• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<?xml version="1.0" standalone="no"?>
2<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd"
4[
5]>
6
7<article id="index">
8  <articleinfo>
9    <title>D-Bus Specification</title>
10    <releaseinfo>Version 0.12</releaseinfo>
11    <date>7 November 2006</date>
12    <authorgroup>
13      <author>
14	<firstname>Havoc</firstname>
15	<surname>Pennington</surname>
16	<affiliation>
17	  <orgname>Red Hat, Inc.</orgname>
18	  <address>
19	    <email>hp@pobox.com</email>
20	  </address>
21	</affiliation>
22      </author>
23      <author>
24	<firstname>Anders</firstname>
25	<surname>Carlsson</surname>
26	<affiliation>
27	  <orgname>CodeFactory AB</orgname>
28	  <address>
29            <email>andersca@codefactory.se</email>
30          </address>
31	</affiliation>
32      </author>
33      <author>
34	<firstname>Alexander</firstname>
35	<surname>Larsson</surname>
36	<affiliation>
37	  <orgname>Red Hat, Inc.</orgname>
38	  <address>
39            <email>alexl@redhat.com</email>
40          </address>
41	</affiliation>
42      </author>
43    </authorgroup>
44  </articleinfo>
45
46  <sect1 id="introduction">
47    <title>Introduction</title>
48    <para>
49      D-Bus is a system for low-latency, low-overhead, easy to use
50      interprocess communication (IPC). In more detail:
51      <itemizedlist>
52        <listitem>
53          <para>
54            D-Bus is <emphasis>low-latency</emphasis> because it is designed
55            to avoid round trips and allow asynchronous operation, much like
56            the X protocol.
57          </para>
58        </listitem>
59        <listitem>
60          <para>
61            D-Bus is <emphasis>low-overhead</emphasis> because it uses a
62            binary protocol, and does not have to convert to and from a text
63            format such as XML. Because D-Bus is intended for potentially
64            high-resolution same-machine IPC, not primarily for Internet IPC,
65            this is an interesting optimization.
66          </para>
67        </listitem>
68        <listitem>
69          <para>
70            D-Bus is <emphasis>easy to use</emphasis> because it works in terms
71            of <firstterm>messages</firstterm> rather than byte streams, and
72            automatically handles a lot of the hard IPC issues. Also, the D-Bus
73            library is designed to be wrapped in a way that lets developers use
74            their framework's existing object/type system, rather than learning
75            a new one specifically for IPC.
76          </para>
77        </listitem>
78      </itemizedlist>
79    </para>
80
81    <para>
82      The base D-Bus protocol is a one-to-one (peer-to-peer or client-server)
83      protocol, specified in <xref linkend="message-protocol"/>. That is, it is
84      a system for one application to talk to a single other
85      application. However, the primary intended application of the protocol is the
86      D-Bus <firstterm>message bus</firstterm>, specified in <xref
87      linkend="message-bus"/>. The message bus is a special application that
88      accepts connections from multiple other applications, and forwards
89      messages among them.
90    </para>
91
92    <para>
93      Uses of D-Bus include notification of system changes (notification of when
94      a camera is plugged in to a computer, or a new version of some software
95      has been installed), or desktop interoperability, for example a file
96      monitoring service or a configuration service.
97    </para>
98
99    <para>
100      D-Bus is designed for two specific use cases:
101      <itemizedlist>
102        <listitem>
103          <para>
104            A "system bus" for notifications from the system to user sessions,
105            and to allow the system to request input from user sessions.
106          </para>
107        </listitem>
108        <listitem>
109          <para>
110            A "session bus" used to implement desktop environments such as
111            GNOME and KDE.
112          </para>
113        </listitem>
114      </itemizedlist>
115      D-Bus is not intended to be a generic IPC system for any possible
116      application, and intentionally omits many features found in other
117      IPC systems for this reason.
118    </para>
119
120    <para>
121      At the same time, the bus daemons offer a number of features not found in
122      other IPC systems, such as single-owner "bus names" (similar to X
123      selections), on-demand startup of services, and security policies.
124      In many ways, these features are the primary motivation for developing
125      D-Bus; other systems would have sufficed if IPC were the only goal.
126    </para>
127
128    <para>
129      D-Bus may turn out to be useful in unanticipated applications, but future
130      versions of this spec and the reference implementation probably will not
131      incorporate features that interfere with the core use cases.
132    </para>
133
134    <para>
135      The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
136      "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
137      document are to be interpreted as described in RFC 2119. However, the
138      document could use a serious audit to be sure it makes sense to do
139      so. Also, they are not capitalized.
140    </para>
141
142    <sect2 id="stability">
143      <title>Protocol and Specification Stability</title>
144      <para>
145        The D-Bus protocol is frozen (only compatible extensions are allowed) as
146        of November 8, 2006.  However, this specification could still use a fair
147        bit of work to make interoperable reimplementation possible without
148        reference to the D-Bus reference implementation. Thus, this
149        specification is not marked 1.0. To mark it 1.0, we'd like to see
150        someone invest significant effort in clarifying the specification
151        language, and growing the specification to cover more aspects of the
152        reference implementation's behavior.
153      </para>
154      <para>
155        Until this work is complete, any attempt to reimplement D-Bus will
156        probably require looking at the reference implementation and/or asking
157        questions on the D-Bus mailing list about intended behavior.
158        Questions on the list are very welcome.
159      </para>
160      <para>
161        Nonetheless, this document should be a useful starting point and is
162        to our knowledge accurate, though incomplete.
163      </para>
164    </sect2>
165
166  </sect1>
167
168  <sect1 id="message-protocol">
169    <title>Message Protocol</title>
170
171    <para>
172      A <firstterm>message</firstterm> consists of a
173      <firstterm>header</firstterm> and a <firstterm>body</firstterm>. If you
174      think of a message as a package, the header is the address, and the body
175      contains the package contents. The message delivery system uses the header
176      information to figure out where to send the message and how to interpret
177      it; the recipient interprets the body of the message.
