1 /*
2 * This file was generated automatically by gen-mterp.py for 'x86'.
3 *
4 * --> DO NOT EDIT <--
5 */
6
7 /* File: c/header.c */
8 /*
9 * Copyright (C) 2008 The Android Open Source Project
10 *
11 * Licensed under the Apache License, Version 2.0 (the "License");
12 * you may not use this file except in compliance with the License.
13 * You may obtain a copy of the License at
14 *
15 * http://www.apache.org/licenses/LICENSE-2.0
16 *
17 * Unless required by applicable law or agreed to in writing, software
18 * distributed under the License is distributed on an "AS IS" BASIS,
19 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20 * See the License for the specific language governing permissions and
21 * limitations under the License.
22 */
23
24 /* common includes */
25 #include "Dalvik.h"
26 #include "interp/InterpDefs.h"
27 #include "mterp/Mterp.h"
28 #include <math.h> // needed for fmod, fmodf
29 #include "mterp/common/FindInterface.h"
30
31 /*
32 * Configuration defines. These affect the C implementations, i.e. the
33 * portable interpreter(s) and C stubs.
34 *
35 * Some defines are controlled by the Makefile, e.g.:
36 * WITH_PROFILER
37 * WITH_DEBUGGER
38 * WITH_INSTR_CHECKS
39 * WITH_TRACKREF_CHECKS
40 * EASY_GDB
41 * NDEBUG
42 *
43 * If THREADED_INTERP is not defined, we use a classic "while true / switch"
44 * interpreter. If it is defined, then the tail end of each instruction
45 * handler fetches the next instruction and jumps directly to the handler.
46 * This increases the size of the "Std" interpreter by about 10%, but
47 * provides a speedup of about the same magnitude.
48 *
49 * There's a "hybrid" approach that uses a goto table instead of a switch
50 * statement, avoiding the "is the opcode in range" tests required for switch.
51 * The performance is close to the threaded version, and without the 10%
52 * size increase, but the benchmark results are off enough that it's not
53 * worth adding as a third option.
54 */
55 #define THREADED_INTERP /* threaded vs. while-loop interpreter */
56
57 #ifdef WITH_INSTR_CHECKS /* instruction-level paranoia (slow!) */
58 # define CHECK_BRANCH_OFFSETS
59 # define CHECK_REGISTER_INDICES
60 #endif
61
62 /*
63 * ARM EABI requires 64-bit alignment for access to 64-bit data types. We
64 * can't just use pointers to copy 64-bit values out of our interpreted
65 * register set, because gcc will generate ldrd/strd.
66 *
67 * The __UNION version copies data in and out of a union. The __MEMCPY
68 * version uses a memcpy() call to do the transfer; gcc is smart enough to
69 * not actually call memcpy(). The __UNION version is very bad on ARM;
70 * it only uses one more instruction than __MEMCPY, but for some reason
71 * gcc thinks it needs separate storage for every instance of the union.
72 * On top of that, it feels the need to zero them out at the start of the
73 * method. Net result is we zero out ~700 bytes of stack space at the top
74 * of the interpreter using ARM STM instructions.
75 */
76 #if defined(__ARM_EABI__)
77 //# define NO_UNALIGN_64__UNION
78 # define NO_UNALIGN_64__MEMCPY
79 #endif
80
81 //#define LOG_INSTR /* verbose debugging */
82 /* set and adjust ANDROID_LOG_TAGS='*:i jdwp:i dalvikvm:i dalvikvmi:i' */
83
84 /*
85 * Keep a tally of accesses to fields. Currently only works if full DEX
86 * optimization is disabled.
87 */
88 #ifdef PROFILE_FIELD_ACCESS
89 # define UPDATE_FIELD_GET(_field) { (_field)->gets++; }
90 # define UPDATE_FIELD_PUT(_field) { (_field)->puts++; }
91 #else
92 # define UPDATE_FIELD_GET(_field) ((void)0)
93 # define UPDATE_FIELD_PUT(_field) ((void)0)
94 #endif
95
96 /*
97 * Export another copy of the PC on every instruction; this is largely
98 * redundant with EXPORT_PC and the debugger code. This value can be
99 * compared against what we have stored on the stack with EXPORT_PC to
100 * help ensure that we aren't missing any export calls.
101 */
102 #if WITH_EXTRA_GC_CHECKS > 1
103 # define EXPORT_EXTRA_PC() (self->currentPc2 = pc)
104 #else
105 # define EXPORT_EXTRA_PC()
106 #endif
107
108 /*
109 * Adjust the program counter. "_offset" is a signed int, in 16-bit units.
110 *
111 * Assumes the existence of "const u2* pc" and "const u2* curMethod->insns".
112 *
113 * We don't advance the program counter until we finish an instruction or
114 * branch, because we do want to have to unroll the PC if there's an
115 * exception.
116 */
117 #ifdef CHECK_BRANCH_OFFSETS
118 # define ADJUST_PC(_offset) do { \
119 int myoff = _offset; /* deref only once */ \
120 if (pc + myoff < curMethod->insns || \
121 pc + myoff >= curMethod->insns + dvmGetMethodInsnsSize(curMethod)) \
122 { \
123 char* desc; \
124 desc = dexProtoCopyMethodDescriptor(&curMethod->prototype); \
125 LOGE("Invalid branch %d at 0x%04x in %s.%s %s\n", \
126 myoff, (int) (pc - curMethod->insns), \
127 curMethod->clazz->descriptor, curMethod->name, desc); \
128 free(desc); \
129 dvmAbort(); \
130 } \
131 pc += myoff; \
132 EXPORT_EXTRA_PC(); \
133 } while (false)
134 #else
135 # define ADJUST_PC(_offset) do { \
136 pc += _offset; \
137 EXPORT_EXTRA_PC(); \
138 } while (false)
139 #endif
140
141 /*
142 * If enabled, log instructions as we execute them.
143 */
144 #ifdef LOG_INSTR
145 # define ILOGD(...) ILOG(LOG_DEBUG, __VA_ARGS__)
146 # define ILOGV(...) ILOG(LOG_VERBOSE, __VA_ARGS__)
147 # define ILOG(_level, ...) do { \
148 char debugStrBuf[128]; \
149 snprintf(debugStrBuf, sizeof(debugStrBuf), __VA_ARGS__); \
150 if (curMethod != NULL) \
151 LOG(_level, LOG_TAG"i", "%-2d|%04x%s\n", \
152 self->threadId, (int)(pc - curMethod->insns), debugStrBuf); \
153 else \
154 LOG(_level, LOG_TAG"i", "%-2d|####%s\n", \
155 self->threadId, debugStrBuf); \
156 } while(false)
157 void dvmDumpRegs(const Method* method, const u4* framePtr, bool inOnly);
158 # define DUMP_REGS(_meth, _frame, _inOnly) dvmDumpRegs(_meth, _frame, _inOnly)
159 static const char kSpacing[] = " ";
160 #else
161 # define ILOGD(...) ((void)0)
162 # define ILOGV(...) ((void)0)
163 # define DUMP_REGS(_meth, _frame, _inOnly) ((void)0)
164 #endif
165
166 /* get a long from an array of u4 */
getLongFromArray(const u4 * ptr,int idx)167 static inline s8 getLongFromArray(const u4* ptr, int idx)
168 {
169 #if defined(NO_UNALIGN_64__UNION)
170 union { s8 ll; u4 parts[2]; } conv;
171
172 ptr += idx;
173 conv.parts[0] = ptr[0];
174 conv.parts[1] = ptr[1];
175 return conv.ll;
176 #elif defined(NO_UNALIGN_64__MEMCPY)
177 s8 val;
178 memcpy(&val, &ptr[idx], 8);
179 return val;
180 #else
181 return *((s8*) &ptr[idx]);
182 #endif
183 }
184
185 /* store a long into an array of u4 */
putLongToArray(u4 * ptr,int idx,s8 val)186 static inline void putLongToArray(u4* ptr, int idx, s8 val)
187 {
188 #if defined(NO_UNALIGN_64__UNION)
189 union { s8 ll; u4 parts[2]; } conv;
190
191 ptr += idx;
192 conv.ll = val;
193 ptr[0] = conv.parts[0];
194 ptr[1] = conv.parts[1];
195 #elif defined(NO_UNALIGN_64__MEMCPY)
196 memcpy(&ptr[idx], &val, 8);
197 #else
198 *((s8*) &ptr[idx]) = val;
199 #endif
200 }
201
202 /* get a double from an array of u4 */
getDoubleFromArray(const u4 * ptr,int idx)203 static inline double getDoubleFromArray(const u4* ptr, int idx)
204 {
205 #if defined(NO_UNALIGN_64__UNION)
206 union { double d; u4 parts[2]; } conv;
207
208 ptr += idx;
209 conv.parts[0] = ptr[0];
210 conv.parts[1] = ptr[1];
211 return conv.d;
212 #elif defined(NO_UNALIGN_64__MEMCPY)
213 double dval;
214 memcpy(&dval, &ptr[idx], 8);
215 return dval;
216 #else
217 return *((double*) &ptr[idx]);
218 #endif
219 }
220
221 /* store a double into an array of u4 */
putDoubleToArray(u4 * ptr,int idx,double dval)222 static inline void putDoubleToArray(u4* ptr, int idx, double dval)
223 {
224 #if defined(NO_UNALIGN_64__UNION)
225 union { double d; u4 parts[2]; } conv;
226
227 ptr += idx;
228 conv.d = dval;
229 ptr[0] = conv.parts[0];
230 ptr[1] = conv.parts[1];
231 #elif defined(NO_UNALIGN_64__MEMCPY)
232 memcpy(&ptr[idx], &dval, 8);
233 #else
234 *((double*) &ptr[idx]) = dval;
235 #endif
236 }
237
238 /*
239 * If enabled, validate the register number on every access. Otherwise,
240 * just do an array access.
241 *
242 * Assumes the existence of "u4* fp".
243 *
244 * "_idx" may be referenced more than once.
