• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "Dalvik.h"
18 #include "libdex/OpCode.h"
19 #include "dexdump/OpCodeNames.h"
20 
21 #include "../../CompilerInternals.h"
22 #include "ArmLIR.h"
23 #include <unistd.h>             /* for cacheflush */
24 
25 /*
26  * opcode: ArmOpCode enum
27  * skeleton: pre-designated bit-pattern for this opcode
28  * k0: key to applying ds/de
29  * ds: dest start bit position
30  * de: dest end bit position
31  * k1: key to applying s1s/s1e
32  * s1s: src1 start bit position
33  * s1e: src1 end bit position
34  * k2: key to applying s2s/s2e
35  * s2s: src2 start bit position
36  * s2e: src2 end bit position
37  * operands: number of operands (for sanity check purposes)
38  * name: mnemonic name
39  * fmt: for pretty-prining
40  */
41 #define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
42                      operands, name, fmt, size) \
43         {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}}, \
44          opcode, operands, name, fmt, size}
45 
46 /* Instruction dump string format keys: !pf, where "!" is the start
47  * of the key, "p" is which numeric operand to use and "f" is the
48  * print format.
49  *
50  * [p]ositions:
51  *     0 -> operands[0] (dest)
52  *     1 -> operands[1] (src1)
53  *     2 -> operands[2] (src2)
54  *
55  * [f]ormats:
56  *     h -> 4-digit hex
57  *     d -> decimal
58  *     D -> decimal+8 (used to convert 3-bit regnum field to high reg)
59  *     E -> decimal*4
60  *     F -> decimal*2
61  *     c -> branch condition (beq, bne, etc.)
62  *     t -> pc-relative target
63  *     u -> 1st half of bl[x] target
64  *     v -> 2nd half ob bl[x] target
65  *     R -> register list
66  *     s -> single precision floating point register
67  *     S -> double precision floating point register
68  *     m -> Thumb2 modified immediate
69  *     M -> Thumb2 16-bit zero-extended immediate
70  *
71  *  [!] escape.  To insert "!", use "!!"
72  */
73 /* NOTE: must be kept in sync with enum ArmOpcode from ArmLIR.h */
74 ArmEncodingMap EncodingMap[ARM_LAST] = {
75     ENCODING_MAP(ARM_16BIT_DATA,    0x0000,
76                  BITBLT, 15, 0, UNUSED, -1, -1, UNUSED, -1, -1,
77                  IS_UNARY_OP,
78                  "data", "0x!0h(!0d)", 1),
79     ENCODING_MAP(THUMB_ADC,           0x4140,
80                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
81                  IS_BINARY_OP | CLOBBER_DEST,
82                  "adc", "r!0d, r!1d", 1),
83     ENCODING_MAP(THUMB_ADD_RRI3,      0x1c00,
84                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
85                  IS_TERTIARY_OP | CLOBBER_DEST,
86                  "add", "r!0d, r!1d, #!2d", 1),
87     ENCODING_MAP(THUMB_ADD_RI8,       0x3000,
88                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
89                  IS_BINARY_OP | CLOBBER_DEST,
90                  "add", "r!0d, r!0d, #!1d", 1),
91     ENCODING_MAP(THUMB_ADD_RRR,       0x1800,
92                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
93                  IS_TERTIARY_OP | CLOBBER_DEST,
94                  "add", "r!0d, r!1d, r!2d", 1),
95     ENCODING_MAP(THUMB_ADD_RR_LH,     0x4440,
96                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
97                  IS_BINARY_OP | CLOBBER_DEST,
98                  "add",
99                  "r!0d, r!1d", 1),
100     ENCODING_MAP(THUMB_ADD_RR_HL,     0x4480,
101                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
102                  IS_BINARY_OP | CLOBBER_DEST,
103                  "add", "r!0d, r!1d", 1),
104     ENCODING_MAP(THUMB_ADD_RR_HH,     0x44c0,
105                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
106                  IS_BINARY_OP | CLOBBER_DEST,
107                  "add", "r!0d, r!1d", 1),
108     ENCODING_MAP(THUMB_ADD_PC_REL,    0xa000,
109                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
110                  IS_TERTIARY_OP | CLOBBER_DEST,
111                  "add", "r!0d, pc, #!1E", 1),
112     ENCODING_MAP(THUMB_ADD_SP_REL,    0xa800,
113                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
114                  IS_BINARY_OP | CLOBBER_DEST,
115                  "add", "r!0d, sp, #!1E", 1),
116     ENCODING_MAP(THUMB_ADD_SPI7,      0xb000,
117                  BITBLT, 6, 0, UNUSED, -1, -1, UNUSED, -1, -1,
118                  IS_UNARY_OP | CLOBBER_DEST,
119                  "add", "sp, #!0d*4", 1),
120     ENCODING_MAP(THUMB_AND_RR,        0x4000,
121                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
122                  IS_BINARY_OP | CLOBBER_DEST,
123                  "and", "r!0d, r!1d", 1),
124     ENCODING_MAP(THUMB_ASR,           0x1000,
125                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
126                  IS_TERTIARY_OP | CLOBBER_DEST,
127                  "asr", "r!0d, r!1d, #!2d", 1),
128     ENCODING_MAP(THUMB_ASRV,          0x4100,
129                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
130                  IS_BINARY_OP | CLOBBER_DEST,
131                  "asr", "r!0d, r!1d", 1),
132     ENCODING_MAP(THUMB_B_COND,        0xd000,
133                  BITBLT, 7, 0, BITBLT, 11, 8, UNUSED, -1, -1,
134                  IS_BINARY_OP | IS_BRANCH,
135                  "!1c", "!0t", 1),
136     ENCODING_MAP(THUMB_B_UNCOND,      0xe000,
137                  BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
138                  NO_OPERAND | IS_BRANCH,
139                  "b", "!0t", 1),
140     ENCODING_MAP(THUMB_BIC,           0x4380,
141                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
142                  IS_BINARY_OP | CLOBBER_DEST,
143                  "bic", "r!0d, r!1d", 1),
144     ENCODING_MAP(THUMB_BKPT,          0xbe00,
145                  BITBLT, 7, 0, UNUSED, -1, -1, UNUSED, -1, -1,
146                  IS_UNARY_OP | IS_BRANCH,
147                  "bkpt", "!0d", 1),
148     ENCODING_MAP(THUMB_BLX_1,         0xf000,
149                  BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
150                  IS_BINARY_OP | IS_BRANCH,
151                  "blx_1", "!0u", 1),
152     ENCODING_MAP(THUMB_BLX_2,         0xe800,
153                  BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
154                  IS_BINARY_OP | IS_BRANCH,
155                  "blx_2", "!0v", 1),
156     ENCODING_MAP(THUMB_BL_1,          0xf000,
157                  BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
158                  IS_UNARY_OP | IS_BRANCH,
159                  "bl_1", "!0u", 1),
160     ENCODING_MAP(THUMB_BL_2,          0xf800,
161                  BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
162                  IS_UNARY_OP | IS_BRANCH,