178    </para>
179
180    <para>
181      The body of the message is made up of zero or more
182      <firstterm>arguments</firstterm>, which are typed values, such as an
183      integer or a byte array.
184    </para>
185
186    <para>
187      Both header and body use the same type system and format for
188      serializing data. Each type of value has a wire format.
189      Converting a value from some other representation into the wire
190      format is called <firstterm>marshaling</firstterm> and converting
191      it back from the wire format is <firstterm>unmarshaling</firstterm>.
192    </para>
193
194    <sect2 id="message-protocol-signatures">
195      <title>Type Signatures</title>
196
197      <para>
198        The D-Bus protocol does not include type tags in the marshaled data; a
199        block of marshaled values must have a known <firstterm>type
200        signature</firstterm>.  The type signature is made up of <firstterm>type
201        codes</firstterm>. A type code is an ASCII character representing the
202        type of a value. Because ASCII characters are used, the type signature
203        will always form a valid ASCII string. A simple string compare
204        determines whether two type signatures are equivalent.
205      </para>
206
207      <para>
208        As a simple example, the type code for 32-bit integer (<literal>INT32</literal>) is
209        the ASCII character 'i'. So the signature for a block of values
210        containing a single <literal>INT32</literal> would be:
211        <programlisting>
212          "i"
213        </programlisting>
214        A block of values containing two <literal>INT32</literal> would have this signature:
215        <programlisting>
216          "ii"
217        </programlisting>
218      </para>
219
220      <para>
221        All <firstterm>basic</firstterm> types work like
222        <literal>INT32</literal> in this example. To marshal and unmarshal
223        basic types, you simply read one value from the data
224        block corresponding to each type code in the signature.
225        In addition to basic types, there are four <firstterm>container</firstterm>
226        types: <literal>STRUCT</literal>, <literal>ARRAY</literal>, <literal>VARIANT</literal>,
227        and <literal>DICT_ENTRY</literal>.
228      </para>
229
230      <para>
231        <literal>STRUCT</literal> has a type code, ASCII character 'r', but this type
232        code does not appear in signatures. Instead, ASCII characters
233        '(' and ')' are used to mark the beginning and end of the struct.
234        So for example, a struct containing two integers would have this
235        signature:
236        <programlisting>
237          "(ii)"
238        </programlisting>
239        Structs can be nested, so for example a struct containing
240        an integer and another struct:
241        <programlisting>
242          "(i(ii))"
243        </programlisting>
244        The value block storing that struct would contain three integers; the
245        type signature allows you to distinguish "(i(ii))" from "((ii)i)" or
246        "(iii)" or "iii".
247      </para>
248
249      <para>
250        The <literal>STRUCT</literal> type code 'r' is not currently used in the D-Bus protocol,
251        but is useful in code that implements the protocol. This type code
252        is specified to allow such code to interoperate in non-protocol contexts.
253      </para>
254
255      <para>
256        <literal>ARRAY</literal> has ASCII character 'a' as type code. The array type code must be
257        followed by a <firstterm>single complete type</firstterm>. The single
258        complete type following the array is the type of each array element. So
259        the simple example is:
260        <programlisting>
261          "ai"
262        </programlisting>
263        which is an array of 32-bit integers. But an array can be of any type,
264        such as this array-of-struct-with-two-int32-fields:
265        <programlisting>
266          "a(ii)"
267        </programlisting>
268        Or this array of array of integer:
269        <programlisting>
270          "aai"
271        </programlisting>
272      </para>
273
274      <para>
275        The phrase <firstterm>single complete type</firstterm> deserves some
276        definition. A single complete type is a basic type code, a variant type code,
277        an array with its element type, or a struct with its fields.
278        So the following signatures are not single complete types:
279        <programlisting>
280          "aa"
281        </programlisting>
282        <programlisting>
283          "(ii"
284        </programlisting>
285        <programlisting>
286          "ii)"
287        </programlisting>
288        And the following signatures contain multiple complete types:
289        <programlisting>
290          "ii"
291        </programlisting>
292        <programlisting>
293          "aiai"
294        </programlisting>
295        <programlisting>
296          "(ii)(ii)"
297        </programlisting>
298        Note however that a single complete type may <emphasis>contain</emphasis>
299        multiple other single complete types.
300      </para>
301
302      <para>
303        <literal>VARIANT</literal> has ASCII character 'v' as its type code. A marshaled value of
304        type <literal>VARIANT</literal> will have the signature of a single complete type as part
305        of the <emphasis>value</emphasis>.  This signature will be followed by a
306        marshaled value of that type.
307      </para>
308
309      <para>
310        A <literal>DICT_ENTRY</literal> works exactly like a struct, but rather
311        than parentheses it uses curly braces, and it has more restrictions.
312        The restrictions are: it occurs only as an array element type; it has
313        exactly two single complete types inside the curly braces; the first
314        single complete type (the "key") must be a basic type rather than a
315        container type. Implementations must not accept dict entries outside of
316        arrays, must not accept dict entries with zero, one, or more than two
317        fields, and must not accept dict entries with non-basic-typed keys. A
318        dict entry is always a key-value pair.
319      </para>
320
321      <para>
322        The first field in the <literal>DICT_ENTRY</literal> is always the key.
323        A message is considered corrupt if the same key occurs twice in the same
324        array of <literal>DICT_ENTRY</literal>. However, for performance reasons
325        implementations are not required to reject dicts with duplicate keys.
326      </para>
327
328      <para>
329        In most languages, an array of dict entry would be represented as a
330        map, hash table, or dict object.