245 */
246 #ifdef CHECK_REGISTER_INDICES
247 # define GET_REGISTER(_idx) \
248 ( (_idx) < curMethod->registersSize ? \
249 (fp[(_idx)]) : (assert(!"bad reg"),1969) )
250 # define SET_REGISTER(_idx, _val) \
251 ( (_idx) < curMethod->registersSize ? \
252 (fp[(_idx)] = (u4)(_val)) : (assert(!"bad reg"),1969) )
253 # define GET_REGISTER_AS_OBJECT(_idx) ((Object *)GET_REGISTER(_idx))
254 # define SET_REGISTER_AS_OBJECT(_idx, _val) SET_REGISTER(_idx, (s4)_val)
255 # define GET_REGISTER_INT(_idx) ((s4) GET_REGISTER(_idx))
256 # define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val)
257 # define GET_REGISTER_WIDE(_idx) \
258 ( (_idx) < curMethod->registersSize-1 ? \
259 getLongFromArray(fp, (_idx)) : (assert(!"bad reg"),1969) )
260 # define SET_REGISTER_WIDE(_idx, _val) \
261 ( (_idx) < curMethod->registersSize-1 ? \
262 putLongToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969) )
263 # define GET_REGISTER_FLOAT(_idx) \
264 ( (_idx) < curMethod->registersSize ? \
265 (*((float*) &fp[(_idx)])) : (assert(!"bad reg"),1969.0f) )
266 # define SET_REGISTER_FLOAT(_idx, _val) \
267 ( (_idx) < curMethod->registersSize ? \
268 (*((float*) &fp[(_idx)]) = (_val)) : (assert(!"bad reg"),1969.0f) )
269 # define GET_REGISTER_DOUBLE(_idx) \
270 ( (_idx) < curMethod->registersSize-1 ? \
271 getDoubleFromArray(fp, (_idx)) : (assert(!"bad reg"),1969.0) )
272 # define SET_REGISTER_DOUBLE(_idx, _val) \
273 ( (_idx) < curMethod->registersSize-1 ? \
274 putDoubleToArray(fp, (_idx), (_val)) : (assert(!"bad reg"),1969.0) )
275 #else
276 # define GET_REGISTER(_idx) (fp[(_idx)])
277 # define SET_REGISTER(_idx, _val) (fp[(_idx)] = (_val))
278 # define GET_REGISTER_AS_OBJECT(_idx) ((Object*) fp[(_idx)])
279 # define SET_REGISTER_AS_OBJECT(_idx, _val) (fp[(_idx)] = (u4)(_val))
280 # define GET_REGISTER_INT(_idx) ((s4)GET_REGISTER(_idx))
281 # define SET_REGISTER_INT(_idx, _val) SET_REGISTER(_idx, (s4)_val)
282 # define GET_REGISTER_WIDE(_idx) getLongFromArray(fp, (_idx))
283 # define SET_REGISTER_WIDE(_idx, _val) putLongToArray(fp, (_idx), (_val))
284 # define GET_REGISTER_FLOAT(_idx) (*((float*) &fp[(_idx)]))
285 # define SET_REGISTER_FLOAT(_idx, _val) (*((float*) &fp[(_idx)]) = (_val))
286 # define GET_REGISTER_DOUBLE(_idx) getDoubleFromArray(fp, (_idx))
287 # define SET_REGISTER_DOUBLE(_idx, _val) putDoubleToArray(fp, (_idx), (_val))
288 #endif
289
290 /*
291 * Get 16 bits from the specified offset of the program counter. We always
292 * want to load 16 bits at a time from the instruction stream -- it's more
293 * efficient than 8 and won't have the alignment problems that 32 might.
294 *
295 * Assumes existence of "const u2* pc".
296 */
297 #define FETCH(_offset) (pc[(_offset)])
298
299 /*
300 * Extract instruction byte from 16-bit fetch (_inst is a u2).
301 */
302 #define INST_INST(_inst) ((_inst) & 0xff)
303
304 /*
305 * Extract the "vA, vB" 4-bit registers from the instruction word (_inst is u2).
306 */
307 #define INST_A(_inst) (((_inst) >> 8) & 0x0f)
308 #define INST_B(_inst) ((_inst) >> 12)
309
310 /*
311 * Get the 8-bit "vAA" 8-bit register index from the instruction word.
312 * (_inst is u2)
313 */
314 #define INST_AA(_inst) ((_inst) >> 8)
315
316 /*
317 * The current PC must be available to Throwable constructors, e.g.
318 * those created by dvmThrowException(), so that the exception stack
319 * trace can be generated correctly. If we don't do this, the offset
320 * within the current method won't be shown correctly. See the notes
321 * in Exception.c.
322 *
323 * This is also used to determine the address for precise GC.
324 *
325 * Assumes existence of "u4* fp" and "const u2* pc".
326 */
327 #define EXPORT_PC() (SAVEAREA_FROM_FP(fp)->xtra.currentPc = pc)
328
329 /*
330 * Determine if we need to switch to a different interpreter. "_current"
331 * is either INTERP_STD or INTERP_DBG. It should be fixed for a given
332 * interpreter generation file, which should remove the outer conditional
333 * from the following.
334 *
335 * If we're building without debug and profiling support, we never switch.
336 */
337 #if defined(WITH_PROFILER) || defined(WITH_DEBUGGER)
338 #if defined(WITH_JIT)
339 # define NEED_INTERP_SWITCH(_current) ( \
340 (_current == INTERP_STD) ? \
341 dvmJitDebuggerOrProfilerActive(interpState->jitState) : \
342 !dvmJitDebuggerOrProfilerActive(interpState->jitState) )
343 #else
344 # define NEED_INTERP_SWITCH(_current) ( \
345 (_current == INTERP_STD) ? \
346 dvmDebuggerOrProfilerActive() : !dvmDebuggerOrProfilerActive() )
347 #endif
348 #else
349 # define NEED_INTERP_SWITCH(_current) (false)
350 #endif
351
352 /*
353 * Check to see if "obj" is NULL. If so, throw an exception. Assumes the
354 * pc has already been exported to the stack.
355 *
356 * Perform additional checks on debug builds.
357 *
358 * Use this to check for NULL when the instruction handler calls into
359 * something that could throw an exception (so we have already called
360 * EXPORT_PC at the top).
361 */
checkForNull(Object * obj)362 static inline bool checkForNull(Object* obj)
363 {
364 if (obj == NULL) {
365 dvmThrowException("Ljava/lang/NullPointerException;", NULL);
366 return false;
367 }
368 #ifdef WITH_EXTRA_OBJECT_VALIDATION
369 if (!dvmIsValidObject(obj)) {
370 LOGE("Invalid object %p\n", obj);
371 dvmAbort();
372 }
373 #endif
374 #ifndef NDEBUG
375 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) {
376 /* probable heap corruption */
377 LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj);
378 dvmAbort();
379 }
380 #endif
381 return true;
382 }
383
384 /*
385 * Check to see if "obj" is NULL. If so, export the PC into the stack
386 * frame and throw an exception.
387 *
388 * Perform additional checks on debug builds.
389 *
390 * Use this to check for NULL when the instruction handler doesn't do
391 * anything else that can throw an exception.
392 */
checkForNullExportPC(Object * obj,u4 * fp,const u2 * pc)393 static inline bool checkForNullExportPC(Object* obj, u4* fp, const u2* pc)
394 {
395 if (obj == NULL) {
396 EXPORT_PC();
397 dvmThrowException("Ljava/lang/NullPointerException;", NULL);
398 return false;
399 }
400 #ifdef WITH_EXTRA_OBJECT_VALIDATION
401 if (!dvmIsValidObject(obj)) {
402 LOGE("Invalid object %p\n", obj);
403 dvmAbort();
404 }
405 #endif
406 #ifndef NDEBUG
407 if (obj->clazz == NULL || ((u4) obj->clazz) <= 65536) {
408 /* probable heap corruption */
409 LOGE("Invalid object class %p (in %p)\n", obj->clazz, obj);
410 dvmAbort();
411 }
412 #endif
413 return true;
414 }
415
416 /* File: cstubs/stubdefs.c */
417 /* this is a standard (no debug support) interpreter */
418 #define INTERP_TYPE INTERP_STD
419 #define CHECK_DEBUG_AND_PROF() ((void)0)
420 # define CHECK_TRACKED_REFS() ((void)0)
421
422 /*
423 * In the C mterp stubs, "goto" is a function call followed immediately
424 * by a return.
425 */
426
427 #define GOTO_TARGET_DECL(_target, ...) \
428 void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__);
429
430 #define GOTO_TARGET(_target, ...) \
431 void dvmMterp_##_target(MterpGlue* glue, ## __VA_ARGS__) { \
432 u2 ref, vsrc1, vsrc2, vdst; \
433 u2 inst = FETCH(0); \
434 const Method* methodToCall; \
435 StackSaveArea* debugSaveArea;
436
437 #define GOTO_TARGET_END }
438
439 /*
440 * Redefine what used to be local variable accesses into MterpGlue struct
441 * references. (These are undefined down in "footer.c".)
442 */
443 #define retval glue->retval
444 #define pc glue->pc
445 #define fp glue->fp
446 #define curMethod glue->method
447 #define methodClassDex glue->methodClassDex
448 #define self glue->self
449 #define debugTrackedRefStart glue->debugTrackedRefStart
450
451 /* ugh */
452 #define STUB_HACK(x) x
453
454
455 /*
456 * Opcode handler framing macros. Here, each opcode is a separate function
457 * that takes a "glue" argument and returns void. We can't declare
458 * these "static" because they may be called from an assembly stub.
459 */
460 #define HANDLE_OPCODE(_op) \
461 void dvmMterp_##_op(MterpGlue* glue) { \
462 u2 ref, vsrc1, vsrc2, vdst; \
463 u2 inst = FETCH(0);
464
465 #define OP_END }
466
467 /*
468 * Like the "portable" FINISH, but don't reload "inst", and return to caller
469 * when done.
470 */
471 #define FINISH(_offset) { \
472 ADJUST_PC(_offset); \
473 CHECK_DEBUG_AND_PROF(); \
474 CHECK_TRACKED_REFS(); \
475 return; \
476 }
477
478
479 /*
480 * The "goto label" statements turn into function calls followed by
481 * return statements. Some of the functions take arguments, which in the
482 * portable interpreter are handled by assigning values to globals.
483 */
484
485 #define GOTO_exceptionThrown() \
486 do { \
487 dvmMterp_exceptionThrown(glue); \
488 return; \
489 } while(false)
490
491 #define GOTO_returnFromMethod() \
492 do { \
493 dvmMterp_returnFromMethod(glue); \
494 return; \
495 } while(false)
496
497 #define GOTO_invoke(_target, _methodCallRange) \
498 do { \
499 dvmMterp_##_target(glue, _methodCallRange); \
500 return; \
501 } while(false)
502
503 #define GOTO_invokeMethod(_methodCallRange, _methodToCall, _vsrc1, _vdst) \
504 do { \
505 dvmMterp_invokeMethod(glue, _methodCallRange, _methodToCall, \
506 _vsrc1, _vdst); \
507 return; \
508 } while(false)
509
510 /*
511 * As a special case, "goto bail" turns into a longjmp. Use "bail_switch"
512 * if we need to switch to the other interpreter upon our return.
513 */
514 #define GOTO_bail() \
515 dvmMterpStdBail(glue, false);
516 #define GOTO_bail_switch() \
517 dvmMterpStdBail(glue, true);
518
519 /*
520 * Periodically check for thread suspension.
521 *
522 * While we're at it, see if a debugger has attached or the profiler has
523 * started. If so, switch to a different "goto" table.
524 */
525 #define PERIODIC_CHECKS(_entryPoint, _pcadj) { \
526 if (dvmCheckSuspendQuick(self)) { \
527 EXPORT_PC(); /* need for precise GC */ \
528 dvmCheckSuspendPending(self); \
529 } \
530 if (NEED_INTERP_SWITCH(INTERP_TYPE)) { \
531 ADJUST_PC(_pcadj); \
532 glue->entryPoint = _entryPoint; \
533 LOGVV("threadid=%d: switch to STD ep=%d adj=%d\n", \
534 self->threadId, (_entryPoint), (_pcadj)); \
535 GOTO_bail_switch(); \
536 } \
537 }
538
539
540 /* File: c/opcommon.c */
541 /* forward declarations of goto targets */
542 GOTO_TARGET_DECL(filledNewArray, bool methodCallRange);
543 GOTO_TARGET_DECL(invokeVirtual, bool methodCallRange);
544 GOTO_TARGET_DECL(invokeSuper, bool methodCallRange);
545 GOTO_TARGET_DECL(invokeInterface, bool methodCallRange);
546 GOTO_TARGET_DECL(invokeDirect, bool methodCallRange);
547 GOTO_TARGET_DECL(invokeStatic, bool methodCallRange);
548 GOTO_TARGET_DECL(invokeVirtualQuick, bool methodCallRange);
549 GOTO_TARGET_DECL(invokeSuperQuick, bool methodCallRange);
550 GOTO_TARGET_DECL(invokeMethod, bool methodCallRange, const Method* methodToCall,
551 u2 count, u2 regs);
552 GOTO_TARGET_DECL(returnFromMethod);
553 GOTO_TARGET_DECL(exceptionThrown);
554
555 /*
556 * ===========================================================================
557 *
558 * What follows are opcode definitions shared between multiple opcodes with
559 * minor substitutions handled by the C pre-processor. These should probably
560 * use the mterp substitution mechanism instead, with the code here moved
561 * into common fragment files (like the asm "binop.S"), although it's hard
562 * to give up the C preprocessor in favor of the much simpler text subst.