163                  "bl_2", "!0v", 1),
164     ENCODING_MAP(THUMB_BLX_R,         0x4780,
165                  BITBLT, 6, 3, UNUSED, -1, -1, UNUSED, -1, -1,
166                  IS_UNARY_OP | IS_BRANCH,
167                  "blx", "r!0d", 1),
168     ENCODING_MAP(THUMB_BX,            0x4700,
169                  BITBLT, 6, 3, UNUSED, -1, -1, UNUSED, -1, -1,
170                  IS_UNARY_OP | IS_BRANCH,
171                  "bx", "r!0d", 1),
172     ENCODING_MAP(THUMB_CMN,           0x42c0,
173                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
174                  IS_BINARY_OP,
175                  "cmn", "r!0d, r!1d", 1),
176     ENCODING_MAP(THUMB_CMP_RI8,       0x2800,
177                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
178                  IS_BINARY_OP,
179                  "cmp", "r!0d, #!1d", 1),
180     ENCODING_MAP(THUMB_CMP_RR,        0x4280,
181                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
182                  IS_BINARY_OP,
183                  "cmp", "r!0d, r!1d", 1),
184     ENCODING_MAP(THUMB_CMP_LH,        0x4540,
185                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
186                  IS_BINARY_OP,
187                  "cmp", "r!0d, r!1D", 1),
188     ENCODING_MAP(THUMB_CMP_HL,        0x4580,
189                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
190                  IS_BINARY_OP,
191                  "cmp", "r!0D, r!1d", 1),
192     ENCODING_MAP(THUMB_CMP_HH,        0x45c0,
193                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
194                  IS_BINARY_OP,
195                  "cmp", "r!0D, r!1D", 1),
196     ENCODING_MAP(THUMB_EOR,           0x4040,
197                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
198                  IS_BINARY_OP | CLOBBER_DEST,
199                  "eor", "r!0d, r!1d", 1),
200     ENCODING_MAP(THUMB_LDMIA,         0xc800,
201                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
202                  IS_BINARY_OP | CLOBBER_DEST | CLOBBER_SRC1,
203                  "ldmia", "r!0d!!, <!1R>", 1),
204     ENCODING_MAP(THUMB_LDR_RRI5,      0x6800,
205                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
206                  IS_TERTIARY_OP | CLOBBER_DEST,
207                  "ldr", "r!0d, [r!1d, #!2E]", 1),
208     ENCODING_MAP(THUMB_LDR_RRR,       0x5800,
209                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
210                  IS_TERTIARY_OP | CLOBBER_DEST,
211                  "ldr", "r!0d, [r!1d, r!2d]", 1),
212     ENCODING_MAP(THUMB_LDR_PC_REL,    0x4800,
213                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
214                  IS_TERTIARY_OP | CLOBBER_DEST,
215                  "ldr", "r!0d, [pc, #!1E]", 1),
216     ENCODING_MAP(THUMB_LDR_SP_REL,    0x9800,
217                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
218                  IS_BINARY_OP | CLOBBER_DEST,
219                  "ldr", "r!0d, [sp, #!1E]", 1),
220     ENCODING_MAP(THUMB_LDRB_RRI5,     0x7800,
221                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
222                  IS_TERTIARY_OP | CLOBBER_DEST,
223                  "ldrb", "r!0d, [r!1d, #2d]", 1),
224     ENCODING_MAP(THUMB_LDRB_RRR,      0x5c00,
225                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
226                  IS_TERTIARY_OP | CLOBBER_DEST,
227                  "ldrb", "r!0d, [r!1d, r!2d]", 1),
228     ENCODING_MAP(THUMB_LDRH_RRI5,     0x8800,
229                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
230                  IS_TERTIARY_OP | CLOBBER_DEST,
231                  "ldrh", "r!0d, [r!1d, #!2F]", 1),
232     ENCODING_MAP(THUMB_LDRH_RRR,      0x5a00,
233                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
234                  IS_TERTIARY_OP | CLOBBER_DEST,
235                  "ldrh", "r!0d, [r!1d, r!2d]", 1),
236     ENCODING_MAP(THUMB_LDRSB_RRR,     0x5600,
237                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
238                  IS_TERTIARY_OP | CLOBBER_DEST,
239                  "ldrsb", "r!0d, [r!1d, r!2d]", 1),
240     ENCODING_MAP(THUMB_LDRSH_RRR,     0x5e00,
241                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
242                  IS_TERTIARY_OP | CLOBBER_DEST,
243                  "ldrsh", "r!0d, [r!1d, r!2d]", 1),
244     ENCODING_MAP(THUMB_LSL,           0x0000,
245                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
246                  IS_TERTIARY_OP | CLOBBER_DEST,
247                  "lsl", "r!0d, r!1d, #!2d", 1),
248     ENCODING_MAP(THUMB_LSLV,          0x4080,
249                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
250                  IS_BINARY_OP | CLOBBER_DEST,
251                  "lsl", "r!0d, r!1d", 1),
252     ENCODING_MAP(THUMB_LSR,           0x0800,
253                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
254                  IS_TERTIARY_OP | CLOBBER_DEST,
255                  "lsr", "r!0d, r!1d, #!2d", 1),
256     ENCODING_MAP(THUMB_LSRV,          0x40c0,
257                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
258                  IS_BINARY_OP | CLOBBER_DEST,
259                  "lsr", "r!0d, r!1d", 1),
260     ENCODING_MAP(THUMB_MOV_IMM,       0x2000,
261                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
262                  IS_BINARY_OP | CLOBBER_DEST,
263                  "mov", "r!0d, #!1d", 1),
264     ENCODING_MAP(THUMB_MOV_RR,        0x1c00,
265                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
266                  IS_BINARY_OP | CLOBBER_DEST,
267                  "mov", "r!0d, r!1d", 1),
268     ENCODING_MAP(THUMB_MOV_RR_H2H,    0x46c0,
269                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
270                  IS_BINARY_OP | CLOBBER_DEST,
271                  "mov", "r!0D, r!1D", 1),
272     ENCODING_MAP(THUMB_MOV_RR_H2L,    0x4640,
273                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
274                  IS_BINARY_OP | CLOBBER_DEST,
275                  "mov", "r!0d, r!1D", 1),
276     ENCODING_MAP(THUMB_MOV_RR_L2H,    0x4680,
277                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
278                  IS_BINARY_OP | CLOBBER_DEST,
279                  "mov", "r!0D, r!1d", 1),
280     ENCODING_MAP(THUMB_MUL,           0x4340,
281                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
282                  IS_BINARY_OP | CLOBBER_DEST,
283                  "mul", "r!0d, r!1d", 1),
284     ENCODING_MAP(THUMB_MVN,           0x43c0,
285                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
286                  IS_BINARY_OP | CLOBBER_DEST,