331      </para>
332
333      <para>
334        The following table summarizes the D-Bus types.
335        <informaltable>
336          <tgroup cols="3">
337            <thead>
338              <row>
339                <entry>Conventional Name</entry>
340                <entry>Code</entry>
341                <entry>Description</entry>
342              </row>
343            </thead>
344            <tbody>
345              <row>
346                <entry><literal>INVALID</literal></entry>
347                <entry>0 (ASCII NUL)</entry>
348                <entry>Not a valid type code, used to terminate signatures</entry>
349              </row><row>
350		<entry><literal>BYTE</literal></entry>
351		<entry>121 (ASCII 'y')</entry>
352		<entry>8-bit unsigned integer</entry>
353              </row><row>
354		<entry><literal>BOOLEAN</literal></entry>
355		<entry>98 (ASCII 'b')</entry>
356		<entry>Boolean value, 0 is <literal>FALSE</literal> and 1 is <literal>TRUE</literal>. Everything else is invalid.</entry>
357	      </row><row>
358                <entry><literal>INT16</literal></entry>
359                <entry>110 (ASCII 'n')</entry>
360                <entry>16-bit signed integer</entry>
361              </row><row>
362                <entry><literal>UINT16</literal></entry>
363                <entry>113 (ASCII 'q')</entry>
364                <entry>16-bit unsigned integer</entry>
365	      </row><row>
366                <entry><literal>INT32</literal></entry>
367                <entry>105 (ASCII 'i')</entry>
368                <entry>32-bit signed integer</entry>
369              </row><row>
370                <entry><literal>UINT32</literal></entry>
371                <entry>117 (ASCII 'u')</entry>
372                <entry>32-bit unsigned integer</entry>
373	      </row><row>
374                <entry><literal>INT64</literal></entry>
375                <entry>120 (ASCII 'x')</entry>
376                <entry>64-bit signed integer</entry>
377              </row><row>
378                <entry><literal>UINT64</literal></entry>
379                <entry>116 (ASCII 't')</entry>
380                <entry>64-bit unsigned integer</entry>
381              </row><row>
382                <entry><literal>DOUBLE</literal></entry>
383                <entry>100 (ASCII 'd')</entry>
384                <entry>IEEE 754 double</entry>
385              </row><row>
386                <entry><literal>STRING</literal></entry>
387                <entry>115 (ASCII 's')</entry>
388                <entry>UTF-8 string (<emphasis>must</emphasis> be valid UTF-8). Must be nul terminated.</entry>
389              </row><row>
390                <entry><literal>OBJECT_PATH</literal></entry>
391                <entry>111 (ASCII 'o')</entry>
392                <entry>Name of an object instance</entry>
393              </row><row>
394                <entry><literal>SIGNATURE</literal></entry>
395                <entry>103 (ASCII 'g')</entry>
396                <entry>A type signature</entry>
397              </row><row>
398                <entry><literal>ARRAY</literal></entry>
399                <entry>97 (ASCII 'a')</entry>
400                <entry>Array</entry>
401              </row><row>
402                <entry><literal>STRUCT</literal></entry>
403                <entry>114 (ASCII 'r'), 40 (ASCII '('), 41 (ASCII ')')</entry>
404                <entry>Struct</entry>
405              </row><row>
406                <entry><literal>VARIANT</literal></entry>
407                <entry>118 (ASCII 'v') </entry>
408                <entry>Variant type (the type of the value is part of the value itself)</entry>
409              </row><row>
410                <entry><literal>DICT_ENTRY</literal></entry>
411                <entry>101 (ASCII 'e'), 123 (ASCII '{'), 125 (ASCII '}') </entry>
412                <entry>Entry in a dict or map (array of key-value pairs)</entry>
413              </row>
414            </tbody>
415          </tgroup>
416        </informaltable>
417      </para>
418
419    </sect2>
420
421    <sect2 id="message-protocol-marshaling">
422      <title>Marshaling (Wire Format)</title>
423
424      <para>
425        Given a type signature, a block of bytes can be converted into typed
426        values. This section describes the format of the block of bytes.  Byte
427        order and alignment issues are handled uniformly for all D-Bus types.
428      </para>
429
430      <para>
431        A block of bytes has an associated byte order. The byte order
432        has to be discovered in some way; for D-Bus messages, the
433        byte order is part of the message header as described in
434        <xref linkend="message-protocol-messages"/>. For now, assume
435        that the byte order is known to be either little endian or big
436          endian.
437      </para>
438
439      <para>
440        Each value in a block of bytes is aligned "naturally," for example
441        4-byte values are aligned to a 4-byte boundary, and 8-byte values to an
442        8-byte boundary. To properly align a value, <firstterm>alignment
443        padding</firstterm> may be necessary. The alignment padding must always
444        be the minimum required padding to properly align the following value;
445        and it must always be made up of nul bytes. The alignment padding must
446        not be left uninitialized (it can't contain garbage), and more padding
447        than required must not be used.
448      </para>
449
450      <para>
451        Given all this, the types are marshaled on the wire as follows:
452        <informaltable>
453          <tgroup cols="3">
454            <thead>
455              <row>
456                <entry>Conventional Name</entry>
457                <entry>Encoding</entry>
458                <entry>Alignment</entry>
459              </row>
460            </thead>
461            <tbody>
462              <row>
463                <entry><literal>INVALID</literal></entry>
464                <entry>Not applicable; cannot be marshaled.</entry>
465                <entry>N/A</entry>
466              </row><row>
467                <entry><literal>BYTE</literal></entry>
468                <entry>A single 8-bit byte.</entry>
469                <entry>1</entry>
470              </row><row>
471                <entry><literal>BOOLEAN</literal></entry>
472                <entry>As for <literal>UINT32</literal>, but only 0 and 1 are valid values.</entry>
473                <entry>4</entry>
474              </row><row>
475                <entry><literal>INT16</literal></entry>
476                <entry>16-bit signed integer in the message's byte order.</entry>
477                <entry>2</entry>
478              </row><row>
479                <entry><literal>UINT16</literal></entry>
480                <entry>16-bit unsigned integer in the message's byte order.</entry>
481                <entry>2</entry>
482              </row><row>
483                <entry><literal>INT32</literal></entry>
484                <entry>32-bit signed integer in the message's byte order.</entry>
485                <entry>4</entry>
486              </row><row>
487                <entry><literal>UINT32</literal></entry>
488                <entry>32-bit unsigned integer in the message's byte order.</entry>
489                <entry>4</entry>
490              </row><row>
491                <entry><literal>INT64</literal></entry>
492                <entry>64-bit signed integer in the message's byte order.</entry>
493                <entry>8</entry>
494              </row><row>
495                <entry><literal>UINT64</literal></entry>
496                <entry>64-bit unsigned integer in the message's byte order.</entry>
497                <entry>8</entry>
498              </row><row>
499                <entry><literal>DOUBLE</literal></entry>
500                <entry>64-bit IEEE 754 double in the message's byte order.</entry>
501                <entry>8</entry>
502              </row><row>
503                <entry><literal>STRING</literal></entry>
504                <entry>A <literal>UINT32</literal> indicating the string's
505                  length in bytes excluding its terminating nul, followed by
506                  string data of the given length, followed by a terminating nul
507                  byte.