563 *
564 * ===========================================================================
565 */
566
567 #define HANDLE_NUMCONV(_opcode, _opname, _fromtype, _totype) \
568 HANDLE_OPCODE(_opcode /*vA, vB*/) \
569 vdst = INST_A(inst); \
570 vsrc1 = INST_B(inst); \
571 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \
572 SET_REGISTER##_totype(vdst, \
573 GET_REGISTER##_fromtype(vsrc1)); \
574 FINISH(1);
575
576 #define HANDLE_FLOAT_TO_INT(_opcode, _opname, _fromvtype, _fromrtype, \
577 _tovtype, _tortype) \
578 HANDLE_OPCODE(_opcode /*vA, vB*/) \
579 { \
580 /* spec defines specific handling for +/- inf and NaN values */ \
581 _fromvtype val; \
582 _tovtype intMin, intMax, result; \
583 vdst = INST_A(inst); \
584 vsrc1 = INST_B(inst); \
585 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \
586 val = GET_REGISTER##_fromrtype(vsrc1); \
587 intMin = (_tovtype) 1 << (sizeof(_tovtype) * 8 -1); \
588 intMax = ~intMin; \
589 result = (_tovtype) val; \
590 if (val >= intMax) /* +inf */ \
591 result = intMax; \
592 else if (val <= intMin) /* -inf */ \
593 result = intMin; \
594 else if (val != val) /* NaN */ \
595 result = 0; \
596 else \
597 result = (_tovtype) val; \
598 SET_REGISTER##_tortype(vdst, result); \
599 } \
600 FINISH(1);
601
602 #define HANDLE_INT_TO_SMALL(_opcode, _opname, _type) \
603 HANDLE_OPCODE(_opcode /*vA, vB*/) \
604 vdst = INST_A(inst); \
605 vsrc1 = INST_B(inst); \
606 ILOGV("|int-to-%s v%d,v%d", (_opname), vdst, vsrc1); \
607 SET_REGISTER(vdst, (_type) GET_REGISTER(vsrc1)); \
608 FINISH(1);
609
610 /* NOTE: the comparison result is always a signed 4-byte integer */
611 #define HANDLE_OP_CMPX(_opcode, _opname, _varType, _type, _nanVal) \
612 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
613 { \
614 int result; \
615 u2 regs; \
616 _varType val1, val2; \
617 vdst = INST_AA(inst); \
618 regs = FETCH(1); \
619 vsrc1 = regs & 0xff; \
620 vsrc2 = regs >> 8; \
621 ILOGV("|cmp%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
622 val1 = GET_REGISTER##_type(vsrc1); \
623 val2 = GET_REGISTER##_type(vsrc2); \
624 if (val1 == val2) \
625 result = 0; \
626 else if (val1 < val2) \
627 result = -1; \
628 else if (val1 > val2) \
629 result = 1; \
630 else \
631 result = (_nanVal); \
632 ILOGV("+ result=%d\n", result); \
633 SET_REGISTER(vdst, result); \
634 } \
635 FINISH(2);
636
637 #define HANDLE_OP_IF_XX(_opcode, _opname, _cmp) \
638 HANDLE_OPCODE(_opcode /*vA, vB, +CCCC*/) \
639 vsrc1 = INST_A(inst); \
640 vsrc2 = INST_B(inst); \
641 if ((s4) GET_REGISTER(vsrc1) _cmp (s4) GET_REGISTER(vsrc2)) { \
642 int branchOffset = (s2)FETCH(1); /* sign-extended */ \
643 ILOGV("|if-%s v%d,v%d,+0x%04x", (_opname), vsrc1, vsrc2, \
644 branchOffset); \
645 ILOGV("> branch taken"); \
646 if (branchOffset < 0) \
647 PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \
648 FINISH(branchOffset); \
649 } else { \
650 ILOGV("|if-%s v%d,v%d,-", (_opname), vsrc1, vsrc2); \
651 FINISH(2); \
652 }
653
654 #define HANDLE_OP_IF_XXZ(_opcode, _opname, _cmp) \
655 HANDLE_OPCODE(_opcode /*vAA, +BBBB*/) \
656 vsrc1 = INST_AA(inst); \
657 if ((s4) GET_REGISTER(vsrc1) _cmp 0) { \
658 int branchOffset = (s2)FETCH(1); /* sign-extended */ \
659 ILOGV("|if-%s v%d,+0x%04x", (_opname), vsrc1, branchOffset); \
660 ILOGV("> branch taken"); \
661 if (branchOffset < 0) \
662 PERIODIC_CHECKS(kInterpEntryInstr, branchOffset); \
663 FINISH(branchOffset); \
664 } else { \
665 ILOGV("|if-%s v%d,-", (_opname), vsrc1); \
666 FINISH(2); \
667 }
668
669 #define HANDLE_UNOP(_opcode, _opname, _pfx, _sfx, _type) \
670 HANDLE_OPCODE(_opcode /*vA, vB*/) \
671 vdst = INST_A(inst); \
672 vsrc1 = INST_B(inst); \
673 ILOGV("|%s v%d,v%d", (_opname), vdst, vsrc1); \
674 SET_REGISTER##_type(vdst, _pfx GET_REGISTER##_type(vsrc1) _sfx); \
675 FINISH(1);
676
677 #define HANDLE_OP_X_INT(_opcode, _opname, _op, _chkdiv) \
678 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
679 { \
680 u2 srcRegs; \
681 vdst = INST_AA(inst); \
682 srcRegs = FETCH(1); \
683 vsrc1 = srcRegs & 0xff; \
684 vsrc2 = srcRegs >> 8; \
685 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \
686 if (_chkdiv != 0) { \
687 s4 firstVal, secondVal, result; \
688 firstVal = GET_REGISTER(vsrc1); \
689 secondVal = GET_REGISTER(vsrc2); \
690 if (secondVal == 0) { \
691 EXPORT_PC(); \
692 dvmThrowException("Ljava/lang/ArithmeticException;", \
693 "divide by zero"); \
694 GOTO_exceptionThrown(); \
695 } \
696 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \
697 if (_chkdiv == 1) \
698 result = firstVal; /* division */ \
699 else \
700 result = 0; /* remainder */ \
701 } else { \
702 result = firstVal _op secondVal; \
703 } \
704 SET_REGISTER(vdst, result); \
705 } else { \
706 /* non-div/rem case */ \
707 SET_REGISTER(vdst, \
708 (s4) GET_REGISTER(vsrc1) _op (s4) GET_REGISTER(vsrc2)); \
709 } \
710 } \
711 FINISH(2);
712
713 #define HANDLE_OP_SHX_INT(_opcode, _opname, _cast, _op) \
714 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
715 { \
716 u2 srcRegs; \
717 vdst = INST_AA(inst); \
718 srcRegs = FETCH(1); \
719 vsrc1 = srcRegs & 0xff; \
720 vsrc2 = srcRegs >> 8; \
721 ILOGV("|%s-int v%d,v%d", (_opname), vdst, vsrc1); \
722 SET_REGISTER(vdst, \
723 _cast GET_REGISTER(vsrc1) _op (GET_REGISTER(vsrc2) & 0x1f)); \
724 } \
725 FINISH(2);
726
727 #define HANDLE_OP_X_INT_LIT16(_opcode, _opname, _op, _chkdiv) \
728 HANDLE_OPCODE(_opcode /*vA, vB, #+CCCC*/) \
729 vdst = INST_A(inst); \
730 vsrc1 = INST_B(inst); \
731 vsrc2 = FETCH(1); \
732 ILOGV("|%s-int/lit16 v%d,v%d,#+0x%04x", \
733 (_opname), vdst, vsrc1, vsrc2); \
734 if (_chkdiv != 0) { \
735 s4 firstVal, result; \
736 firstVal = GET_REGISTER(vsrc1); \
737 if ((s2) vsrc2 == 0) { \
738 EXPORT_PC(); \
739 dvmThrowException("Ljava/lang/ArithmeticException;", \
740 "divide by zero"); \
741 GOTO_exceptionThrown(); \
742 } \
743 if ((u4)firstVal == 0x80000000 && ((s2) vsrc2) == -1) { \
744 /* won't generate /lit16 instr for this; check anyway */ \
745 if (_chkdiv == 1) \
746 result = firstVal; /* division */ \
747 else \
748 result = 0; /* remainder */ \
749 } else { \
750 result = firstVal _op (s2) vsrc2; \
751 } \
752 SET_REGISTER(vdst, result); \
753 } else { \
754 /* non-div/rem case */ \
755 SET_REGISTER(vdst, GET_REGISTER(vsrc1) _op (s2) vsrc2); \
756 } \
757 FINISH(2);
758
759 #define HANDLE_OP_X_INT_LIT8(_opcode, _opname, _op, _chkdiv) \
760 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \
761 { \
762 u2 litInfo; \
763 vdst = INST_AA(inst); \
764 litInfo = FETCH(1); \
765 vsrc1 = litInfo & 0xff; \
766 vsrc2 = litInfo >> 8; /* constant */ \
767 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \
768 (_opname), vdst, vsrc1, vsrc2); \
769 if (_chkdiv != 0) { \
770 s4 firstVal, result; \
771 firstVal = GET_REGISTER(vsrc1); \
772 if ((s1) vsrc2 == 0) { \
773 EXPORT_PC(); \
774 dvmThrowException("Ljava/lang/ArithmeticException;", \
775 "divide by zero"); \
776 GOTO_exceptionThrown(); \
777 } \
778 if ((u4)firstVal == 0x80000000 && ((s1) vsrc2) == -1) { \
779 if (_chkdiv == 1) \
780 result = firstVal; /* division */ \
781 else \
782 result = 0; /* remainder */ \
783 } else { \
784 result = firstVal _op ((s1) vsrc2); \
785 } \
786 SET_REGISTER(vdst, result); \
787 } else { \
788 SET_REGISTER(vdst, \
789 (s4) GET_REGISTER(vsrc1) _op (s1) vsrc2); \
790 } \
791 } \
792 FINISH(2);
793
794 #define HANDLE_OP_SHX_INT_LIT8(_opcode, _opname, _cast, _op) \
795 HANDLE_OPCODE(_opcode /*vAA, vBB, #+CC*/) \
796 { \
797 u2 litInfo; \
798 vdst = INST_AA(inst); \
799 litInfo = FETCH(1); \
800 vsrc1 = litInfo & 0xff; \
801 vsrc2 = litInfo >> 8; /* constant */ \
802 ILOGV("|%s-int/lit8 v%d,v%d,#+0x%02x", \
803 (_opname), vdst, vsrc1, vsrc2); \
804 SET_REGISTER(vdst, \
805 _cast GET_REGISTER(vsrc1) _op (vsrc2 & 0x1f)); \
806 } \
807 FINISH(2);
808
809 #define HANDLE_OP_X_INT_2ADDR(_opcode, _opname, _op, _chkdiv) \
810 HANDLE_OPCODE(_opcode /*vA, vB*/) \
811 vdst = INST_A(inst); \
812 vsrc1 = INST_B(inst); \
813 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \
814 if (_chkdiv != 0) { \
