• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2022 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "location/lbs/contexthub/nanoapps/nearby/crypto/sha2.h"
18 
19 #include <string.h>
20 
BSWAP32(uint32_t value)21 inline static uint32_t BSWAP32(uint32_t value) {
22 #if defined(__clang__) || \
23     (defined(__GNUC__) && \
24      ((__GNUC__ == 4 && __GNUC_MINOR__ >= 8) || __GNUC__ >= 5))
25   return __builtin_bswap32(value);
26 #else
27   uint32_t Byte0 = value & 0x000000FF;
28   uint32_t Byte1 = value & 0x0000FF00;
29   uint32_t Byte2 = value & 0x00FF0000;
30   uint32_t Byte3 = value & 0xFF000000;
31   return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24);
32 #endif
33 }
34 
sha2init(struct Sha2Context * ctx)35 void sha2init(struct Sha2Context *ctx) {
36   ctx->h[0] = 0x6a09e667;
37   ctx->h[1] = 0xbb67ae85;
38   ctx->h[2] = 0x3c6ef372;
39   ctx->h[3] = 0xa54ff53a;
40   ctx->h[4] = 0x510e527f;
41   ctx->h[5] = 0x9b05688c;
42   ctx->h[6] = 0x1f83d9ab;
43   ctx->h[7] = 0x5be0cd19;
44   ctx->msgLen = 0;
45   ctx->bufBytesUsed = 0;
46 }
47 
48 #ifdef ARM
49 
50 #define STRINFIGY2(b) #b
51 #define STRINGIFY(b) STRINFIGY2(b)
52 #define ror(v, b)                                         \
53   ({                                                      \
54     uint32_t ret;                                         \
55     if (b)                                                \
56       asm("ror %0, #" STRINGIFY(b) : "=r"(ret) : "0"(v)); \
57     else                                                  \
58       ret = v;                                            \
59     ret;                                                  \
60   })
61 
62 #else
63 
ror(uint32_t val,uint32_t by)64 inline static uint32_t ror(uint32_t val, uint32_t by) {
65   if (!by) return val;
66 
67   val = (val >> by) | (val << (32 - by));
68 
69   return val;
70 }
71 
72 #endif
73 
sha2processBlock(struct Sha2Context * ctx)74 static void sha2processBlock(struct Sha2Context *ctx) {
75   static const uint32_t k[] = {
76       0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
77       0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
78       0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
79       0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
80       0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
81       0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
82       0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
83       0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
84       0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
85       0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
86       0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
87   };
88   uint32_t i, a, b, c, d, e, f, g, h;
89 
90   // input and output streams are little-endian
91   // SHA specification uses big-endian
92   // byteswap the input
93   for (i = 0; i < SHA2_BLOCK_SIZE / sizeof(uint32_t); i++)
94     ctx->w[i] = BSWAP32(ctx->w[i]);
95 
96   // expand input
97   for (; i < SHA2_WORDS_CTX_SIZE; i++) {
98     uint32_t s0 = ror(ctx->w[i - 15], 7) ^ ror(ctx->w[i - 15], 18) ^
99                   (ctx->w[i - 15] >> 3);
100     uint32_t s1 =
101         ror(ctx->w[i - 2], 17) ^ ror(ctx->w[i - 2], 19) ^ (ctx->w[i - 2] >> 10);
102     ctx->w[i] = ctx->w[i - 16] + s0 + ctx->w[i - 7] + s1;
103   }
104 
105   // init working variables