287                  "mvn", "r!0d, r!1d", 1),
288     ENCODING_MAP(THUMB_NEG,           0x4240,
289                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
290                  IS_BINARY_OP | CLOBBER_DEST,
291                  "neg", "r!0d, r!1d", 1),
292     ENCODING_MAP(THUMB_ORR,           0x4300,
293                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
294                  IS_BINARY_OP | CLOBBER_DEST,
295                  "orr", "r!0d, r!1d", 1),
296     ENCODING_MAP(THUMB_POP,           0xbc00,
297                  BITBLT, 8, 0, UNUSED, -1, -1, UNUSED, -1, -1,
298                  IS_UNARY_OP,
299                  "pop", "<!0R>", 1),
300     ENCODING_MAP(THUMB_PUSH,          0xb400,
301                  BITBLT, 8, 0, UNUSED, -1, -1, UNUSED, -1, -1,
302                  IS_UNARY_OP,
303                  "push", "<!0R>", 1),
304     ENCODING_MAP(THUMB_ROR,           0x41c0,
305                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
306                  IS_BINARY_OP | CLOBBER_DEST,
307                  "ror", "r!0d, r!1d", 1),
308     ENCODING_MAP(THUMB_SBC,           0x4180,
309                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
310                  IS_BINARY_OP | CLOBBER_DEST,
311                  "sbc", "r!0d, r!1d", 1),
312     ENCODING_MAP(THUMB_STMIA,         0xc000,
313                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
314                  IS_BINARY_OP | CLOBBER_SRC1,
315                  "stmia", "r!0d!!, <!1R>", 1),
316     ENCODING_MAP(THUMB_STR_RRI5,      0x6000,
317                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
318                  IS_TERTIARY_OP,
319                  "str", "r!0d, [r!1d, #!2E]", 1),
320     ENCODING_MAP(THUMB_STR_RRR,       0x5000,
321                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
322                  IS_TERTIARY_OP,
323                  "str", "r!0d, [r!1d, r!2d]", 1),
324     ENCODING_MAP(THUMB_STR_SP_REL,    0x9000,
325                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
326                  IS_BINARY_OP,
327                  "str", "r!0d, [sp, #!1E]", 1),
328     ENCODING_MAP(THUMB_STRB_RRI5,     0x7000,
329                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
330                  IS_TERTIARY_OP,
331                  "strb", "r!0d, [r!1d, #!2d]", 1),
332     ENCODING_MAP(THUMB_STRB_RRR,      0x5400,
333                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
334                  IS_TERTIARY_OP,
335                  "strb", "r!0d, [r!1d, r!2d]", 1),
336     ENCODING_MAP(THUMB_STRH_RRI5,     0x8000,
337                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
338                  IS_TERTIARY_OP,
339                  "strh", "r!0d, [r!1d, #!2F]", 1),
340     ENCODING_MAP(THUMB_STRH_RRR,      0x5200,
341                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
342                  IS_TERTIARY_OP,
343                  "strh", "r!0d, [r!1d, r!2d]", 1),
344     ENCODING_MAP(THUMB_SUB_RRI3,      0x1e00,
345                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
346                  IS_TERTIARY_OP | CLOBBER_DEST,
347                  "sub", "r!0d, r!1d, #!2d]", 1),
348     ENCODING_MAP(THUMB_SUB_RI8,       0x3800,
349                  BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
350                  IS_BINARY_OP | CLOBBER_DEST,
351                  "sub", "r!0d, #!1d", 1),
352     ENCODING_MAP(THUMB_SUB_RRR,       0x1a00,
353                  BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
354                  IS_TERTIARY_OP | CLOBBER_DEST,
355                  "sub", "r!0d, r!1d, r!2d", 1),
356     ENCODING_MAP(THUMB_SUB_SPI7,      0xb080,
357                  BITBLT, 6, 0, UNUSED, -1, -1, UNUSED, -1, -1,
358                  IS_UNARY_OP | CLOBBER_DEST,
359                  "sub", "sp, #!0d", 1),
360     ENCODING_MAP(THUMB_SWI,           0xdf00,
361                  BITBLT, 7, 0, UNUSED, -1, -1, UNUSED, -1, -1,
362                  IS_UNARY_OP | IS_BRANCH,
363                  "swi", "!0d", 1),
364     ENCODING_MAP(THUMB_TST,           0x4200,
365                  BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
366                  IS_UNARY_OP,
367                  "tst", "r!0d, r!1d", 1),
368     ENCODING_MAP(THUMB2_VLDRS,       0xed900a00,
369                  SFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0,
370                  IS_TERTIARY_OP | CLOBBER_DEST,
371                  "vldr", "!0s, [r!1d, #!2E]", 2),
372     ENCODING_MAP(THUMB2_VLDRD,       0xed900b00,
373                  DFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0,
374                  IS_TERTIARY_OP | CLOBBER_DEST,
375                  "vldr", "!0S, [r!1d, #!2E]", 2),
376     ENCODING_MAP(THUMB2_VMULS,        0xee200a00,
377                  SFP, 22, 12, SFP, 7, 16, SFP, 5, 0,
378                  IS_TERTIARY_OP | CLOBBER_DEST,
379                  "vmuls", "!0s, !1s, !2s", 2),
380     ENCODING_MAP(THUMB2_VMULD,        0xee200b00,
381                  DFP, 22, 12, DFP, 7, 16, DFP, 5, 0,
382                  IS_TERTIARY_OP | CLOBBER_DEST,
383                  "vmuld", "!0S, !1S, !2S", 2),
384     ENCODING_MAP(THUMB2_VSTRS,       0xed800a00,
385                  SFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0,
386                  IS_TERTIARY_OP,
387                  "vstr", "!0s, [r!1d, #!2E]", 2),
388     ENCODING_MAP(THUMB2_VSTRD,       0xed800b00,
389                  DFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0,
390                  IS_TERTIARY_OP,
391                  "vstr", "!0S, [r!1d, #!2E]", 2),
392     ENCODING_MAP(THUMB2_VSUBS,        0xee300a40,
393                  SFP, 22, 12, SFP, 7, 16, SFP, 5, 0,
394                  IS_TERTIARY_OP | CLOBBER_DEST,
395                  "vsub", "!0s, !1s, !2s", 2),
396     ENCODING_MAP(THUMB2_VSUBD,        0xee300b40,
397                  DFP, 22, 12, DFP, 7, 16, DFP, 5, 0,
398                  IS_TERTIARY_OP | CLOBBER_DEST,
399                  "vsub", "!0S, !1S, !2S", 2),
400     ENCODING_MAP(THUMB2_VADDS,        0xee300a00,
401                  SFP, 22, 12, SFP, 7, 16, SFP, 5, 0,
402                  IS_TERTIARY_OP | CLOBBER_DEST,
403                  "vadd", "!0s, !1s, !2s", 2),
404     ENCODING_MAP(THUMB2_VADDD,        0xee300b00,
405                  DFP, 22, 12, DFP, 7, 16, DFP, 5, 0,
406                  IS_TERTIARY_OP | CLOBBER_DEST,
407                  "vadd", "!0S, !1S, !2S", 2),
408     ENCODING_MAP(THUMB2_VDIVS,        0xee800a00,
409                  SFP, 22, 12, SFP, 7, 16, SFP, 5, 0,
410                  IS_TERTIARY_OP | CLOBBER_DEST,
411                  "vdivs", "!0s, !1s, !2s", 2),
412     ENCODING_MAP(THUMB2_VDIVD,        0xee800b00,