815 s4 firstVal, secondVal, result; \
816 firstVal = GET_REGISTER(vdst); \
817 secondVal = GET_REGISTER(vsrc1); \
818 if (secondVal == 0) { \
819 EXPORT_PC(); \
820 dvmThrowException("Ljava/lang/ArithmeticException;", \
821 "divide by zero"); \
822 GOTO_exceptionThrown(); \
823 } \
824 if ((u4)firstVal == 0x80000000 && secondVal == -1) { \
825 if (_chkdiv == 1) \
826 result = firstVal; /* division */ \
827 else \
828 result = 0; /* remainder */ \
829 } else { \
830 result = firstVal _op secondVal; \
831 } \
832 SET_REGISTER(vdst, result); \
833 } else { \
834 SET_REGISTER(vdst, \
835 (s4) GET_REGISTER(vdst) _op (s4) GET_REGISTER(vsrc1)); \
836 } \
837 FINISH(1);
838
839 #define HANDLE_OP_SHX_INT_2ADDR(_opcode, _opname, _cast, _op) \
840 HANDLE_OPCODE(_opcode /*vA, vB*/) \
841 vdst = INST_A(inst); \
842 vsrc1 = INST_B(inst); \
843 ILOGV("|%s-int-2addr v%d,v%d", (_opname), vdst, vsrc1); \
844 SET_REGISTER(vdst, \
845 _cast GET_REGISTER(vdst) _op (GET_REGISTER(vsrc1) & 0x1f)); \
846 FINISH(1);
847
848 #define HANDLE_OP_X_LONG(_opcode, _opname, _op, _chkdiv) \
849 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
850 { \
851 u2 srcRegs; \
852 vdst = INST_AA(inst); \
853 srcRegs = FETCH(1); \
854 vsrc1 = srcRegs & 0xff; \
855 vsrc2 = srcRegs >> 8; \
856 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
857 if (_chkdiv != 0) { \
858 s8 firstVal, secondVal, result; \
859 firstVal = GET_REGISTER_WIDE(vsrc1); \
860 secondVal = GET_REGISTER_WIDE(vsrc2); \
861 if (secondVal == 0LL) { \
862 EXPORT_PC(); \
863 dvmThrowException("Ljava/lang/ArithmeticException;", \
864 "divide by zero"); \
865 GOTO_exceptionThrown(); \
866 } \
867 if ((u8)firstVal == 0x8000000000000000ULL && \
868 secondVal == -1LL) \
869 { \
870 if (_chkdiv == 1) \
871 result = firstVal; /* division */ \
872 else \
873 result = 0; /* remainder */ \
874 } else { \
875 result = firstVal _op secondVal; \
876 } \
877 SET_REGISTER_WIDE(vdst, result); \
878 } else { \
879 SET_REGISTER_WIDE(vdst, \
880 (s8) GET_REGISTER_WIDE(vsrc1) _op (s8) GET_REGISTER_WIDE(vsrc2)); \
881 } \
882 } \
883 FINISH(2);
884
885 #define HANDLE_OP_SHX_LONG(_opcode, _opname, _cast, _op) \
886 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
887 { \
888 u2 srcRegs; \
889 vdst = INST_AA(inst); \
890 srcRegs = FETCH(1); \
891 vsrc1 = srcRegs & 0xff; \
892 vsrc2 = srcRegs >> 8; \
893 ILOGV("|%s-long v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
894 SET_REGISTER_WIDE(vdst, \
895 _cast GET_REGISTER_WIDE(vsrc1) _op (GET_REGISTER(vsrc2) & 0x3f)); \
896 } \
897 FINISH(2);
898
899 #define HANDLE_OP_X_LONG_2ADDR(_opcode, _opname, _op, _chkdiv) \
900 HANDLE_OPCODE(_opcode /*vA, vB*/) \
901 vdst = INST_A(inst); \
902 vsrc1 = INST_B(inst); \
903 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \
904 if (_chkdiv != 0) { \
905 s8 firstVal, secondVal, result; \
906 firstVal = GET_REGISTER_WIDE(vdst); \
907 secondVal = GET_REGISTER_WIDE(vsrc1); \
908 if (secondVal == 0LL) { \
909 EXPORT_PC(); \
910 dvmThrowException("Ljava/lang/ArithmeticException;", \
911 "divide by zero"); \
912 GOTO_exceptionThrown(); \
913 } \
914 if ((u8)firstVal == 0x8000000000000000ULL && \
915 secondVal == -1LL) \
916 { \
917 if (_chkdiv == 1) \
918 result = firstVal; /* division */ \
919 else \
920 result = 0; /* remainder */ \
921 } else { \
922 result = firstVal _op secondVal; \
923 } \
924 SET_REGISTER_WIDE(vdst, result); \
925 } else { \
926 SET_REGISTER_WIDE(vdst, \
927 (s8) GET_REGISTER_WIDE(vdst) _op (s8)GET_REGISTER_WIDE(vsrc1));\
928 } \
929 FINISH(1);
930
931 #define HANDLE_OP_SHX_LONG_2ADDR(_opcode, _opname, _cast, _op) \
932 HANDLE_OPCODE(_opcode /*vA, vB*/) \
933 vdst = INST_A(inst); \
934 vsrc1 = INST_B(inst); \
935 ILOGV("|%s-long-2addr v%d,v%d", (_opname), vdst, vsrc1); \
936 SET_REGISTER_WIDE(vdst, \
937 _cast GET_REGISTER_WIDE(vdst) _op (GET_REGISTER(vsrc1) & 0x3f)); \
938 FINISH(1);
939
940 #define HANDLE_OP_X_FLOAT(_opcode, _opname, _op) \
941 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
942 { \
943 u2 srcRegs; \
944 vdst = INST_AA(inst); \
945 srcRegs = FETCH(1); \
946 vsrc1 = srcRegs & 0xff; \
947 vsrc2 = srcRegs >> 8; \
948 ILOGV("|%s-float v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
949 SET_REGISTER_FLOAT(vdst, \
950 GET_REGISTER_FLOAT(vsrc1) _op GET_REGISTER_FLOAT(vsrc2)); \
951 } \
952 FINISH(2);
953
954 #define HANDLE_OP_X_DOUBLE(_opcode, _opname, _op) \
955 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
956 { \
957 u2 srcRegs; \
958 vdst = INST_AA(inst); \
959 srcRegs = FETCH(1); \
960 vsrc1 = srcRegs & 0xff; \
961 vsrc2 = srcRegs >> 8; \
962 ILOGV("|%s-double v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
963 SET_REGISTER_DOUBLE(vdst, \
964 GET_REGISTER_DOUBLE(vsrc1) _op GET_REGISTER_DOUBLE(vsrc2)); \
965 } \
966 FINISH(2);
967
968 #define HANDLE_OP_X_FLOAT_2ADDR(_opcode, _opname, _op) \
969 HANDLE_OPCODE(_opcode /*vA, vB*/) \
970 vdst = INST_A(inst); \
971 vsrc1 = INST_B(inst); \
972 ILOGV("|%s-float-2addr v%d,v%d", (_opname), vdst, vsrc1); \
973 SET_REGISTER_FLOAT(vdst, \
974 GET_REGISTER_FLOAT(vdst) _op GET_REGISTER_FLOAT(vsrc1)); \
975 FINISH(1);
976
977 #define HANDLE_OP_X_DOUBLE_2ADDR(_opcode, _opname, _op) \
978 HANDLE_OPCODE(_opcode /*vA, vB*/) \
979 vdst = INST_A(inst); \
980 vsrc1 = INST_B(inst); \
981 ILOGV("|%s-double-2addr v%d,v%d", (_opname), vdst, vsrc1); \
982 SET_REGISTER_DOUBLE(vdst, \
983 GET_REGISTER_DOUBLE(vdst) _op GET_REGISTER_DOUBLE(vsrc1)); \
984 FINISH(1);
985
986 #define HANDLE_OP_AGET(_opcode, _opname, _type, _regsize) \
987 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
988 { \
989 ArrayObject* arrayObj; \
990 u2 arrayInfo; \
991 EXPORT_PC(); \
992 vdst = INST_AA(inst); \
993 arrayInfo = FETCH(1); \
994 vsrc1 = arrayInfo & 0xff; /* array ptr */ \
995 vsrc2 = arrayInfo >> 8; /* index */ \
996 ILOGV("|aget%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
997 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \
998 if (!checkForNull((Object*) arrayObj)) \
999 GOTO_exceptionThrown(); \
1000 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \
1001 LOGV("Invalid array access: %p %d (len=%d)\n", \
1002 arrayObj, vsrc2, arrayObj->length); \
1003 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \
1004 NULL); \
1005 GOTO_exceptionThrown(); \
1006 } \
1007 SET_REGISTER##_regsize(vdst, \
1008 ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)]); \
1009 ILOGV("+ AGET[%d]=0x%x", GET_REGISTER(vsrc2), GET_REGISTER(vdst)); \
1010 } \
1011 FINISH(2);
1012
1013 #define HANDLE_OP_APUT(_opcode, _opname, _type, _regsize) \
1014 HANDLE_OPCODE(_opcode /*vAA, vBB, vCC*/) \
1015 { \
1016 ArrayObject* arrayObj; \
1017 u2 arrayInfo; \
1018 EXPORT_PC(); \
1019 vdst = INST_AA(inst); /* AA: source value */ \
1020 arrayInfo = FETCH(1); \
1021 vsrc1 = arrayInfo & 0xff; /* BB: array ptr */ \
1022 vsrc2 = arrayInfo >> 8; /* CC: index */ \
1023 ILOGV("|aput%s v%d,v%d,v%d", (_opname), vdst, vsrc1, vsrc2); \
1024 arrayObj = (ArrayObject*) GET_REGISTER(vsrc1); \
1025 if (!checkForNull((Object*) arrayObj)) \
1026 GOTO_exceptionThrown(); \
1027 if (GET_REGISTER(vsrc2) >= arrayObj->length) { \
1028 dvmThrowException("Ljava/lang/ArrayIndexOutOfBoundsException;", \
1029 NULL); \
1030 GOTO_exceptionThrown(); \
1031 } \
1032 ILOGV("+ APUT[%d]=0x%08x", GET_REGISTER(vsrc2), GET_REGISTER(vdst));\
1033 ((_type*) arrayObj->contents)[GET_REGISTER(vsrc2)] = \
1034 GET_REGISTER##_regsize(vdst); \
1035 } \
1036 FINISH(2);
1037
1038 /*
1039 * It's possible to get a bad value out of a field with sub-32-bit stores
1040 * because the -quick versions always operate on 32 bits. Consider:
1041 * short foo = -1 (sets a 32-bit register to 0xffffffff)
1042 * iput-quick foo (writes all 32 bits to the field)
1043 * short bar = 1 (sets a 32-bit register to 0x00000001)
1044 * iput-short (writes the low 16 bits to the field)
1045 * iget-quick foo (reads all 32 bits from the field, yielding 0xffff0001)
1046 * This can only happen when optimized and non-optimized code has interleaved
1047 * access to the same field. This is unlikely but possible.