508                </entry>
509                <entry>
510                  4 (for the length)
511                </entry>
512              </row><row>
513                <entry><literal>OBJECT_PATH</literal></entry>
514                <entry>Exactly the same as <literal>STRING</literal> except the
515                  content must be a valid object path (see below).
516                </entry>
517                <entry>
518                  4 (for the length)
519                </entry>
520              </row><row>
521                <entry><literal>SIGNATURE</literal></entry>
522                <entry>The same as <literal>STRING</literal> except the length is a single
523                  byte (thus signatures have a maximum length of 255)
524                  and the content must be a valid signature (see below).
525                </entry>
526                <entry>
527                  1
528                </entry>
529              </row><row>
530                <entry><literal>ARRAY</literal></entry>
531                <entry>
532                  A <literal>UINT32</literal> giving the length of the array data in bytes, followed by
533                  alignment padding to the alignment boundary of the array element type,
534                  followed by each array element. The array length is from the
535                  end of the alignment padding to the end of the last element,
536                  i.e. it does not include the padding after the length,
537                  or any padding after the last element.
538                  Arrays have a maximum length defined to be 2 to the 26th power or
539                  67108864. Implementations must not send or accept arrays exceeding this
540                  length.
541                </entry>
542                <entry>
543                  4 (for the length)
544                </entry>
545              </row><row>
546                <entry><literal>STRUCT</literal></entry>
547                <entry>
548                  A struct must start on an 8-byte boundary regardless of the
549                  type of the struct fields. The struct value consists of each
550                  field marshaled in sequence starting from that 8-byte
551                  alignment boundary.
552                </entry>
553                <entry>
554                  8
555                </entry>
556	      </row><row>
557                <entry><literal>VARIANT</literal></entry>
558                <entry>
559                  A variant type has a marshaled <literal>SIGNATURE</literal>
560                  followed by a marshaled value with the type
561                  given in the signature.
562                  Unlike a message signature, the variant signature
563                  can contain only a single complete type.
564                  So "i" is OK, "ii" is not.
565                </entry>
566                <entry>
567                  1 (alignment of the signature)
568                </entry>
569	      </row><row>
570                <entry><literal>DICT_ENTRY</literal></entry>
571                <entry>
572                  Identical to STRUCT.
573                </entry>
574                <entry>
575                  8
576                </entry>
577	      </row>
578            </tbody>
579          </tgroup>
580        </informaltable>
581      </para>
582
583      <sect3 id="message-protocol-marshaling-object-path">
584        <title>Valid Object Paths</title>
585
586        <para>
587          An object path is a name used to refer to an object instance.
588          Conceptually, each participant in a D-Bus message exchange may have
589          any number of object instances (think of C++ or Java objects) and each
590          such instance will have a path. Like a filesystem, the object
591          instances in an application form a hierarchical tree.
592        </para>
593
594        <para>
595          The following rules define a valid object path. Implementations must
596          not send or accept messages with invalid object paths.
597          <itemizedlist>
598            <listitem>
599              <para>
600                The path may be of any length.
601              </para>
602            </listitem>
603            <listitem>
604              <para>
605                The path must begin with an ASCII '/' (integer 47) character,
606                and must consist of elements separated by slash characters.
607              </para>
608            </listitem>
609            <listitem>
610              <para>
611                Each element must only contain the ASCII characters
612                "[A-Z][a-z][0-9]_"
613              </para>
614            </listitem>
615            <listitem>
616              <para>
617                No element may be the empty string.
618              </para>
619            </listitem>
620            <listitem>
621              <para>
622                Multiple '/' characters cannot occur in sequence.
623              </para>
624            </listitem>
625            <listitem>
626              <para>
627                A trailing '/' character is not allowed unless the
628                path is the root path (a single '/' character).
629              </para>
630            </listitem>
631          </itemizedlist>
632        </para>
633
634      </sect3>
635
636
637      <sect3 id="message-protocol-marshaling-signature">
638        <title>Valid Signatures</title>
639        <para>
640          An implementation must not send or accept invalid signatures.
641          Valid signatures will conform to the following rules:
642          <itemizedlist>
643            <listitem>
644              <para>
645                The signature ends with a nul byte.
646              </para>
647            </listitem>
648            <listitem>
649              <para>
650                The signature is a list of single complete types.
651                Arrays must have element types, and structs must
652                have both open and close parentheses.
653              </para>
654            </listitem>
655            <listitem>
656              <para>
657                Only type codes and open and close parentheses are
658                allowed in the signature. The <literal>STRUCT</literal> type code
659                is not allowed in signatures, because parentheses
660                are used instead.
661              </para>
662            </listitem>
663            <listitem>
664              <para>
665                The maximum depth of container type nesting is 32 array type
666                codes and 32 open parentheses. This implies that the maximum
667                total depth of recursion is 64, for an "array of array of array
668                of ... struct of struct of struct of ..."  where there are 32
669                array and 32 struct.