413                  DFP, 22, 12, DFP, 7, 16, DFP, 5, 0,
414                  IS_TERTIARY_OP | CLOBBER_DEST,
415                  "vdivs", "!0S, !1S, !2S", 2),
416     ENCODING_MAP(THUMB2_VCVTIF,       0xeeb80ac0,
417                  SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
418                  IS_BINARY_OP | CLOBBER_DEST,
419                  "vcvt.f32", "!0s, !1s", 2),
420     ENCODING_MAP(THUMB2_VCVTID,       0xeeb80bc0,
421                  DFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
422                  IS_BINARY_OP | CLOBBER_DEST,
423                  "vcvt.f64", "!0S, !1s", 2),
424     ENCODING_MAP(THUMB2_VCVTFI,       0xeebd0ac0,
425                  SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
426                  IS_BINARY_OP | CLOBBER_DEST,
427                  "vcvt.s32.f32 ", "!0s, !1s", 2),
428     ENCODING_MAP(THUMB2_VCVTDI,       0xeebd0bc0,
429                  SFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1,
430                  IS_BINARY_OP | CLOBBER_DEST,
431                  "vcvt.s32.f64 ", "!0s, !1S", 2),
432     ENCODING_MAP(THUMB2_VCVTFD,       0xeeb70ac0,
433                  DFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
434                  IS_BINARY_OP | CLOBBER_DEST,
435                  "vcvt.f64.f32 ", "!0S, !1s", 2),
436     ENCODING_MAP(THUMB2_VCVTDF,       0xeeb70bc0,
437                  SFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1,
438                  IS_BINARY_OP | CLOBBER_DEST,
439                  "vcvt.f32.f64 ", "!0s, !1S", 2),
440     ENCODING_MAP(THUMB2_VSQRTS,       0xeeb10ac0,
441                  SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
442                  IS_BINARY_OP | CLOBBER_DEST,
443                  "vsqrt.f32 ", "!0s, !1s", 2),
444     ENCODING_MAP(THUMB2_VSQRTD,       0xeeb10bc0,
445                  DFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1,
446                  IS_BINARY_OP | CLOBBER_DEST,
447                  "vsqrt.f64 ", "!0S, !1S", 2),
448     ENCODING_MAP(THUMB2_MOV_IMM_SHIFT,       0xf04f0000,
449                  BITBLT, 11, 8, MODIMM, -1, -1, UNUSED, -1, -1,
450                  IS_BINARY_OP | CLOBBER_DEST,
451                  "mov", "r!0d, #!1m", 2),
452     ENCODING_MAP(THUMB2_MOV_IMM16,       0xf2400000,
453                  BITBLT, 11, 8, IMM16, -1, -1, UNUSED, -1, -1,
454                  IS_BINARY_OP | CLOBBER_DEST,
455                  "mov", "r!0d, #!1M", 2),
456     ENCODING_MAP(THUMB2_STR_RRI12,       0xf8c00000,
457                  BITBLT, 15, 12, BITBLT, 19, 16, BITBLT, 11, 0,
458                  IS_TERTIARY_OP,
459                  "str", "r!0d,[r!1d, #!2d", 2),
460     ENCODING_MAP(THUMB2_LDR_RRI12,       0xf8d00000,
461                  BITBLT, 15, 12, BITBLT, 19, 16, BITBLT, 11, 0,
462                  IS_TERTIARY_OP | CLOBBER_DEST,
463                  "ldr", "r!0d,[r!1d, #!2d", 2),
464     ENCODING_MAP(THUMB2_STR_RRI8_PREDEC,       0xf8400c00,
465                  BITBLT, 15, 12, BITBLT, 19, 16, BITBLT, 8, 0,
466                  IS_TERTIARY_OP,
467                  "str", "r!0d,[r!1d, #-!2d]", 2),
468     ENCODING_MAP(THUMB2_LDR_RRI8_PREDEC,       0xf8500c00,
469                  BITBLT, 15, 12, BITBLT, 19, 16, BITBLT, 8, 0,
470                  IS_TERTIARY_OP | CLOBBER_DEST,
471                  "ldr", "r!0d,[r!1d, #-!2d]", 2),
472     ENCODING_MAP(THUMB2_CBNZ,       0xb900,
473                  BITBLT, 2, 0, IMM6, -1, -1, UNUSED, -1, -1,
474                  IS_BINARY_OP,
475                  "cbnz", "r!0d,!1t", 1),
476     ENCODING_MAP(THUMB2_CBZ,       0xb100,
477                  BITBLT, 2, 0, IMM6, -1, -1, UNUSED, -1, -1,
478                  IS_BINARY_OP,
479                  "cbz", "r!0d,!1t", 1),
480     ENCODING_MAP(THUMB2_ADD_RRI12,       0xf1000000,
481                  BITBLT, 11, 8, BITBLT, 19, 16, IMM12, -1, -1,
482                  IS_TERTIARY_OP | CLOBBER_DEST,
483                  "add", "r!0d,r!1d,#!2d", 2),
484     ENCODING_MAP(THUMB2_MOV_RR,       0xea4f0000,
485                  BITBLT, 11, 8, BITBLT, 3, 0, UNUSED, -1, -1,
486                  IS_BINARY_OP | CLOBBER_DEST,
487                  "mov", "r!0d, r!1d", 2),
488     ENCODING_MAP(THUMB2_VMOVS,       0xeeb00a40,
489                  SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
490                  IS_BINARY_OP | CLOBBER_DEST,
491                  "vmov.f32 ", "!0s, !1s", 2),
492     ENCODING_MAP(THUMB2_VMOVD,       0xeeb00b40,
493                  DFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1,
494                  IS_BINARY_OP | CLOBBER_DEST,
495                  "vmov.f64 ", "!0s, !1s", 2),
496 };
497 
498 #define PADDING_MOV_R0_R0               0x1C00
499 
500 /* Write the numbers in the literal pool to the codegen stream */
installDataContent(CompilationUnit * cUnit)501 static void installDataContent(CompilationUnit *cUnit)
502 {
503     int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset);
504     ArmLIR *dataLIR = (ArmLIR *) cUnit->wordList;
505     while (dataLIR) {
506         *dataPtr++ = dataLIR->operands[0];
507         dataLIR = NEXT_LIR(dataLIR);
508     }
509 }
510 
511 /* Returns the size of a Jit trace description */
jitTraceDescriptionSize(const JitTraceDescription * desc)512 static int jitTraceDescriptionSize(const JitTraceDescription *desc)
513 {
514     int runCount;
515     for (runCount = 0; ; runCount++) {
516         if (desc->trace[runCount].frag.runEnd)
517            break;
518     }
519     return sizeof(JitCodeDesc) + ((runCount+1) * sizeof(JitTraceRun));
520 }
521 
522 /* Return TRUE if error happens */
assembleInstructions(CompilationUnit * cUnit,intptr_t startAddr)523 static bool assembleInstructions(CompilationUnit *cUnit, intptr_t startAddr)
524 {
525     short *bufferAddr = (short *) cUnit->codeBuffer;
526     ArmLIR *lir;
527 
528     for (lir = (ArmLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
529         if (lir->opCode < 0) {
530             if ((lir->opCode == ARM_PSEUDO_ALIGN4) &&
531                 /* 1 means padding is needed */
532                 (lir->operands[0] == 1)) {
533                 *bufferAddr++ = PADDING_MOV_R0_R0;
534             }
535             continue;
536         }
537 
538         if (lir->isNop) {
539             continue;
540         }
541 
542         if (lir->opCode == THUMB_LDR_PC_REL ||
543             lir->opCode == THUMB_ADD_PC_REL) {
544             ArmLIR *lirTarget = (ArmLIR *) lir->generic.target;
545             intptr_t pc = (lir->generic.offset + 4) & ~3;
546             /*
547              * Allow an offset (stored in operands[2] to be added to the
548              * PC-relative target. Useful to get to a fixed field inside a
549              * chaining cell.