1048 *
1049 * The easiest way to fix this is to always read/write 32 bits at a time. On
1050 * a device with a 16-bit data bus this is sub-optimal. (The alternative
1051 * approach is to have sub-int versions of iget-quick, but now we're wasting
1052 * Dalvik instruction space and making it less likely that handler code will
1053 * already be in the CPU i-cache.)
1054 */
1055 #define HANDLE_IGET_X(_opcode, _opname, _ftype, _regsize) \
1056 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \
1057 { \
1058 InstField* ifield; \
1059 Object* obj; \
1060 EXPORT_PC(); \
1061 vdst = INST_A(inst); \
1062 vsrc1 = INST_B(inst); /* object ptr */ \
1063 ref = FETCH(1); /* field ref */ \
1064 ILOGV("|iget%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \
1065 obj = (Object*) GET_REGISTER(vsrc1); \
1066 if (!checkForNull(obj)) \
1067 GOTO_exceptionThrown(); \
1068 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \
1069 if (ifield == NULL) { \
1070 ifield = dvmResolveInstField(curMethod->clazz, ref); \
1071 if (ifield == NULL) \
1072 GOTO_exceptionThrown(); \
1073 } \
1074 SET_REGISTER##_regsize(vdst, \
1075 dvmGetField##_ftype(obj, ifield->byteOffset)); \
1076 ILOGV("+ IGET '%s'=0x%08llx", ifield->field.name, \
1077 (u8) GET_REGISTER##_regsize(vdst)); \
1078 UPDATE_FIELD_GET(&ifield->field); \
1079 } \
1080 FINISH(2);
1081
1082 #define HANDLE_IGET_X_QUICK(_opcode, _opname, _ftype, _regsize) \
1083 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \
1084 { \
1085 Object* obj; \
1086 vdst = INST_A(inst); \
1087 vsrc1 = INST_B(inst); /* object ptr */ \
1088 ref = FETCH(1); /* field offset */ \
1089 ILOGV("|iget%s-quick v%d,v%d,field@+%u", \
1090 (_opname), vdst, vsrc1, ref); \
1091 obj = (Object*) GET_REGISTER(vsrc1); \
1092 if (!checkForNullExportPC(obj, fp, pc)) \
1093 GOTO_exceptionThrown(); \
1094 SET_REGISTER##_regsize(vdst, dvmGetField##_ftype(obj, ref)); \
1095 ILOGV("+ IGETQ %d=0x%08llx", ref, \
1096 (u8) GET_REGISTER##_regsize(vdst)); \
1097 } \
1098 FINISH(2);
1099
1100 #define HANDLE_IPUT_X(_opcode, _opname, _ftype, _regsize) \
1101 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \
1102 { \
1103 InstField* ifield; \
1104 Object* obj; \
1105 EXPORT_PC(); \
1106 vdst = INST_A(inst); \
1107 vsrc1 = INST_B(inst); /* object ptr */ \
1108 ref = FETCH(1); /* field ref */ \
1109 ILOGV("|iput%s v%d,v%d,field@0x%04x", (_opname), vdst, vsrc1, ref); \
1110 obj = (Object*) GET_REGISTER(vsrc1); \
1111 if (!checkForNull(obj)) \
1112 GOTO_exceptionThrown(); \
1113 ifield = (InstField*) dvmDexGetResolvedField(methodClassDex, ref); \
1114 if (ifield == NULL) { \
1115 ifield = dvmResolveInstField(curMethod->clazz, ref); \
1116 if (ifield == NULL) \
1117 GOTO_exceptionThrown(); \
1118 } \
1119 dvmSetField##_ftype(obj, ifield->byteOffset, \
1120 GET_REGISTER##_regsize(vdst)); \
1121 ILOGV("+ IPUT '%s'=0x%08llx", ifield->field.name, \
1122 (u8) GET_REGISTER##_regsize(vdst)); \
1123 UPDATE_FIELD_PUT(&ifield->field); \
1124 } \
1125 FINISH(2);
1126
1127 #define HANDLE_IPUT_X_QUICK(_opcode, _opname, _ftype, _regsize) \
1128 HANDLE_OPCODE(_opcode /*vA, vB, field@CCCC*/) \
1129 { \
1130 Object* obj; \
1131 vdst = INST_A(inst); \
1132 vsrc1 = INST_B(inst); /* object ptr */ \
1133 ref = FETCH(1); /* field offset */ \
1134 ILOGV("|iput%s-quick v%d,v%d,field@0x%04x", \
1135 (_opname), vdst, vsrc1, ref); \
1136 obj = (Object*) GET_REGISTER(vsrc1); \
1137 if (!checkForNullExportPC(obj, fp, pc)) \
1138 GOTO_exceptionThrown(); \
1139 dvmSetField##_ftype(obj, ref, GET_REGISTER##_regsize(vdst)); \
1140 ILOGV("+ IPUTQ %d=0x%08llx", ref, \
1141 (u8) GET_REGISTER##_regsize(vdst)); \
1142 } \
1143 FINISH(2);
1144
1145 #define HANDLE_SGET_X(_opcode, _opname, _ftype, _regsize) \
1146 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \
1147 { \
1148 StaticField* sfield; \
1149 vdst = INST_AA(inst); \
1150 ref = FETCH(1); /* field ref */ \
1151 ILOGV("|sget%s v%d,sfield@0x%04x", (_opname), vdst, ref); \
1152 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \
1153 if (sfield == NULL) { \
1154 EXPORT_PC(); \
1155 sfield = dvmResolveStaticField(curMethod->clazz, ref); \
1156 if (sfield == NULL) \
1157 GOTO_exceptionThrown(); \
1158 } \
1159 SET_REGISTER##_regsize(vdst, dvmGetStaticField##_ftype(sfield)); \
1160 ILOGV("+ SGET '%s'=0x%08llx", \
1161 sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \
1162 UPDATE_FIELD_GET(&sfield->field); \
1163 } \
1164 FINISH(2);
1165
1166 #define HANDLE_SPUT_X(_opcode, _opname, _ftype, _regsize) \
1167 HANDLE_OPCODE(_opcode /*vAA, field@BBBB*/) \
1168 { \
1169 StaticField* sfield; \
1170 vdst = INST_AA(inst); \
1171 ref = FETCH(1); /* field ref */ \
1172 ILOGV("|sput%s v%d,sfield@0x%04x", (_opname), vdst, ref); \
1173 sfield = (StaticField*)dvmDexGetResolvedField(methodClassDex, ref); \
1174 if (sfield == NULL) { \
1175 EXPORT_PC(); \
1176 sfield = dvmResolveStaticField(curMethod->clazz, ref); \
1177 if (sfield == NULL) \
1178 GOTO_exceptionThrown(); \
1179 } \
1180 dvmSetStaticField##_ftype(sfield, GET_REGISTER##_regsize(vdst)); \
1181 ILOGV("+ SPUT '%s'=0x%08llx", \
1182 sfield->field.name, (u8)GET_REGISTER##_regsize(vdst)); \
1183 UPDATE_FIELD_PUT(&sfield->field); \
1184 } \
1185 FINISH(2);
1186
1187
1188 /* File: c/gotoTargets.c */
1189 /*
1190 * C footer. This has some common code shared by the various targets.
1191 */
1192
1193 /*
1194 * Everything from here on is a "goto target". In the basic interpreter
1195 * we jump into these targets and then jump directly to the handler for
1196 * next instruction. Here, these are subroutines that return to the caller.
1197 */
1198
GOTO_TARGET(filledNewArray,bool methodCallRange)1199 GOTO_TARGET(filledNewArray, bool methodCallRange)
1200 {
1201 ClassObject* arrayClass;
1202 ArrayObject* newArray;
1203 u4* contents;
1204 char typeCh;
1205 int i;
1206 u4 arg5;
1207
1208 EXPORT_PC();
1209
1210 ref = FETCH(1); /* class ref */
1211 vdst = FETCH(2); /* first 4 regs -or- range base */
1212
1213 if (methodCallRange) {
1214 vsrc1 = INST_AA(inst); /* #of elements */
1215 arg5 = -1; /* silence compiler warning */
1216 ILOGV("|filled-new-array-range args=%d @0x%04x {regs=v%d-v%d}",
1217 vsrc1, ref, vdst, vdst+vsrc1-1);
1218 } else {
1219 arg5 = INST_A(inst);
1220 vsrc1 = INST_B(inst); /* #of elements */
1221 ILOGV("|filled-new-array args=%d @0x%04x {regs=0x%04x %x}",
1222 vsrc1, ref, vdst, arg5);
1223 }
1224
1225 /*
1226 * Resolve the array class.
1227 */
1228 arrayClass = dvmDexGetResolvedClass(methodClassDex, ref);
1229 if (arrayClass == NULL) {
1230 arrayClass = dvmResolveClass(curMethod->clazz, ref, false);
1231 if (arrayClass == NULL)
1232 GOTO_exceptionThrown();
1233 }
1234 /*
1235 if (!dvmIsArrayClass(arrayClass)) {
1236 dvmThrowException("Ljava/lang/RuntimeError;",
1237 "filled-new-array needs array class");
1238 GOTO_exceptionThrown();
1239 }
1240 */
1241 /* verifier guarantees this is an array class */
1242 assert(dvmIsArrayClass(arrayClass));
1243 assert(dvmIsClassInitialized(arrayClass));
1244
1245 /*
1246 * Create an array of the specified type.
1247 */
1248 LOGVV("+++ filled-new-array type is '%s'\n", arrayClass->descriptor);
1249 typeCh = arrayClass->descriptor[1];
1250 if (typeCh == 'D' || typeCh == 'J') {
1251 /* category 2 primitives not allowed */
1252 dvmThrowException("Ljava/lang/RuntimeError;",
1253 "bad filled array req");
1254 GOTO_exceptionThrown();
1255 } else if (typeCh != 'L' && typeCh != '[' && typeCh != 'I') {
1256 /* TODO: requires multiple "fill in" loops with different widths */
1257 LOGE("non-int primitives not implemented\n");
1258 dvmThrowException("Ljava/lang/InternalError;",
1259 "filled-new-array not implemented for anything but 'int'");
1260 GOTO_exceptionThrown();
1261 }
1262
1263 newArray = dvmAllocArrayByClass(arrayClass, vsrc1, ALLOC_DONT_TRACK);
1264 if (newArray == NULL)
1265 GOTO_exceptionThrown();
1266
1267 /*
1268 * Fill in the elements. It's legal for vsrc1 to be zero.