670              </para>
671            </listitem>
672            <listitem>
673              <para>
674                The maximum length of a signature is 255.
675              </para>
676            </listitem>
677            <listitem>
678              <para>
679                Signatures must be nul-terminated.
680              </para>
681            </listitem>
682          </itemizedlist>
683        </para>
684      </sect3>
685
686    </sect2>
687
688    <sect2 id="message-protocol-messages">
689      <title>Message Format</title>
690
691      <para>
692        A message consists of a header and a body. The header is a block of
693        values with a fixed signature and meaning.  The body is a separate block
694        of values, with a signature specified in the header.
695      </para>
696
697      <para>
698        The length of the header must be a multiple of 8, allowing the body to
699        begin on an 8-byte boundary when storing the entire message in a single
700        buffer. If the header does not naturally end on an 8-byte boundary
701        up to 7 bytes of nul-initialized alignment padding must be added.
702      </para>
703
704      <para>
705        The message body need not end on an 8-byte boundary.
706      </para>
707
708      <para>
709        The maximum length of a message, including header, header alignment padding,
710        and body is 2 to the 27th power or 134217728. Implementations must not
711        send or accept messages exceeding this size.
712      </para>
713
714      <para>
715        The signature of the header is:
716        <programlisting>
717          "yyyyuua(yv)"
718        </programlisting>
719        Written out more readably, this is:
720        <programlisting>
721          BYTE, BYTE, BYTE, BYTE, UINT32, UINT32, ARRAY of STRUCT of (BYTE,VARIANT)
722        </programlisting>
723      </para>
724
725      <para>
726        These values have the following meanings:
727        <informaltable>
728          <tgroup cols="2">
729            <thead>
730              <row>
731                <entry>Value</entry>
732                <entry>Description</entry>
733              </row>
734            </thead>
735            <tbody>
736              <row>
737                <entry>1st <literal>BYTE</literal></entry>
738                <entry>Endianness flag; ASCII 'l' for little-endian
739                  or ASCII 'B' for big-endian. Both header and body are
740                in this endianness.</entry>
741              </row>
742              <row>
743                <entry>2nd <literal>BYTE</literal></entry>
744                <entry><firstterm>Message type</firstterm>. Unknown types must be ignored.
745                  Currently-defined types are described below.
746                </entry>
747              </row>
748              <row>
749                <entry>3rd <literal>BYTE</literal></entry>
750                <entry>Bitwise OR of flags. Unknown flags
751                  must be ignored. Currently-defined flags are described below.
752                </entry>
753              </row>
754              <row>
755                <entry>4th <literal>BYTE</literal></entry>
756                <entry>Major protocol version of the sending application.  If
757                the major protocol version of the receiving application does not
758                match, the applications will not be able to communicate and the
759                D-Bus connection must be disconnected. The major protocol
760                version for this version of the specification is 0.
761                  FIXME this field is stupid and pointless to put in
762                  every message.
763                </entry>
764              </row>
765              <row>
766                <entry>1st <literal>UINT32</literal></entry>
767                <entry>Length in bytes of the message body, starting
768                  from the end of the header. The header ends after
769                  its alignment padding to an 8-boundary.
770                </entry>
771              </row>
772              <row>
773                <entry>2nd <literal>UINT32</literal></entry>
774                <entry>The serial of this message, used as a cookie
775                  by the sender to identify the reply corresponding
776                  to this request.
777                </entry>
778              </row>
779              <row>
780                <entry><literal>ARRAY</literal> of <literal>STRUCT</literal> of (<literal>BYTE</literal>,<literal>VARIANT</literal>)</entry>
781                <entry>An array of zero or more <firstterm>header
782                  fields</firstterm> where the byte is the field code, and the
783                  variant is the field value. The message type determines
784                  which fields are required.
785                </entry>
786              </row>
787            </tbody>
788          </tgroup>
789        </informaltable>
790      </para>
791      <para>
792        <firstterm>Message types</firstterm> that can appear in the second byte
793        of the header are:
794        <informaltable>
795          <tgroup cols="3">
796            <thead>
797              <row>
798                <entry>Conventional name</entry>
799                <entry>Decimal value</entry>
800                <entry>Description</entry>
801              </row>
802            </thead>
803            <tbody>
804              <row>
805                <entry><literal>INVALID</literal></entry>
806                <entry>0</entry>
807                <entry>This is an invalid type.</entry>
808              </row>
809              <row>
810                <entry><literal>METHOD_CALL</literal></entry>
811                <entry>1</entry>
812                <entry>Method call.</entry>
813              </row>
814              <row>
815                <entry><literal>METHOD_RETURN</literal></entry>
816                <entry>2</entry>
817                <entry>Method reply with returned data.</entry>
818              </row>
819              <row>
820                <entry><literal>ERROR</literal></entry>
821                <entry>3</entry>
822                <entry>Error reply. If the first argument exists and is a
823                string, it is an error message.</entry>
824              </row>
825              <row>
826                <entry><literal>SIGNAL</literal></entry>
827                <entry>4</entry>
828                <entry>Signal emission.</entry>
829              </row>
830            </tbody>
831          </tgroup>
832        </informaltable>
833      </para>
834      <para>
835        Flags that can appear in the third byte of the header:
836        <informaltable>
837          <tgroup cols="3">
838            <thead>
839              <row>
840                <entry>Conventional name</entry>
841                <entry>Hex value</entry>
842                <entry>Description</entry>
843              </row>
844            </thead>
845            <tbody>
846              <row>
847                <entry><literal>NO_REPLY_EXPECTED</literal></entry>
848                <entry>0x1</entry>
849                <entry>This message does not expect method return replies or
850                error replies; the reply can be omitted as an
851                optimization. However, it is compliant with this specification
852                to return the reply despite this flag and the only harm
853                  from doing so is extra network traffic.
854                </entry>
855              </row>
856              <row>
857                <entry><literal>NO_AUTO_START</literal></entry>
858                <entry>0x2</entry>
859                <entry>The bus must not launch an owner
860                  for the destination name in response to this message.