550              */
551             intptr_t target = lirTarget->generic.offset + lir->operands[2];
552             int delta = target - pc;
553             if (delta & 0x3) {
554                 LOGE("PC-rel distance is not multiples of 4: %d\n", delta);
555                 dvmAbort();
556             }
557             if (delta > 1023) {
558                 return true;
559             }
560             lir->operands[1] = delta >> 2;
561         } else if (lir->opCode == THUMB2_CBNZ || lir->opCode == THUMB2_CBZ) {
562             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
563             intptr_t pc = lir->generic.offset + 4;
564             intptr_t target = targetLIR->generic.offset;
565             int delta = target - pc;
566             if (delta > 126 || delta < 0) {
567                 return true;
568             }
569             lir->operands[1] = delta >> 1;
570         } else if (lir->opCode == THUMB_B_COND) {
571             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
572             intptr_t pc = lir->generic.offset + 4;
573             intptr_t target = targetLIR->generic.offset;
574             int delta = target - pc;
575             if (delta > 254 || delta < -256) {
576                 return true;
577             }
578             lir->operands[0] = delta >> 1;
579         } else if (lir->opCode == THUMB_B_UNCOND) {
580             ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
581             intptr_t pc = lir->generic.offset + 4;
582             intptr_t target = targetLIR->generic.offset;
583             int delta = target - pc;
584             if (delta > 2046 || delta < -2048) {
585                 LOGE("Unconditional branch distance out of range: %d\n", delta);
586                 dvmAbort();
587             }
588             lir->operands[0] = delta >> 1;
589         } else if (lir->opCode == THUMB_BLX_1) {
590             assert(NEXT_LIR(lir)->opCode == THUMB_BLX_2);
591             /* curPC is Thumb */
592             intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3;
593             intptr_t target = lir->operands[1];
594 
595             /* Match bit[1] in target with base */
596             if (curPC & 0x2) {
597                 target |= 0x2;
598             }
599             int delta = target - curPC;
600             assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
601 
602             lir->operands[0] = (delta >> 12) & 0x7ff;
603             NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
604         }
605 
606         ArmEncodingMap *encoder = &EncodingMap[lir->opCode];
607         u4 bits = encoder->skeleton;
608         int i;
609         for (i = 0; i < 3; i++) {
610             u4 value;
611             switch(encoder->fieldLoc[i].kind) {
612                 case UNUSED:
613                     break;
614                 case IMM6:
615                     value = ((lir->operands[i] & 0x20) >> 5) << 9;
616                     value |= (lir->operands[i] & 0x1f) << 3;
617                     bits |= value;
618                     break;
619                 case BITBLT:
620                     value = (lir->operands[i] << encoder->fieldLoc[i].start) &
621                             ((1 << (encoder->fieldLoc[i].end + 1)) - 1);
622                     bits |= value;
623                     break;
624                 case DFP:
625                     /* Snag the 1-bit slice and position it */
626                     value = ((lir->operands[i] & 0x10) >> 4) <<
627                             encoder->fieldLoc[i].end;
628                     /* Extract and position the 4-bit slice */
629                     value |= (lir->operands[i] & 0x0f) <<
630                             encoder->fieldLoc[i].start;
631                     bits |= value;
632                     break;
633                 case SFP:
634                     /* Snag the 1-bit slice and position it */
635                     value = (lir->operands[i] & 0x1) <<
636                             encoder->fieldLoc[i].end;
637                     /* Extract and position the 4-bit slice */
638                     value |= ((lir->operands[i] & 0x1e) >> 1) <<
639                             encoder->fieldLoc[i].start;
640                     bits |= value;
641                     break;
642                 case IMM12:
643                 case MODIMM:
644                     value = ((lir->operands[i] & 0x800) >> 11) << 26;
645                     value |= ((lir->operands[i] & 0x700) >> 8) << 12;
646                     value |= lir->operands[i] & 0x0ff;
647                     bits |= value;
648                     break;
649                 case IMM16:
650                     value = ((lir->operands[i] & 0x0800) >> 11) << 26;
651                     value |= ((lir->operands[i] & 0xf000) >> 12) << 16;
652                     value |= ((lir->operands[i] & 0x0700) >> 8) << 12;
653                     value |= lir->operands[i] & 0x0ff;
654                     bits |= value;
655                     break;
656                 default:
657                     assert(0);
658             }
659         }
660         if (encoder->size == 2) {
661             *bufferAddr++ = (bits >> 16) & 0xffff;
662         }
663         *bufferAddr++ = bits & 0xffff;
664     }
665     return false;
666 }
667 
668 /*
669  * Translation layout in the code cache.  Note that the codeAddress pointer
670  * in JitTable will point directly to the code body (field codeAddress).  The
671  * chain cell offset codeAddress - 2, and (if present) executionCount is at
672  * codeAddress - 6.
673  *
674  *      +----------------------------+
675  *      | Execution count            |  -> [Optional] 4 bytes
676  *      +----------------------------+
677  *   +--| Offset to chain cell counts|  -> 2 bytes
678  *   |  +----------------------------+
679  *   |  | Code body                  |  -> Start address for translation
680  *   |  |                            |     variable in 2-byte chunks
681  *   |  .                            .     (JitTable's codeAddress points here)
682  *   |  .                            .
683  *   |  |                            |
684  *   |  +----------------------------+
685  *   |  | Chaining Cells             |  -> 8 bytes each, must be 4 byte aligned
686  *   |  .                            .
687  *   |  .                            .
688  *   |  |                            |
689  *   |  +----------------------------+
690  *   +->| Chaining cell counts       |  -> 4 bytes, chain cell counts by type
691  *      +----------------------------+
692  *      | Trace description          |  -> variable sized
693  *      .                            .