1269 */
1270 contents = (u4*) newArray->contents;
1271 if (methodCallRange) {
1272 for (i = 0; i < vsrc1; i++)
1273 contents[i] = GET_REGISTER(vdst+i);
1274 } else {
1275 assert(vsrc1 <= 5);
1276 if (vsrc1 == 5) {
1277 contents[4] = GET_REGISTER(arg5);
1278 vsrc1--;
1279 }
1280 for (i = 0; i < vsrc1; i++) {
1281 contents[i] = GET_REGISTER(vdst & 0x0f);
1282 vdst >>= 4;
1283 }
1284 }
1285
1286 retval.l = newArray;
1287 }
1288 FINISH(3);
1289 GOTO_TARGET_END
1290
1291
GOTO_TARGET(invokeVirtual,bool methodCallRange)1292 GOTO_TARGET(invokeVirtual, bool methodCallRange)
1293 {
1294 Method* baseMethod;
1295 Object* thisPtr;
1296
1297 EXPORT_PC();
1298
1299 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1300 ref = FETCH(1); /* method ref */
1301 vdst = FETCH(2); /* 4 regs -or- first reg */
1302
1303 /*
1304 * The object against which we are executing a method is always
1305 * in the first argument.
1306 */
1307 if (methodCallRange) {
1308 assert(vsrc1 > 0);
1309 ILOGV("|invoke-virtual-range args=%d @0x%04x {regs=v%d-v%d}",
1310 vsrc1, ref, vdst, vdst+vsrc1-1);
1311 thisPtr = (Object*) GET_REGISTER(vdst);
1312 } else {
1313 assert((vsrc1>>4) > 0);
1314 ILOGV("|invoke-virtual args=%d @0x%04x {regs=0x%04x %x}",
1315 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1316 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f);
1317 }
1318
1319 if (!checkForNull(thisPtr))
1320 GOTO_exceptionThrown();
1321
1322 /*
1323 * Resolve the method. This is the correct method for the static
1324 * type of the object. We also verify access permissions here.
1325 */
1326 baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref);
1327 if (baseMethod == NULL) {
1328 baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL);
1329 if (baseMethod == NULL) {
1330 ILOGV("+ unknown method or access denied\n");
1331 GOTO_exceptionThrown();
1332 }
1333 }
1334
1335 /*
1336 * Combine the object we found with the vtable offset in the
1337 * method.
1338 */
1339 assert(baseMethod->methodIndex < thisPtr->clazz->vtableCount);
1340 methodToCall = thisPtr->clazz->vtable[baseMethod->methodIndex];
1341
1342 #if 0
1343 if (dvmIsAbstractMethod(methodToCall)) {
1344 /*
1345 * This can happen if you create two classes, Base and Sub, where
1346 * Sub is a sub-class of Base. Declare a protected abstract
1347 * method foo() in Base, and invoke foo() from a method in Base.
1348 * Base is an "abstract base class" and is never instantiated
1349 * directly. Now, Override foo() in Sub, and use Sub. This
1350 * Works fine unless Sub stops providing an implementation of
1351 * the method.
1352 */
1353 dvmThrowException("Ljava/lang/AbstractMethodError;",
1354 "abstract method not implemented");
1355 GOTO_exceptionThrown();
1356 }
1357 #else
1358 assert(!dvmIsAbstractMethod(methodToCall) ||
1359 methodToCall->nativeFunc != NULL);
1360 #endif
1361
1362 LOGVV("+++ base=%s.%s virtual[%d]=%s.%s\n",
1363 baseMethod->clazz->descriptor, baseMethod->name,
1364 (u4) baseMethod->methodIndex,
1365 methodToCall->clazz->descriptor, methodToCall->name);
1366 assert(methodToCall != NULL);
1367
1368 #if 0
1369 if (vsrc1 != methodToCall->insSize) {
1370 LOGW("WRONG METHOD: base=%s.%s virtual[%d]=%s.%s\n",
1371 baseMethod->clazz->descriptor, baseMethod->name,
1372 (u4) baseMethod->methodIndex,
1373 methodToCall->clazz->descriptor, methodToCall->name);
1374 //dvmDumpClass(baseMethod->clazz);
1375 //dvmDumpClass(methodToCall->clazz);
1376 dvmDumpAllClasses(0);
1377 }
1378 #endif
1379
1380 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1381 }
1382 GOTO_TARGET_END
1383
GOTO_TARGET(invokeSuper,bool methodCallRange)1384 GOTO_TARGET(invokeSuper, bool methodCallRange)
1385 {
1386 Method* baseMethod;
1387 u2 thisReg;
1388
1389 EXPORT_PC();
1390
1391 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1392 ref = FETCH(1); /* method ref */
1393 vdst = FETCH(2); /* 4 regs -or- first reg */
1394
1395 if (methodCallRange) {
1396 ILOGV("|invoke-super-range args=%d @0x%04x {regs=v%d-v%d}",
1397 vsrc1, ref, vdst, vdst+vsrc1-1);
1398 thisReg = vdst;
1399 } else {
1400 ILOGV("|invoke-super args=%d @0x%04x {regs=0x%04x %x}",
1401 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1402 thisReg = vdst & 0x0f;
1403 }
1404 /* impossible in well-formed code, but we must check nevertheless */
1405 if (!checkForNull((Object*) GET_REGISTER(thisReg)))
1406 GOTO_exceptionThrown();
1407
1408 /*
1409 * Resolve the method. This is the correct method for the static
1410 * type of the object. We also verify access permissions here.
1411 * The first arg to dvmResolveMethod() is just the referring class
1412 * (used for class loaders and such), so we don't want to pass
1413 * the superclass into the resolution call.
1414 */
1415 baseMethod = dvmDexGetResolvedMethod(methodClassDex, ref);
1416 if (baseMethod == NULL) {
1417 baseMethod = dvmResolveMethod(curMethod->clazz, ref,METHOD_VIRTUAL);
1418 if (baseMethod == NULL) {
1419 ILOGV("+ unknown method or access denied\n");
1420 GOTO_exceptionThrown();
1421 }
1422 }
1423
1424 /*
1425 * Combine the object we found with the vtable offset in the
1426 * method's class.
1427 *
1428 * We're using the current method's class' superclass, not the
1429 * superclass of "this". This is because we might be executing
1430 * in a method inherited from a superclass, and we want to run
1431 * in that class' superclass.
1432 */
1433 if (baseMethod->methodIndex >= curMethod->clazz->super->vtableCount) {
1434 /*
1435 * Method does not exist in the superclass. Could happen if
1436 * superclass gets updated.
1437 */
1438 dvmThrowException("Ljava/lang/NoSuchMethodError;",
1439 baseMethod->name);
1440 GOTO_exceptionThrown();
1441 }
1442 methodToCall = curMethod->clazz->super->vtable[baseMethod->methodIndex];
1443 #if 0
1444 if (dvmIsAbstractMethod(methodToCall)) {
1445 dvmThrowException("Ljava/lang/AbstractMethodError;",
1446 "abstract method not implemented");
1447 GOTO_exceptionThrown();
1448 }
1449 #else
1450 assert(!dvmIsAbstractMethod(methodToCall) ||
1451 methodToCall->nativeFunc != NULL);
1452 #endif
1453 LOGVV("+++ base=%s.%s super-virtual=%s.%s\n",
1454 baseMethod->clazz->descriptor, baseMethod->name,
1455 methodToCall->clazz->descriptor, methodToCall->name);
1456 assert(methodToCall != NULL);
1457
1458 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1459 }
1460 GOTO_TARGET_END
1461
GOTO_TARGET(invokeInterface,bool methodCallRange)1462 GOTO_TARGET(invokeInterface, bool methodCallRange)
1463 {
1464 Object* thisPtr;
1465 ClassObject* thisClass;
1466
1467 EXPORT_PC();
1468
1469 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1470 ref = FETCH(1); /* method ref */
1471 vdst = FETCH(2); /* 4 regs -or- first reg */
1472
1473 /*
1474 * The object against which we are executing a method is always
1475 * in the first argument.
1476 */
1477 if (methodCallRange) {
1478 assert(vsrc1 > 0);
1479 ILOGV("|invoke-interface-range args=%d @0x%04x {regs=v%d-v%d}",
1480 vsrc1, ref, vdst, vdst+vsrc1-1);
1481 thisPtr = (Object*) GET_REGISTER(vdst);
1482 } else {
1483 assert((vsrc1>>4) > 0);
1484 ILOGV("|invoke-interface args=%d @0x%04x {regs=0x%04x %x}",
1485 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1486 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f);
1487 }
1488 if (!checkForNull(thisPtr))
1489 GOTO_exceptionThrown();
1490
1491 thisClass = thisPtr->clazz;
1492
1493 /*
1494 * Given a class and a method index, find the Method* with the
1495 * actual code we want to execute.
1496 */
1497 methodToCall = dvmFindInterfaceMethodInCache(thisClass, ref, curMethod,
1498 methodClassDex);
1499 if (methodToCall == NULL) {
1500 assert(dvmCheckException(self));
1501 GOTO_exceptionThrown();
1502 }
1503
1504 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1505 }
1506 GOTO_TARGET_END
1507
GOTO_TARGET(invokeDirect,bool methodCallRange)1508 GOTO_TARGET(invokeDirect, bool methodCallRange)
1509 {
1510 u2 thisReg;
1511
1512 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1513 ref = FETCH(1); /* method ref */
1514 vdst = FETCH(2); /* 4 regs -or- first reg */
1515
1516 EXPORT_PC();
1517
1518 if (methodCallRange) {
1519 ILOGV("|invoke-direct-range args=%d @0x%04x {regs=v%d-v%d}",
1520 vsrc1, ref, vdst, vdst+vsrc1-1);
1521 thisReg = vdst;
1522 } else {
1523 ILOGV("|invoke-direct args=%d @0x%04x {regs=0x%04x %x}",
1524 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1525 thisReg = vdst & 0x0f;
1526 }
1527 if (!checkForNull((Object*) GET_REGISTER(thisReg)))
1528 GOTO_exceptionThrown();
1529
1530 methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref);
1531 if (methodToCall == NULL) {
1532 methodToCall = dvmResolveMethod(curMethod->clazz, ref,
1533 METHOD_DIRECT);
1534 if (methodToCall == NULL) {
1535 ILOGV("+ unknown direct method\n"); // should be impossible
1536 GOTO_exceptionThrown();
1537 }
1538 }
1539 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1540 }
1541 GOTO_TARGET_END
1542
1543 GOTO_TARGET(invokeStatic, bool methodCallRange)
1544 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1545 ref = FETCH(1); /* method ref */
1546 vdst = FETCH(2); /* 4 regs -or- first reg */
1547
1548 EXPORT_PC();
1549
1550 if (methodCallRange)
1551 ILOGV("|invoke-static-range args=%d @0x%04x {regs=v%d-v%d}",
1552 vsrc1, ref, vdst, vdst+vsrc1-1);
1553 else
1554 ILOGV("|invoke-static args=%d @0x%04x {regs=0x%04x %x}",
1555 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1556
1557 methodToCall = dvmDexGetResolvedMethod(methodClassDex, ref);
1558 if (methodToCall == NULL) {
1559 methodToCall = dvmResolveMethod(curMethod->clazz, ref, METHOD_STATIC);
1560 if (methodToCall == NULL) {
1561 ILOGV("+ unknown method\n");
1562 GOTO_exceptionThrown();
1563 }
1564 }
1565 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1566 GOTO_TARGET_END
1567
GOTO_TARGET(invokeVirtualQuick,bool methodCallRange)1568 GOTO_TARGET(invokeVirtualQuick, bool methodCallRange)
1569 {
1570 Object* thisPtr;
1571
1572 EXPORT_PC();
1573
1574 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1575 ref = FETCH(1); /* vtable index */
1576 vdst = FETCH(2); /* 4 regs -or- first reg */
1577
1578 /*
1579 * The object against which we are executing a method is always
1580 * in the first argument.