861                </entry>
862              </row>
863            </tbody>
864          </tgroup>
865        </informaltable>
866      </para>
867
868      <sect3 id="message-protocol-header-fields">
869        <title>Header Fields</title>
870
871        <para>
872          The array at the end of the header contains <firstterm>header
873          fields</firstterm>, where each field is a 1-byte field code followed
874          by a field value. A header must contain the required header fields for
875          its message type, and zero or more of any optional header
876          fields. Future versions of this protocol specification may add new
877          fields. Implementations must ignore fields they do not
878          understand. Implementations must not invent their own header fields;
879          only changes to this specification may introduce new header fields.
880        </para>
881
882        <para>
883          Again, if an implementation sees a header field code that it does not
884          expect, it must ignore that field, as it will be part of a new
885          (but compatible) version of this specification. This also applies
886          to known header fields appearing in unexpected messages, for
887          example: if a signal has a reply serial it must be ignored
888          even though it has no meaning as of this version of the spec.
889        </para>
890
891        <para>
892          However, implementations must not send or accept known header fields
893          with the wrong type stored in the field value. So for example a
894          message with an <literal>INTERFACE</literal> field of type
895          <literal>UINT32</literal> would be considered corrupt.
896        </para>
897
898        <para>
899          Here are the currently-defined header fields:
900          <informaltable>
901            <tgroup cols="5">
902              <thead>
903                <row>
904                  <entry>Conventional Name</entry>
905                  <entry>Decimal Code</entry>
906                  <entry>Type</entry>
907                  <entry>Required In</entry>
908                  <entry>Description</entry>
909                </row>
910              </thead>
911              <tbody>
912                <row>
913                  <entry><literal>INVALID</literal></entry>
914                  <entry>0</entry>
915                  <entry>N/A</entry>
916                  <entry>not allowed</entry>
917                  <entry>Not a valid field name (error if it appears in a message)</entry>
918                </row>
919                <row>
920                  <entry><literal>PATH</literal></entry>
921                  <entry>1</entry>
922                  <entry><literal>OBJECT_PATH</literal></entry>
923                  <entry><literal>METHOD_CALL</literal>, <literal>SIGNAL</literal></entry>
924                  <entry>The object to send a call to,
925                    or the object a signal is emitted from.
926                  </entry>
927                </row>
928                <row>
929                  <entry><literal>INTERFACE</literal></entry>
930                  <entry>2</entry>
931                  <entry><literal>STRING</literal></entry>
932                  <entry><literal>SIGNAL</literal></entry>
933                  <entry>
934                    The interface to invoke a method call on, or
935                    that a signal is emitted from. Optional for
936                    method calls, required for signals.
937                  </entry>
938                </row>
939                <row>
940                  <entry><literal>MEMBER</literal></entry>
941                  <entry>3</entry>
942                  <entry><literal>STRING</literal></entry>
943                  <entry><literal>METHOD_CALL</literal>, <literal>SIGNAL</literal></entry>
944                  <entry>The member, either the method name or signal name.</entry>
945                </row>
946                <row>
947                  <entry><literal>ERROR_NAME</literal></entry>
948                  <entry>4</entry>
949                  <entry><literal>STRING</literal></entry>
950                  <entry><literal>ERROR</literal></entry>
951                  <entry>The name of the error that occurred, for errors</entry>
952                </row>
953                <row>
954                  <entry><literal>REPLY_SERIAL</literal></entry>
955                  <entry>5</entry>
956                  <entry><literal>UINT32</literal></entry>
957                  <entry><literal>ERROR</literal>, <literal>METHOD_RETURN</literal></entry>
958                  <entry>The serial number of the message this message is a reply
959                    to. (The serial number is the second <literal>UINT32</literal> in the header.)</entry>
960                </row>
961                <row>
962                  <entry><literal>DESTINATION</literal></entry>
963                  <entry>6</entry>
964                  <entry><literal>STRING</literal></entry>
965                  <entry>optional</entry>
966                  <entry>The name of the connection this message is intended for.
967                    Only used in combination with the message bus, see
968                    <xref linkend="message-bus"/>.</entry>
969                </row>
970                <row>
971                  <entry><literal>SENDER</literal></entry>
972                  <entry>7</entry>
973                  <entry><literal>STRING</literal></entry>
974                  <entry>optional</entry>
975                  <entry>Unique name of the sending connection.
976                    The message bus fills in this field so it is reliable; the field is
977                    only meaningful in combination with the message bus.</entry>
978                </row>
979                <row>
980                  <entry><literal>SIGNATURE</literal></entry>
981                  <entry>8</entry>
982                  <entry><literal>SIGNATURE</literal></entry>
983                  <entry>optional</entry>
984                  <entry>The signature of the message body.
985                  If omitted, it is assumed to be the
986                  empty signature "" (i.e. the body must be 0-length).</entry>
987                </row>
988              </tbody>
989            </tgroup>
990          </informaltable>
991        </para>
992      </sect3>
993    </sect2>
994
995    <sect2 id="message-protocol-names">
996      <title>Valid Names</title>
997      <para>
998        The various names in D-Bus messages have some restrictions.
999      </para>
1000      <para>
1001        There is a <firstterm>maximum name length</firstterm>
1002        of 255 which applies to bus names, interfaces, and members.
1003      </para>
1004      <sect3 id="message-protocol-names-interface">
1005        <title>Interface names</title>
1006        <para>
1007          Interfaces have names with type <literal>STRING</literal>, meaning that
1008          they must be valid UTF-8. However, there are also some
1009          additional restrictions that apply to interface names
1010          specifically:
1011          <itemizedlist>
1012            <listitem><para>Interface names are composed of 1 or more elements separated by
1013                a period ('.') character. All elements must contain at least
1014                one character.
1015                </para>
1016            </listitem>
1017            <listitem><para>Each element must only contain the ASCII characters
1018                "[A-Z][a-z][0-9]_" and must not begin with a digit.
1019                </para>
1020            </listitem>
1021
1022	    <listitem><para>Interface names must contain at least one '.' (period)
1023              character (and thus at least two elements).