694  *      |                            |
695  *      +----------------------------+
696  *      | Literal pool               |  -> 4-byte aligned, variable size
697  *      .                            .
698  *      .                            .
699  *      |                            |
700  *      +----------------------------+
701  *
702  * Go over each instruction in the list and calculate the offset from the top
703  * before sending them off to the assembler. If out-of-range branch distance is
704  * seen rearrange the instructions a bit to correct it.
705  */
dvmCompilerAssembleLIR(CompilationUnit * cUnit,JitTranslationInfo * info)706 void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info)
707 {
708     LIR *lir;
709     ArmLIR *armLIR;
710     int offset = 0;
711     int i;
712     ChainCellCounts chainCellCounts;
713     int descSize = jitTraceDescriptionSize(cUnit->traceDesc);
714 
715     info->codeAddress = NULL;
716     info->instructionSet = cUnit->instructionSet;
717 
718     /* Beginning offset needs to allow space for chain cell offset */
719     for (armLIR = (ArmLIR *) cUnit->firstLIRInsn;
720          armLIR;
721          armLIR = NEXT_LIR(armLIR)) {
722         armLIR->generic.offset = offset;
723         if (armLIR->opCode >= 0 && !armLIR->isNop) {
724             armLIR->size = EncodingMap[armLIR->opCode].size * 2;
725             offset += armLIR->size;
726         } else if (armLIR->opCode == ARM_PSEUDO_ALIGN4) {
727             if (offset & 0x2) {
728                 offset += 2;
729                 armLIR->operands[0] = 1;
730             } else {
731                 armLIR->operands[0] = 0;
732             }
733         }
734         /* Pseudo opcodes don't consume space */
735     }
736 
737     /* Const values have to be word aligned */
738     offset = (offset + 3) & ~3;
739 
740     /* Add space for chain cell counts & trace description */
741     u4 chainCellOffset = offset;
742     ArmLIR *chainCellOffsetLIR = (ArmLIR *) cUnit->chainCellOffsetLIR;
743     assert(chainCellOffsetLIR);
744     assert(chainCellOffset < 0x10000);
745     assert(chainCellOffsetLIR->opCode == ARM_16BIT_DATA &&
746            chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG);
747 
748     /*
749      * Replace the CHAIN_CELL_OFFSET_TAG with the real value. If trace
750      * profiling is enabled, subtract 4 (occupied by the counter word) from
751      * the absolute offset as the value stored in chainCellOffsetLIR is the
752      * delta from &chainCellOffsetLIR to &ChainCellCounts.
753      */
754     chainCellOffsetLIR->operands[0] =
755         gDvmJit.profile ? (chainCellOffset - 4) : chainCellOffset;
756 
757     offset += sizeof(chainCellCounts) + descSize;
758 
759     assert((offset & 0x3) == 0);  /* Should still be word aligned */
760 
761     /* Set up offsets for literals */
762     cUnit->dataOffset = offset;
763 
764     for (lir = cUnit->wordList; lir; lir = lir->next) {
765         lir->offset = offset;
766         offset += 4;
767     }
768 
769     cUnit->totalSize = offset;
770 
771     if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > CODE_CACHE_SIZE) {
772         gDvmJit.codeCacheFull = true;
773         cUnit->baseAddr = NULL;
774         return;
775     }
776 
777     /* Allocate enough space for the code block */
778     cUnit->codeBuffer = dvmCompilerNew(chainCellOffset, true);
779     if (cUnit->codeBuffer == NULL) {
780         LOGE("Code buffer allocation failure\n");
781         cUnit->baseAddr = NULL;
782         return;
783     }
784 
785     bool assemblerFailure = assembleInstructions(
786         cUnit, (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed);
787 
788     /*
789      * Currently the only reason that can cause the assembler to fail is due to
790      * trace length - cut it in half and retry.
791      */
792     if (assemblerFailure) {
793         cUnit->halveInstCount = true;
794         return;
795     }
796 
797 
798     cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed;
799     gDvmJit.codeCacheByteUsed += offset;
800 
801     /* Install the code block */
802     memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset);
803     gDvmJit.numCompilations++;
804 
805     /* Install the chaining cell counts */
806     for (i=0; i< CHAINING_CELL_LAST; i++) {
807         chainCellCounts.u.count[i] = cUnit->numChainingCells[i];
808     }
809     memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts,
810            sizeof(chainCellCounts));
811 
812     /* Install the trace description */
813     memcpy((char*)cUnit->baseAddr + chainCellOffset + sizeof(chainCellCounts),
814            cUnit->traceDesc, descSize);
815 
816     /* Write the literals directly into the code cache */
817     installDataContent(cUnit);
818 
819     /* Flush dcache and invalidate the icache to maintain coherence */
820     cacheflush((long)cUnit->baseAddr,
821                (long)((char *) cUnit->baseAddr + offset), 0);
822 
823     /* Record code entry point and instruction set */
824     info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize;
825     info->instructionSet = cUnit->instructionSet;
826     /* If applicable, mark low bit to denote thumb */
827     if (info->instructionSet != DALVIK_JIT_ARM)
828         info->codeAddress = (char*)info->codeAddress + 1;
829 }
830 
assembleBXPair(int branchOffset)831 static u4 assembleBXPair(int branchOffset)
832 {
833     u4 thumb1, thumb2;
834 
835     if ((branchOffset < -2048) | (branchOffset > 2046)) {
836         thumb1 =  (0xf000 | ((branchOffset>>12) & 0x7ff));
837         thumb2 =  (0xf800 | ((branchOffset>> 1) & 0x7ff));
838     } else {
839         thumb1 =  (0xe000 | ((branchOffset>> 1) & 0x7ff));
840         thumb2 =  0x4300;  /* nop -> or r0, r0 */
841     }
842 
843     return thumb2<<16 | thumb1;
844 }
845 
846 /*
847  * Perform translation chain operation.
848  * For ARM, we'll use a pair of thumb instructions to generate
849  * an unconditional chaining branch of up to 4MB in distance.
850  * Use a BL, though we don't really need the link.  The format is
851  *     111HHooooooooooo
852  * Where HH is 10 for the 1st inst, and 11 for the second and
853  * the "o" field is each instruction's 11-bit contribution to the
854  * 22-bit branch offset.
855  * If the target is nearby, use a single-instruction bl.
856  * If one or more threads is suspended, don't chain.