1581 */
1582 if (methodCallRange) {
1583 assert(vsrc1 > 0);
1584 ILOGV("|invoke-virtual-quick-range args=%d @0x%04x {regs=v%d-v%d}",
1585 vsrc1, ref, vdst, vdst+vsrc1-1);
1586 thisPtr = (Object*) GET_REGISTER(vdst);
1587 } else {
1588 assert((vsrc1>>4) > 0);
1589 ILOGV("|invoke-virtual-quick args=%d @0x%04x {regs=0x%04x %x}",
1590 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1591 thisPtr = (Object*) GET_REGISTER(vdst & 0x0f);
1592 }
1593
1594 if (!checkForNull(thisPtr))
1595 GOTO_exceptionThrown();
1596
1597 /*
1598 * Combine the object we found with the vtable offset in the
1599 * method.
1600 */
1601 assert(ref < thisPtr->clazz->vtableCount);
1602 methodToCall = thisPtr->clazz->vtable[ref];
1603
1604 #if 0
1605 if (dvmIsAbstractMethod(methodToCall)) {
1606 dvmThrowException("Ljava/lang/AbstractMethodError;",
1607 "abstract method not implemented");
1608 GOTO_exceptionThrown();
1609 }
1610 #else
1611 assert(!dvmIsAbstractMethod(methodToCall) ||
1612 methodToCall->nativeFunc != NULL);
1613 #endif
1614
1615 LOGVV("+++ virtual[%d]=%s.%s\n",
1616 ref, methodToCall->clazz->descriptor, methodToCall->name);
1617 assert(methodToCall != NULL);
1618
1619 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1620 }
1621 GOTO_TARGET_END
1622
GOTO_TARGET(invokeSuperQuick,bool methodCallRange)1623 GOTO_TARGET(invokeSuperQuick, bool methodCallRange)
1624 {
1625 u2 thisReg;
1626
1627 EXPORT_PC();
1628
1629 vsrc1 = INST_AA(inst); /* AA (count) or BA (count + arg 5) */
1630 ref = FETCH(1); /* vtable index */
1631 vdst = FETCH(2); /* 4 regs -or- first reg */
1632
1633 if (methodCallRange) {
1634 ILOGV("|invoke-super-quick-range args=%d @0x%04x {regs=v%d-v%d}",
1635 vsrc1, ref, vdst, vdst+vsrc1-1);
1636 thisReg = vdst;
1637 } else {
1638 ILOGV("|invoke-super-quick args=%d @0x%04x {regs=0x%04x %x}",
1639 vsrc1 >> 4, ref, vdst, vsrc1 & 0x0f);
1640 thisReg = vdst & 0x0f;
1641 }
1642 /* impossible in well-formed code, but we must check nevertheless */
1643 if (!checkForNull((Object*) GET_REGISTER(thisReg)))
1644 GOTO_exceptionThrown();
1645
1646 #if 0 /* impossible in optimized + verified code */
1647 if (ref >= curMethod->clazz->super->vtableCount) {
1648 dvmThrowException("Ljava/lang/NoSuchMethodError;", NULL);
1649 GOTO_exceptionThrown();
1650 }
1651 #else
1652 assert(ref < curMethod->clazz->super->vtableCount);
1653 #endif
1654
1655 /*
1656 * Combine the object we found with the vtable offset in the
1657 * method's class.
1658 *
1659 * We're using the current method's class' superclass, not the
1660 * superclass of "this". This is because we might be executing
1661 * in a method inherited from a superclass, and we want to run
1662 * in the method's class' superclass.
1663 */
1664 methodToCall = curMethod->clazz->super->vtable[ref];
1665
1666 #if 0
1667 if (dvmIsAbstractMethod(methodToCall)) {
1668 dvmThrowException("Ljava/lang/AbstractMethodError;",
1669 "abstract method not implemented");
1670 GOTO_exceptionThrown();
1671 }
1672 #else
1673 assert(!dvmIsAbstractMethod(methodToCall) ||
1674 methodToCall->nativeFunc != NULL);
1675 #endif
1676 LOGVV("+++ super-virtual[%d]=%s.%s\n",
1677 ref, methodToCall->clazz->descriptor, methodToCall->name);
1678 assert(methodToCall != NULL);
1679
1680 GOTO_invokeMethod(methodCallRange, methodToCall, vsrc1, vdst);
1681 }
1682 GOTO_TARGET_END
1683
1684
1685
1686 /*
1687 * General handling for return-void, return, and return-wide. Put the
1688 * return value in "retval" before jumping here.
1689 */
GOTO_TARGET(returnFromMethod)1690 GOTO_TARGET(returnFromMethod)
1691 {
1692 StackSaveArea* saveArea;
1693
1694 /*
1695 * We must do this BEFORE we pop the previous stack frame off, so
1696 * that the GC can see the return value (if any) in the local vars.
1697 *
1698 * Since this is now an interpreter switch point, we must do it before
1699 * we do anything at all.
1700 */
1701 PERIODIC_CHECKS(kInterpEntryReturn, 0);
1702
1703 ILOGV("> retval=0x%llx (leaving %s.%s %s)",
1704 retval.j, curMethod->clazz->descriptor, curMethod->name,
1705 curMethod->shorty);
1706 //DUMP_REGS(curMethod, fp);
1707
1708 saveArea = SAVEAREA_FROM_FP(fp);
1709
1710 #ifdef EASY_GDB
1711 debugSaveArea = saveArea;
1712 #endif
1713 #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER)
1714 TRACE_METHOD_EXIT(self, curMethod);
1715 #endif
1716
1717 /* back up to previous frame and see if we hit a break */
1718 fp = saveArea->prevFrame;
1719 assert(fp != NULL);
1720 if (dvmIsBreakFrame(fp)) {
1721 /* bail without popping the method frame from stack */
1722 LOGVV("+++ returned into break frame\n");
1723 GOTO_bail();
1724 }
1725
1726 /* update thread FP, and reset local variables */
1727 self->curFrame = fp;
1728 curMethod = SAVEAREA_FROM_FP(fp)->method;
1729 //methodClass = curMethod->clazz;
1730 methodClassDex = curMethod->clazz->pDvmDex;
1731 pc = saveArea->savedPc;
1732 ILOGD("> (return to %s.%s %s)", curMethod->clazz->descriptor,
1733 curMethod->name, curMethod->shorty);
1734
1735 /* use FINISH on the caller's invoke instruction */
1736 //u2 invokeInstr = INST_INST(FETCH(0));
1737 if (true /*invokeInstr >= OP_INVOKE_VIRTUAL &&
1738 invokeInstr <= OP_INVOKE_INTERFACE*/)
1739 {
1740 FINISH(3);
1741 } else {
1742 //LOGE("Unknown invoke instr %02x at %d\n",
1743 // invokeInstr, (int) (pc - curMethod->insns));
1744 assert(false);
1745 }
1746 }
1747 GOTO_TARGET_END
1748
1749
1750 /*
1751 * Jump here when the code throws an exception.
1752 *
1753 * By the time we get here, the Throwable has been created and the stack
1754 * trace has been saved off.
1755 */
GOTO_TARGET(exceptionThrown)1756 GOTO_TARGET(exceptionThrown)
1757 {
1758 Object* exception;
1759 int catchRelPc;
1760
1761 /*
1762 * Since this is now an interpreter switch point, we must do it before
1763 * we do anything at all.
1764 */
1765 PERIODIC_CHECKS(kInterpEntryThrow, 0);
1766
1767 /*
1768 * We save off the exception and clear the exception status. While
1769 * processing the exception we might need to load some Throwable
1770 * classes, and we don't want class loader exceptions to get
1771 * confused with this one.
1772 */
1773 assert(dvmCheckException(self));
1774 exception = dvmGetException(self);
1775 dvmAddTrackedAlloc(exception, self);
1776 dvmClearException(self);
1777
1778 LOGV("Handling exception %s at %s:%d\n",
1779 exception->clazz->descriptor, curMethod->name,
1780 dvmLineNumFromPC(curMethod, pc - curMethod->insns));
1781
1782 #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER)
1783 /*
1784 * Tell the debugger about it.
1785 *
1786 * TODO: if the exception was thrown by interpreted code, control
1787 * fell through native, and then back to us, we will report the
1788 * exception at the point of the throw and again here. We can avoid
1789 * this by not reporting exceptions when we jump here directly from
1790 * the native call code above, but then we won't report exceptions
1791 * that were thrown *from* the JNI code (as opposed to *through* it).
1792 *
1793 * The correct solution is probably to ignore from-native exceptions
1794 * here, and have the JNI exception code do the reporting to the
1795 * debugger.
1796 */
1797 if (gDvm.debuggerActive) {
1798 void* catchFrame;
1799 catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns,
1800 exception, true, &catchFrame);
1801 dvmDbgPostException(fp, pc - curMethod->insns, catchFrame,
1802 catchRelPc, exception);
1803 }
1804 #endif
1805
1806 /*
1807 * We need to unroll to the catch block or the nearest "break"
1808 * frame.
1809 *
1810 * A break frame could indicate that we have reached an intermediate
1811 * native call, or have gone off the top of the stack and the thread
1812 * needs to exit. Either way, we return from here, leaving the
1813 * exception raised.
1814 *
1815 * If we do find a catch block, we want to transfer execution to
1816 * that point.
1817 */
1818 catchRelPc = dvmFindCatchBlock(self, pc - curMethod->insns,
1819 exception, false, (void*)&fp);
1820
1821 /*
1822 * Restore the stack bounds after an overflow. This isn't going to
1823 * be correct in all circumstances, e.g. if JNI code devours the
1824 * exception this won't happen until some other exception gets
1825 * thrown. If the code keeps pushing the stack bounds we'll end
1826 * up aborting the VM.
1827 *
1828 * Note we want to do this *after* the call to dvmFindCatchBlock,
1829 * because that may need extra stack space to resolve exception
1830 * classes (e.g. through a class loader).
1831 */
1832 if (self->stackOverflowed)
1833 dvmCleanupStackOverflow(self);
1834
1835 if (catchRelPc < 0) {
1836 /* falling through to JNI code or off the bottom of the stack */
1837 #if DVM_SHOW_EXCEPTION >= 2
1838 LOGD("Exception %s from %s:%d not caught locally\n",
1839 exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod),
1840 dvmLineNumFromPC(curMethod, pc - curMethod->insns));
1841 #endif
1842 dvmSetException(self, exception);
1843 dvmReleaseTrackedAlloc(exception, self);
1844 GOTO_bail();
1845 }
1846
1847 #if DVM_SHOW_EXCEPTION >= 3
1848 {
1849 const Method* catchMethod = SAVEAREA_FROM_FP(fp)->method;
1850 LOGD("Exception %s thrown from %s:%d to %s:%d\n",
1851 exception->clazz->descriptor, dvmGetMethodSourceFile(curMethod),
1852 dvmLineNumFromPC(curMethod, pc - curMethod->insns),
1853 dvmGetMethodSourceFile(catchMethod),
1854 dvmLineNumFromPC(catchMethod, catchRelPc));
1855 }
1856 #endif
1857
1858 /*
1859 * Adjust local variables to match self->curFrame and the
1860 * updated PC.