1024              </para></listitem>
1025
1026	    <listitem><para>Interface names must not begin with a '.' (period) character.</para></listitem>
1027	    <listitem><para>Interface names must not exceed the maximum name length.</para></listitem>
1028          </itemizedlist>
1029        </para>
1030      </sect3>
1031      <sect3 id="message-protocol-names-bus">
1032        <title>Bus names</title>
1033        <para>
1034          Connections have one or more bus names associated with them.
1035          A connection has exactly one bus name that is a unique connection
1036          name. The unique connection name remains with the connection for
1037          its entire lifetime.
1038          A bus name is of type <literal>STRING</literal>,
1039          meaning that it must be valid UTF-8. However, there are also
1040          some additional restrictions that apply to bus names
1041          specifically:
1042          <itemizedlist>
1043            <listitem><para>Bus names that start with a colon (':')
1044                character are unique connection names.
1045                </para>
1046            </listitem>
1047            <listitem><para>Bus names are composed of 1 or more elements separated by
1048                a period ('.') character. All elements must contain at least
1049                one character.
1050                </para>
1051            </listitem>
1052            <listitem><para>Each element must only contain the ASCII characters
1053                "[A-Z][a-z][0-9]_-". Only elements that are part of a unique
1054                connection name may begin with a digit, elements in
1055                other bus names must not begin with a digit.
1056                </para>
1057            </listitem>
1058
1059	    <listitem><para>Bus names must contain at least one '.' (period)
1060              character (and thus at least two elements).
1061              </para></listitem>
1062
1063	    <listitem><para>Bus names must not begin with a '.' (period) character.</para></listitem>
1064	    <listitem><para>Bus names must not exceed the maximum name length.</para></listitem>
1065          </itemizedlist>
1066        </para>
1067        <para>
1068          Note that the hyphen ('-') character is allowed in bus names but
1069          not in interface names.
1070        </para>
1071      </sect3>
1072      <sect3 id="message-protocol-names-member">
1073        <title>Member names</title>
1074        <para>
1075          Member (i.e. method or signal) names:
1076          <itemizedlist>
1077	    <listitem><para>Must only contain the ASCII characters
1078                "[A-Z][a-z][0-9]_" and may not begin with a
1079                digit.</para></listitem>
1080	    <listitem><para>Must not contain the '.' (period) character.</para></listitem>
1081	    <listitem><para>Must not exceed the maximum name length.</para></listitem>
1082	    <listitem><para>Must be at least 1 byte in length.</para></listitem>
1083          </itemizedlist>
1084        </para>
1085      </sect3>
1086      <sect3 id="message-protocol-names-error">
1087        <title>Error names</title>
1088        <para>
1089          Error names have the same restrictions as interface names.
1090        </para>
1091      </sect3>
1092    </sect2>
1093
1094    <sect2 id="message-protocol-types">
1095      <title>Message Types</title>
1096      <para>
1097        Each of the message types (<literal>METHOD_CALL</literal>, <literal>METHOD_RETURN</literal>, <literal>ERROR</literal>, and
1098        <literal>SIGNAL</literal>) has its own expected usage conventions and header fields.
1099        This section describes these conventions.
1100      </para>
1101      <sect3 id="message-protocol-types-method">
1102        <title>Method Calls</title>
1103        <para>
1104          Some messages invoke an operation on a remote object.  These are
1105          called method call messages and have the type tag <literal>METHOD_CALL</literal>. Such
1106          messages map naturally to methods on objects in a typical program.
1107        </para>
1108        <para>
1109          A method call message is required to have a <literal>MEMBER</literal> header field
1110          indicating the name of the method. Optionally, the message has an
1111          <literal>INTERFACE</literal> field giving the interface the method is a part of. In the
1112          absence of an <literal>INTERFACE</literal> field, if two interfaces on the same object have
1113          a method with the same name, it is undefined which of the two methods
1114          will be invoked. Implementations may also choose to return an error in
1115          this ambiguous case. However, if a method name is unique
1116          implementations must not require an interface field.
1117        </para>
1118        <para>
1119          Method call messages also include a <literal>PATH</literal> field
1120          indicating the object to invoke the method on. If the call is passing
1121          through a message bus, the message will also have a
1122          <literal>DESTINATION</literal> field giving the name of the connection
1123          to receive the message.
1124        </para>
1125        <para>
1126          When an application handles a method call message, it is required to
1127          return a reply. The reply is identified by a <literal>REPLY_SERIAL</literal> header field
1128          indicating the serial number of the <literal>METHOD_CALL</literal> being replied to. The
1129          reply can have one of two types; either <literal>METHOD_RETURN</literal> or <literal>ERROR</literal>.
1130        </para>
1131        <para>
1132          If the reply has type <literal>METHOD_RETURN</literal>, the arguments to the reply message
1133          are the return value(s) or "out parameters" of the method call.
1134          If the reply has type <literal>ERROR</literal>, then an "exception" has been thrown,
1135          and the call fails; no return value will be provided. It makes
1136          no sense to send multiple replies to the same method call.
1137        </para>
1138        <para>
1139          Even if a method call has no return values, a <literal>METHOD_RETURN</literal>
1140          reply is required, so the caller will know the method
1141          was successfully processed.
1142        </para>
1143        <para>
1144          The <literal>METHOD_RETURN</literal> or <literal>ERROR</literal> reply message must have the <literal>REPLY_SERIAL</literal>
1145          header field.
1146        </para>
1147        <para>
1148          If a <literal>METHOD_CALL</literal> message has the flag <literal>NO_REPLY_EXPECTED</literal>,
1149          then as an optimization the application receiving the method
1150          call may choose to omit the reply message (regardless of
1151          whether the reply would have been <literal>METHOD_RETURN</literal> or <literal>ERROR</literal>).
1152          However, it is also acceptable to ignore the <literal>NO_REPLY_EXPECTED</literal>
1153          flag and reply anyway.
1154        </para>
1155        <para>
1156          Unless a message has the flag <literal>NO_AUTO_START</literal>, if the
1157          destination name does not exist then a program to own the destination
1158          name will be started before the message is delivered.  The message
1159          will be held until the new program is successfully started or has
1160          failed to start; in case of failure, an error will be returned. This
1161          flag is only relevant in the context of a message bus, it is ignored
1162          during one-to-one communication with no intermediate bus.