857  */
dvmJitChain(void * tgtAddr,u4 * branchAddr)858 void* dvmJitChain(void* tgtAddr, u4* branchAddr)
859 {
860     int baseAddr = (u4) branchAddr + 4;
861     int branchOffset = (int) tgtAddr - baseAddr;
862     u4 newInst;
863 
864     if (gDvm.sumThreadSuspendCount == 0) {
865         assert((branchOffset >= -(1<<22)) && (branchOffset <= ((1<<22)-2)));
866 
867         gDvmJit.translationChains++;
868 
869         COMPILER_TRACE_CHAINING(
870             LOGD("Jit Runtime: chaining 0x%x to 0x%x\n",
871                  (int) branchAddr, (int) tgtAddr & -2));
872 
873         newInst = assembleBXPair(branchOffset);
874 
875         *branchAddr = newInst;
876         cacheflush((long)branchAddr, (long)branchAddr + 4, 0);
877     }
878 
879     return tgtAddr;
880 }
881 
882 /*
883  * This method is called from the invoke templates for virtual and interface
884  * methods to speculatively setup a chain to the callee. The templates are
885  * written in assembly and have setup method, cell, and clazz at r0, r2, and
886  * r3 respectively, so there is a unused argument in the list. Upon return one
887  * of the following three results may happen:
888  *   1) Chain is not setup because the callee is native. Reset the rechain
889  *      count to a big number so that it will take a long time before the next
890  *      rechain attempt to happen.
891  *   2) Chain is not setup because the callee has not been created yet. Reset
892  *      the rechain count to a small number and retry in the near future.
893  *   3) Ask all other threads to stop before patching this chaining cell.
894  *      This is required because another thread may have passed the class check
895  *      but hasn't reached the chaining cell yet to follow the chain. If we
896  *      patch the content before halting the other thread, there could be a
897  *      small window for race conditions to happen that it may follow the new
898  *      but wrong chain to invoke a different method.
899  */
dvmJitToPatchPredictedChain(const Method * method,void * unused,PredictedChainingCell * cell,const ClassObject * clazz)900 const Method *dvmJitToPatchPredictedChain(const Method *method,
901                                           void *unused,
902                                           PredictedChainingCell *cell,
903                                           const ClassObject *clazz)
904 {
905     /* Don't come back here for a long time if the method is native */
906     if (dvmIsNativeMethod(method)) {
907         cell->counter = PREDICTED_CHAIN_COUNTER_AVOID;
908         cacheflush((long) cell, (long) (cell+1), 0);
909         COMPILER_TRACE_CHAINING(
910             LOGD("Jit Runtime: predicted chain %p to native method %s ignored",
911                  cell, method->name));
912         goto done;
913     }
914     int tgtAddr = (int) dvmJitGetCodeAddr(method->insns);
915 
916     /*
917      * Compilation not made yet for the callee. Reset the counter to a small
918      * value and come back to check soon.
919      */
920     if (tgtAddr == 0) {
921         /*
922          * Wait for a few invocations (currently set to be 16) before trying
923          * to setup the chain again.
924          */
925         cell->counter = PREDICTED_CHAIN_COUNTER_DELAY;
926         cacheflush((long) cell, (long) (cell+1), 0);
927         COMPILER_TRACE_CHAINING(
928             LOGD("Jit Runtime: predicted chain %p to method %s delayed",
929                  cell, method->name));
930         goto done;
931     }
932 
933     /* Stop the world */
934     dvmSuspendAllThreads(SUSPEND_FOR_JIT);
935 
936     int baseAddr = (int) cell + 4;   // PC is cur_addr + 4
937     int branchOffset = tgtAddr - baseAddr;
938 
939     COMPILER_TRACE_CHAINING(
940         LOGD("Jit Runtime: predicted chain %p from %s to %s (%s) patched",
941              cell, cell->clazz ? cell->clazz->descriptor : "NULL",
942              clazz->descriptor,
943              method->name));
944 
945     cell->branch = assembleBXPair(branchOffset);
946     cell->clazz = clazz;
947     cell->method = method;
948     cell->counter = PREDICTED_CHAIN_COUNTER_RECHAIN;
949 
950     cacheflush((long) cell, (long) (cell+1), 0);
951 
952     /* All done - resume all other threads */
953     dvmResumeAllThreads(SUSPEND_FOR_JIT);
954 
955 done:
956     return method;
957 }
958 
959 /*
960  * Unchain a trace given the starting address of the translation
961  * in the code cache.  Refer to the diagram in dvmCompilerAssembleLIR.
962  * Returns the address following the last cell unchained.  Note that
963  * the incoming codeAddr is a thumb code address, and therefore has
964  * the low bit set.
965  */
dvmJitUnchain(void * codeAddr)966 u4* dvmJitUnchain(void* codeAddr)
967 {
968     u2* pChainCellOffset = (u2*)((char*)codeAddr - 3);
969     u2 chainCellOffset = *pChainCellOffset;
970     ChainCellCounts *pChainCellCounts =
971           (ChainCellCounts*)((char*)codeAddr + chainCellOffset - 3);
972     int cellSize;
973     u4* pChainCells;
974     u4* pStart;
975     u4 thumb1;
976     u4 thumb2;
977     u4 newInst;
978     int i,j;
979     PredictedChainingCell *predChainCell;
980 
981     /* Get total count of chain cells */
982     for (i = 0, cellSize = 0; i < CHAINING_CELL_LAST; i++) {
983         if (i != CHAINING_CELL_INVOKE_PREDICTED) {
984             cellSize += pChainCellCounts->u.count[i] * 2;
985         } else {
986             cellSize += pChainCellCounts->u.count[i] * 4;
987         }
988     }
989 
990     /* Locate the beginning of the chain cell region */
991     pStart = pChainCells = ((u4 *) pChainCellCounts) - cellSize;
992 
993     /* The cells are sorted in order - walk through them and reset */
994     for (i = 0; i < CHAINING_CELL_LAST; i++) {
995         int elemSize = 2; /* Most chaining cell has two words */
996         if (i == CHAINING_CELL_INVOKE_PREDICTED) {
997             elemSize = 4;
998         }
999 
1000         for (j = 0; j < pChainCellCounts->u.count[i]; j++) {
1001             int targetOffset;
1002             switch(i) {
1003                 case CHAINING_CELL_NORMAL:
1004                     targetOffset = offsetof(InterpState,
1005                           jitToInterpEntries.dvmJitToInterpNormal);
1006                     break;
1007                 case CHAINING_CELL_HOT:
1008                 case CHAINING_CELL_INVOKE_SINGLETON:
1009                     targetOffset = offsetof(InterpState,
1010                           jitToInterpEntries.dvmJitToTraceSelect);
1011                     break;
1012                 case CHAINING_CELL_INVOKE_PREDICTED:
1013                     targetOffset = 0;
1014                     predChainCell = (PredictedChainingCell *) pChainCells;
1015                     /* Reset the cell to the init state */
1016                     predChainCell->branch = PREDICTED_CHAIN_BX_PAIR_INIT;
1017                     predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT;
1018                     predChainCell->method = PREDICTED_CHAIN_METHOD_INIT;
1019                     predChainCell->counter = PREDICTED_CHAIN_COUNTER_INIT;
1020                     break;