1861 */
1862 //fp = (u4*) self->curFrame;
1863 curMethod = SAVEAREA_FROM_FP(fp)->method;
1864 //methodClass = curMethod->clazz;
1865 methodClassDex = curMethod->clazz->pDvmDex;
1866 pc = curMethod->insns + catchRelPc;
1867 ILOGV("> pc <-- %s.%s %s", curMethod->clazz->descriptor,
1868 curMethod->name, curMethod->shorty);
1869 DUMP_REGS(curMethod, fp, false); // show all regs
1870
1871 /*
1872 * Restore the exception if the handler wants it.
1873 *
1874 * The Dalvik spec mandates that, if an exception handler wants to
1875 * do something with the exception, the first instruction executed
1876 * must be "move-exception". We can pass the exception along
1877 * through the thread struct, and let the move-exception instruction
1878 * clear it for us.
1879 *
1880 * If the handler doesn't call move-exception, we don't want to
1881 * finish here with an exception still pending.
1882 */
1883 if (INST_INST(FETCH(0)) == OP_MOVE_EXCEPTION)
1884 dvmSetException(self, exception);
1885
1886 dvmReleaseTrackedAlloc(exception, self);
1887 FINISH(0);
1888 }
1889 GOTO_TARGET_END
1890
1891
1892 /*
1893 * General handling for invoke-{virtual,super,direct,static,interface},
1894 * including "quick" variants.
1895 *
1896 * Set "methodToCall" to the Method we're calling, and "methodCallRange"
1897 * depending on whether this is a "/range" instruction.
1898 *
1899 * For a range call:
1900 * "vsrc1" holds the argument count (8 bits)
1901 * "vdst" holds the first argument in the range
1902 * For a non-range call:
1903 * "vsrc1" holds the argument count (4 bits) and the 5th argument index
1904 * "vdst" holds four 4-bit register indices
1905 *
1906 * The caller must EXPORT_PC before jumping here, because any method
1907 * call can throw a stack overflow exception.
1908 */
GOTO_TARGET(invokeMethod,bool methodCallRange,const Method * _methodToCall,u2 count,u2 regs)1909 GOTO_TARGET(invokeMethod, bool methodCallRange, const Method* _methodToCall,
1910 u2 count, u2 regs)
1911 {
1912 STUB_HACK(vsrc1 = count; vdst = regs; methodToCall = _methodToCall;);
1913
1914 //printf("range=%d call=%p count=%d regs=0x%04x\n",
1915 // methodCallRange, methodToCall, count, regs);
1916 //printf(" --> %s.%s %s\n", methodToCall->clazz->descriptor,
1917 // methodToCall->name, methodToCall->shorty);
1918
1919 u4* outs;
1920 int i;
1921
1922 /*
1923 * Copy args. This may corrupt vsrc1/vdst.
1924 */
1925 if (methodCallRange) {
1926 // could use memcpy or a "Duff's device"; most functions have
1927 // so few args it won't matter much
1928 assert(vsrc1 <= curMethod->outsSize);
1929 assert(vsrc1 == methodToCall->insSize);
1930 outs = OUTS_FROM_FP(fp, vsrc1);
1931 for (i = 0; i < vsrc1; i++)
1932 outs[i] = GET_REGISTER(vdst+i);
1933 } else {
1934 u4 count = vsrc1 >> 4;
1935
1936 assert(count <= curMethod->outsSize);
1937 assert(count == methodToCall->insSize);
1938 assert(count <= 5);
1939
1940 outs = OUTS_FROM_FP(fp, count);
1941 #if 0
1942 if (count == 5) {
1943 outs[4] = GET_REGISTER(vsrc1 & 0x0f);
1944 count--;
1945 }
1946 for (i = 0; i < (int) count; i++) {
1947 outs[i] = GET_REGISTER(vdst & 0x0f);
1948 vdst >>= 4;
1949 }
1950 #else
1951 // This version executes fewer instructions but is larger
1952 // overall. Seems to be a teensy bit faster.
1953 assert((vdst >> 16) == 0); // 16 bits -or- high 16 bits clear
1954 switch (count) {
1955 case 5:
1956 outs[4] = GET_REGISTER(vsrc1 & 0x0f);
1957 case 4:
1958 outs[3] = GET_REGISTER(vdst >> 12);
1959 case 3:
1960 outs[2] = GET_REGISTER((vdst & 0x0f00) >> 8);
1961 case 2:
1962 outs[1] = GET_REGISTER((vdst & 0x00f0) >> 4);
1963 case 1:
1964 outs[0] = GET_REGISTER(vdst & 0x0f);
1965 default:
1966 ;
1967 }
1968 #endif
1969 }
1970 }
1971
1972 /*
1973 * (This was originally a "goto" target; I've kept it separate from the
1974 * stuff above in case we want to refactor things again.)
1975 *
1976 * At this point, we have the arguments stored in the "outs" area of
1977 * the current method's stack frame, and the method to call in
1978 * "methodToCall". Push a new stack frame.
1979 */
1980 {
1981 StackSaveArea* newSaveArea;
1982 u4* newFp;
1983
1984 ILOGV("> %s%s.%s %s",
1985 dvmIsNativeMethod(methodToCall) ? "(NATIVE) " : "",
1986 methodToCall->clazz->descriptor, methodToCall->name,
1987 methodToCall->shorty);
1988
1989 newFp = (u4*) SAVEAREA_FROM_FP(fp) - methodToCall->registersSize;
1990 newSaveArea = SAVEAREA_FROM_FP(newFp);
1991
1992 /* verify that we have enough space */
1993 if (true) {
1994 u1* bottom;
1995 bottom = (u1*) newSaveArea - methodToCall->outsSize * sizeof(u4);
1996 if (bottom < self->interpStackEnd) {
1997 /* stack overflow */
1998 LOGV("Stack overflow on method call (start=%p end=%p newBot=%p size=%d '%s')\n",
1999 self->interpStackStart, self->interpStackEnd, bottom,
2000 self->interpStackSize, methodToCall->name);
2001 dvmHandleStackOverflow(self);
2002 assert(dvmCheckException(self));
2003 GOTO_exceptionThrown();
2004 }
2005 //LOGD("+++ fp=%p newFp=%p newSave=%p bottom=%p\n",
2006 // fp, newFp, newSaveArea, bottom);
2007 }
2008
2009 #ifdef LOG_INSTR
2010 if (methodToCall->registersSize > methodToCall->insSize) {
2011 /*
2012 * This makes valgrind quiet when we print registers that
2013 * haven't been initialized. Turn it off when the debug
2014 * messages are disabled -- we want valgrind to report any
2015 * used-before-initialized issues.
2016 */
2017 memset(newFp, 0xcc,
2018 (methodToCall->registersSize - methodToCall->insSize) * 4);
2019 }
2020 #endif
2021
2022 #ifdef EASY_GDB
2023 newSaveArea->prevSave = SAVEAREA_FROM_FP(fp);
2024 #endif
2025 newSaveArea->prevFrame = fp;
2026 newSaveArea->savedPc = pc;
2027 #if defined(WITH_JIT)
2028 newSaveArea->returnAddr = 0;
2029 #endif
2030 newSaveArea->method = methodToCall;
2031
2032 if (!dvmIsNativeMethod(methodToCall)) {
2033 /*
2034 * "Call" interpreted code. Reposition the PC, update the
2035 * frame pointer and other local state, and continue.
2036 */
2037 curMethod = methodToCall;
2038 methodClassDex = curMethod->clazz->pDvmDex;
2039 pc = methodToCall->insns;
2040 fp = self->curFrame = newFp;
2041 #ifdef EASY_GDB
2042 debugSaveArea = SAVEAREA_FROM_FP(newFp);
2043 #endif
2044 #if INTERP_TYPE == INTERP_DBG
2045 debugIsMethodEntry = true; // profiling, debugging
2046 #endif
2047 ILOGD("> pc <-- %s.%s %s", curMethod->clazz->descriptor,
2048 curMethod->name, curMethod->shorty);
2049 DUMP_REGS(curMethod, fp, true); // show input args
2050 FINISH(0); // jump to method start
2051 } else {
2052 /* set this up for JNI locals, even if not a JNI native */
2053 #ifdef USE_INDIRECT_REF
2054 newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.segmentState.all;
2055 #else
2056 newSaveArea->xtra.localRefCookie = self->jniLocalRefTable.nextEntry;
2057 #endif
2058
2059 self->curFrame = newFp;
2060
2061 DUMP_REGS(methodToCall, newFp, true); // show input args
2062
2063 #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER)
2064 if (gDvm.debuggerActive) {
2065 dvmDbgPostLocationEvent(methodToCall, -1,
2066 dvmGetThisPtr(curMethod, fp), DBG_METHOD_ENTRY);
2067 }
2068 #endif
2069 #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER)
2070 TRACE_METHOD_ENTER(self, methodToCall);
2071 #endif
2072
2073 ILOGD("> native <-- %s.%s %s", methodToCall->clazz->descriptor,
2074 methodToCall->name, methodToCall->shorty);
2075
2076 /*
2077 * Jump through native call bridge. Because we leave no
2078 * space for locals on native calls, "newFp" points directly
2079 * to the method arguments.
2080 */
2081 (*methodToCall->nativeFunc)(newFp, &retval, methodToCall, self);
2082
2083 #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_DEBUGGER)
2084 if (gDvm.debuggerActive) {
2085 dvmDbgPostLocationEvent(methodToCall, -1,
2086 dvmGetThisPtr(curMethod, fp), DBG_METHOD_EXIT);
2087 }
2088 #endif
2089 #if (INTERP_TYPE == INTERP_DBG) && defined(WITH_PROFILER)
2090 TRACE_METHOD_EXIT(self, methodToCall);
2091 #endif
2092
2093 /* pop frame off */
2094 dvmPopJniLocals(self, newSaveArea);
2095 self->curFrame = fp;
2096
2097 /*
2098 * If the native code threw an exception, or interpreted code
2099 * invoked by the native call threw one and nobody has cleared
2100 * it, jump to our local exception handling.
2101 */
2102 if (dvmCheckException(self)) {
2103 LOGV("Exception thrown by/below native code\n");
2104 GOTO_exceptionThrown();
2105 }
2106
2107 ILOGD("> retval=0x%llx (leaving native)", retval.j);
2108 ILOGD("> (return from native %s.%s to %s.%s %s)",
2109 methodToCall->clazz->descriptor, methodToCall->name,
2110 curMethod->clazz->descriptor, curMethod->name,
2111 curMethod->shorty);
2112
2113 //u2 invokeInstr = INST_INST(FETCH(0));
2114 if (true /*invokeInstr >= OP_INVOKE_VIRTUAL &&
2115 invokeInstr <= OP_INVOKE_INTERFACE*/)
2116 {
2117 FINISH(3);
2118 } else {
2119 //LOGE("Unknown invoke instr %02x at %d\n",
2120 // invokeInstr, (int) (pc - curMethod->insns));
2121 assert(false);
2122 }
2123 }
2124 }
2125 assert(false); // should not get here
2126 GOTO_TARGET_END
2127
2128 /* File: cstubs/enddefs.c */
2129
2130 /* undefine "magic" name remapping */
2131 #undef retval
2132 #undef pc
2133 #undef fp
2134 #undef curMethod
2135 #undef methodClassDex
2136 #undef self
2137 #undef debugTrackedRefStart
2138
2139