC_TIME
2171 template <typename Char, typename Duration>
2172 struct formatter<std::chrono::time_point<std::chrono::utc_clock, Duration>,
2173 Char>
2174 : formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
2175 Char> {
2176 template <typename FormatContext>
2177 auto format(std::chrono::time_point<std::chrono::utc_clock, Duration> val,
2178 FormatContext& ctx) const -> decltype(ctx.out()) {
2179 return formatter<
2180 std::chrono::time_point<std::chrono::system_clock, Duration>,
2181 Char>::format(std::chrono::utc_clock::to_sys(val), ctx);
2182 }
2183 };
2184 #endif
2185
2186 template <typename Char> struct formatter<std::tm, Char> {
2187 private:
2188 format_specs<Char> specs_;
2189 detail::arg_ref<Char> width_ref_;
2190
2191 protected:
2192 basic_string_view<Char> format_str_;
2193
2194 template <typename FormatContext, typename Duration>
2195 auto do_format(const std::tm& tm, FormatContext& ctx,
2196 const Duration* subsecs) const -> decltype(ctx.out()) {
2197 auto specs = specs_;
2198 auto buf = basic_memory_buffer<Char>();
2199 auto out = std::back_inserter(buf);
2200 detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_,
2201 ctx);
2202
2203 auto loc_ref = ctx.locale();
2204 detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref);
2205 auto w =
2206 detail::tm_writer<decltype(out), Char, Duration>(loc, out, tm, subsecs);
2207 detail::parse_chrono_format(format_str_.begin(), format_str_.end(), w);
2208 return detail::write(
2209 ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
2210 }
2211
2212 public:
2213 FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
2214 -> decltype(ctx.begin()) {
2215 auto it = ctx.begin(), end = ctx.end();
2216 if (it == end || *it == '}') return it;
2217
2218 it = detail::parse_align(it, end, specs_);
2219 if (it == end) return it;
2220
2221 it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx);
2222 if (it == end) return it;
2223
2224 end = detail::parse_chrono_format(it, end, detail::tm_format_checker());
2225 // Replace the default format_str only if the new spec is not empty.
2226 if (end != it) format_str_ = {it, detail::to_unsigned(end - it)};
2227 return end;
2228 }
2229
2230 template <typename FormatContext>
2231 auto format(const std::tm& tm, FormatContext& ctx) const
2232 -> decltype(ctx.out()) {
2233 return do_format<FormatContext, std::chrono::seconds>(tm, ctx, nullptr);
2234 }
2235 };
2236
2237 FMT_END_EXPORT
2238 FMT_END_NAMESPACE
2239
2240 #endif // FMT_CHRONO_H_
2241