1021                 default:
1022                     dvmAbort();
1023             }
1024             COMPILER_TRACE_CHAINING(
1025                 LOGD("Jit Runtime: unchaining 0x%x", (int)pChainCells));
1026             /*
1027              * Thumb code sequence for a chaining cell is:
1028              *     ldr  r0, rGLUE, #<word offset>
1029              *     blx  r0
1030              */
1031             if (i != CHAINING_CELL_INVOKE_PREDICTED) {
1032                 targetOffset = targetOffset >> 2;  /* convert to word offset */
1033                 thumb1 = 0x6800 | (targetOffset << 6) |
1034                          (rGLUE << 3) | (r0 << 0);
1035                 thumb2 = 0x4780 | (r0 << 3);
1036                 newInst = thumb2<<16 | thumb1;
1037                 *pChainCells = newInst;
1038             }
1039             pChainCells += elemSize;  /* Advance by a fixed number of words */
1040         }
1041     }
1042     return pChainCells;
1043 }
1044 
1045 /* Unchain all translation in the cache. */
dvmJitUnchainAll()1046 void dvmJitUnchainAll()
1047 {
1048     u4* lowAddress = NULL;
1049     u4* highAddress = NULL;
1050     unsigned int i;
1051     if (gDvmJit.pJitEntryTable != NULL) {
1052         COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all"));
1053         dvmLockMutex(&gDvmJit.tableLock);
1054         for (i = 0; i < gDvmJit.jitTableSize; i++) {
1055             if (gDvmJit.pJitEntryTable[i].dPC &&
1056                    gDvmJit.pJitEntryTable[i].codeAddress) {
1057                 u4* lastAddress;
1058                 lastAddress =
1059                       dvmJitUnchain(gDvmJit.pJitEntryTable[i].codeAddress);
1060                 if (lowAddress == NULL ||
1061                       (u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress)
1062                     lowAddress = lastAddress;
1063                 if (lastAddress > highAddress)
1064                     highAddress = lastAddress;
1065             }
1066         }
1067         cacheflush((long)lowAddress, (long)highAddress, 0);
1068         dvmUnlockMutex(&gDvmJit.tableLock);
1069     }
1070 }
1071 
1072 typedef struct jitProfileAddrToLine {
1073     u4 lineNum;
1074     u4 bytecodeOffset;
1075 } jitProfileAddrToLine;
1076 
1077 
1078 /* Callback function to track the bytecode offset/line number relationiship */
addrToLineCb(void * cnxt,u4 bytecodeOffset,u4 lineNum)1079 static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum)
1080 {
1081     jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt;
1082 
1083     /* Best match so far for this offset */
1084     if (addrToLine->bytecodeOffset >= bytecodeOffset) {
1085         addrToLine->lineNum = lineNum;
1086     }
1087     return 0;
1088 }
1089 
getTraceBase(const JitEntry * p)1090 char *getTraceBase(const JitEntry *p)
1091 {
1092     return (char*)p->codeAddress -
1093         (6 + (p->u.info.instructionSet == DALVIK_JIT_ARM ? 0 : 1));
1094 }
1095 
1096 /* Dumps profile info for a single trace */
dumpTraceProfile(JitEntry * p)1097 static int dumpTraceProfile(JitEntry *p)
1098 {
1099     ChainCellCounts* pCellCounts;
1100     char* traceBase;
1101     u4* pExecutionCount;
1102     u2* pCellOffset;
1103     JitTraceDescription *desc;
1104     const Method* method;
1105 
1106     traceBase = getTraceBase(p);
1107 
1108     if (p->codeAddress == NULL) {
1109         LOGD("TRACEPROFILE 0x%08x 0 NULL 0 0", (int)traceBase);
1110         return 0;
1111     }
1112 
1113     pExecutionCount = (u4*) (traceBase);
1114     pCellOffset = (u2*) (traceBase + 4);
1115     pCellCounts = (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset);
1116     desc = (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts));
1117     method = desc->method;
1118     char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
1119     jitProfileAddrToLine addrToLine = {0, desc->trace[0].frag.startOffset};
1120 
1121     /*
1122      * We may end up decoding the debug information for the same method
1123      * multiple times, but the tradeoff is we don't need to allocate extra
1124      * space to store the addr/line mapping. Since this is a debugging feature
1125      * and done infrequently so the slower but simpler mechanism should work
1126      * just fine.
1127      */
1128     dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile,
1129                        dvmGetMethodCode(method),
1130                        method->clazz->descriptor,
1131                        method->prototype.protoIdx,
1132                        method->accessFlags,
1133                        addrToLineCb, NULL, &addrToLine);
1134 
1135     LOGD("TRACEPROFILE 0x%08x % 10d [%#x(+%d), %d] %s%s;%s",
1136          (int)traceBase,
1137          *pExecutionCount,
1138          desc->trace[0].frag.startOffset,
1139          desc->trace[0].frag.numInsts,
1140          addrToLine.lineNum,
1141          method->clazz->descriptor, method->name, methodDesc);
1142     free(methodDesc);
1143 
1144     return *pExecutionCount;
1145 }
1146 
1147 /* Handy function to retrieve the profile count */
getProfileCount(const JitEntry * entry)1148 static inline int getProfileCount(const JitEntry *entry)
1149 {
1150     if (entry->dPC == 0 || entry->codeAddress == 0)
1151         return 0;
1152     u4 *pExecutionCount = (u4 *) getTraceBase(entry);
1153 
1154     return *pExecutionCount;
1155 }
1156 
1157 
1158 /* qsort callback function */
sortTraceProfileCount(const void * entry1,const void * entry2)1159 static int sortTraceProfileCount(const void *entry1, const void *entry2)
1160 {
1161     const JitEntry *jitEntry1 = entry1;
1162     const JitEntry *jitEntry2 = entry2;
1163 
1164     int count1 = getProfileCount(jitEntry1);
1165     int count2 = getProfileCount(jitEntry2);
1166     return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1);
1167 }
1168 
1169 /* Sort the trace profile counts and dump them */
dvmCompilerSortAndPrintTraceProfiles()1170 void dvmCompilerSortAndPrintTraceProfiles()
1171 {
1172     JitEntry *sortedEntries;
1173     int numTraces = 0;
1174     unsigned long counts = 0;
1175     unsigned int i;
1176 
1177     /* Make sure that the table is not changing */
1178     dvmLockMutex(&gDvmJit.tableLock);
1179 
1180     /* Sort the entries by descending order */
1181     sortedEntries = malloc(sizeof(JitEntry) * gDvmJit.jitTableSize);
1182     if (sortedEntries == NULL)
1183         goto done;
1184     memcpy(sortedEntries, gDvmJit.pJitEntryTable,
1185            sizeof(JitEntry) * gDvmJit.jitTableSize);
1186     qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry),
1187           sortTraceProfileCount);
1188 
1189     /* Dump the sorted entries */
1190     for (i=0; i < gDvmJit.jitTableSize; i++) {
1191         if (sortedEntries[i].dPC != 0) {
1192             counts += dumpTraceProfile(&sortedEntries[i]);
1193             numTraces++;
1194         }
1195     }
1196     if (numTraces == 0)
1197         numTraces = 1;
1198     LOGD("JIT: Average execution count -> %d",(int)(counts / numTraces));
1199 
1200     free(sortedEntries);
1201 done:
1202     dvmUnlockMutex(&gDvmJit.tableLock);
1203     return;
1204 }
1205