106   a = ctx->h[0];
107   b = ctx->h[1];
108   c = ctx->h[2];
109   d = ctx->h[3];
110   e = ctx->h[4];
111   f = ctx->h[5];
112   g = ctx->h[6];
113   h = ctx->h[7];
114 
115   // 64 rounds
116   for (i = 0; i < 64; i++) {
117     uint32_t s1 = ror(e, 6) ^ ror(e, 11) ^ ror(e, 25);
118     uint32_t ch = (e & f) ^ ((~e) & g);
119     uint32_t temp1 = h + s1 + ch + k[i] + ctx->w[i];
120     uint32_t s0 = ror(a, 2) ^ ror(a, 13) ^ ror(a, 22);
121     uint32_t maj = (a & b) ^ (a & c) ^ (b & c);
122     uint32_t temp2 = s0 + maj;
123 
124     h = g;
125     g = f;
126     f = e;
127     e = d + temp1;
128     d = c;
129     c = b;
130     b = a;
131     a = temp1 + temp2;
132   }
133 
134   // put result back into context
135   ctx->h[0] += a;
136   ctx->h[1] += b;
137   ctx->h[2] += c;
138   ctx->h[3] += d;
139   ctx->h[4] += e;
140   ctx->h[5] += f;
141   ctx->h[6] += g;
142   ctx->h[7] += h;
143 }
144 
sha2processBytes(struct Sha2Context * ctx,const void * inData,size_t dataLen)145 void sha2processBytes(struct Sha2Context *ctx, const void *inData,
146                       size_t dataLen) {
147   const uint8_t *inBytes = (const uint8_t *)inData;
148 
149   ctx->msgLen += dataLen;
150   while (dataLen) {
151     size_t bytesToCopy;
152 
153     // step 1: copy data into context if there is space & there is data
154     bytesToCopy = dataLen;
155     if (bytesToCopy > SHA2_BLOCK_SIZE - ctx->bufBytesUsed)
156       bytesToCopy = SHA2_BLOCK_SIZE - ctx->bufBytesUsed;
157     memcpy(ctx->b + ctx->bufBytesUsed, inBytes, bytesToCopy);
158     inBytes += bytesToCopy;
159     dataLen -= bytesToCopy;
160     ctx->bufBytesUsed += bytesToCopy;
161 
162     // step 2: if there is a full block, process it
163     if (ctx->bufBytesUsed == SHA2_BLOCK_SIZE) {
164       sha2processBlock(ctx);
165       ctx->bufBytesUsed = 0;
166     }
167   }
168 }
169 
sha2finish(struct Sha2Context * ctx,void * outHash,uint32_t hashLen)170 void sha2finish(struct Sha2Context *ctx, void *outHash, uint32_t hashLen) {
171   uint8_t appendend = 0x80;
172   uint64_t dataLenInBits = ctx->msgLen * 8;
173   uint32_t minHashLen;
174 
175   // append the one
176   sha2processBytes(ctx, &appendend, 1);
177 
178   // append the zeroes
179   appendend = 0;
180   while (ctx->bufBytesUsed != 56) sha2processBytes(ctx, &appendend, 1);
181 
182   // append the length in bits (we can safely write into context since we're
183   // sure where to write to (we're definitely 56-bytes into a block)
184   for (uint32_t i = 0; i < 8; i++, dataLenInBits >>= 8)
185     ctx->b[63 - i] = (uint8_t)(dataLenInBits);
186 
187   // process last block
188   sha2processBlock(ctx);
189 
190   // input and output streams are little-endian
191   // SHA specification uses big-endian
192   // copy the final hash to the output after byteswap
193   for (uint32_t i = 0; i < sizeof(ctx->h) / sizeof(uint32_t); i++)
194     ctx->h[i] = BSWAP32(ctx->h[i]);
195 
196   minHashLen = (hashLen > SHA2_HASH_SIZE) ? SHA2_HASH_SIZE : hashLen;
197   memcpy(outHash, ctx->h, minHashLen);
198 }
199 
sha256(const void * inData,const uint32_t dataLen,void * outHash,const uint32_t hashLen)200 void sha256(const void *inData, const uint32_t dataLen, void *outHash,
201             const uint32_t hashLen) {
202   struct Sha2Context ctx;
203   sha2init(&ctx);
204   sha2processBytes(&ctx, inData, dataLen);
205   sha2finish(&ctx, outHash, hashLen);
206 }
207