1163        </para>
1164        <sect4 id="message-protocol-types-method-apis">
1165          <title>Mapping method calls to native APIs</title>
1166          <para>
1167            APIs for D-Bus may map method calls to a method call in a specific
1168            programming language, such as C++, or may map a method call written
1169            in an IDL to a D-Bus message.
1170          </para>
1171          <para>
1172            In APIs of this nature, arguments to a method are often termed "in"
1173            (which implies sent in the <literal>METHOD_CALL</literal>), or "out" (which implies
1174            returned in the <literal>METHOD_RETURN</literal>). Some APIs such as CORBA also have
1175            "inout" arguments, which are both sent and received, i.e. the caller
1176            passes in a value which is modified. Mapped to D-Bus, an "inout"
1177            argument is equivalent to an "in" argument, followed by an "out"
1178            argument. You can't pass things "by reference" over the wire, so
1179            "inout" is purely an illusion of the in-process API.
1180          </para>
1181          <para>
1182            Given a method with zero or one return values, followed by zero or more
1183            arguments, where each argument may be "in", "out", or "inout", the
1184            caller constructs a message by appending each "in" or "inout" argument,
1185            in order. "out" arguments are not represented in the caller's message.
1186          </para>
1187          <para>
1188            The recipient constructs a reply by appending first the return value
1189            if any, then each "out" or "inout" argument, in order.
1190            "in" arguments are not represented in the reply message.
1191          </para>
1192          <para>
1193            Error replies are normally mapped to exceptions in languages that have
1194            exceptions.
1195          </para>
1196          <para>
1197            In converting from native APIs to D-Bus, it is perhaps nice to
1198            map D-Bus naming conventions ("FooBar") to native conventions
1199            such as "fooBar" or "foo_bar" automatically. This is OK
1200            as long as you can say that the native API is one that
1201            was specifically written for D-Bus. It makes the most sense
1202            when writing object implementations that will be exported
1203            over the bus. Object proxies used to invoke remote D-Bus
1204            objects probably need the ability to call any D-Bus method,
1205            and thus a magic name mapping like this could be a problem.
1206          </para>
1207          <para>
1208            This specification doesn't require anything of native API bindings;
1209            the preceding is only a suggested convention for consistency
1210            among bindings.
1211          </para>
1212        </sect4>
1213      </sect3>
1214
1215      <sect3 id="message-protocol-types-signal">
1216        <title>Signal Emission</title>
1217        <para>
1218          Unlike method calls, signal emissions have no replies.
1219          A signal emission is simply a single message of type <literal>SIGNAL</literal>.
1220          It must have three header fields: <literal>PATH</literal> giving the object
1221          the signal was emitted from, plus <literal>INTERFACE</literal> and <literal>MEMBER</literal> giving
1222          the fully-qualified name of the signal. The <literal>INTERFACE</literal> header is required
1223          for signals, though it is optional for method calls.
1224        </para>
1225      </sect3>
1226
1227      <sect3 id="message-protocol-types-errors">
1228        <title>Errors</title>
1229        <para>
1230          Messages of type <literal>ERROR</literal> are most commonly replies
1231          to a <literal>METHOD_CALL</literal>, but may be returned in reply
1232          to any kind of message. The message bus for example
1233          will return an <literal>ERROR</literal> in reply to a signal emission if
1234          the bus does not have enough memory to send the signal.
1235        </para>
1236        <para>
1237          An <literal>ERROR</literal> may have any arguments, but if the first
1238          argument is a <literal>STRING</literal>, it must be an error message.
1239          The error message may be logged or shown to the user
1240          in some way.
1241        </para>
1242      </sect3>
1243
1244      <sect3 id="message-protocol-types-notation">
1245        <title>Notation in this document</title>
1246        <para>
1247          This document uses a simple pseudo-IDL to describe particular method
1248          calls and signals. Here is an example of a method call:
1249          <programlisting>
1250            org.freedesktop.DBus.StartServiceByName (in STRING name, in UINT32 flags,
1251                                                     out UINT32 resultcode)
1252          </programlisting>
1253          This means <literal>INTERFACE</literal> = org.freedesktop.DBus, <literal>MEMBER</literal> = StartServiceByName,
1254          <literal>METHOD_CALL</literal> arguments are <literal>STRING</literal> and <literal>UINT32</literal>, <literal>METHOD_RETURN</literal> argument
1255          is <literal>UINT32</literal>. Remember that the <literal>MEMBER</literal> field can't contain any '.' (period)
1256          characters so it's known that the last part of the name in
1257          the "IDL" is the member name.
1258        </para>
1259        <para>
1260          In C++ that might end up looking like this:
1261          <programlisting>
1262            unsigned int org::freedesktop::DBus::StartServiceByName (const char  *name,
1263                                                                     unsigned int flags);
1264          </programlisting>
1265          or equally valid, the return value could be done as an argument:
1266          <programlisting>
1267            void org::freedesktop::DBus::StartServiceByName (const char   *name,
1268                                                             unsigned int  flags,
1269                                                             unsigned int *resultcode);
1270          </programlisting>
1271          It's really up to the API designer how they want to make
1272          this look. You could design an API where the namespace wasn't used
1273          in C++, using STL or Qt, using varargs, or whatever you wanted.
1274        </para>
1275        <para>
1276          Signals are written as follows:
1277          <programlisting>
1278            org.freedesktop.DBus.NameLost (STRING name)
1279          </programlisting>
1280          Signals don't specify "in" vs. "out" because only
1281          a single direction is possible.
1282        </para>
1283        <para>
1284          It isn't especially encouraged to use this lame pseudo-IDL in actual
1285          API implementations; you might use the native notation for the
1286          language you're using, or you might use COM or CORBA IDL, for example.
1287        </para>
1288      </sect3>
1289    </sect2>
1290
1291    <sect2 id="message-protocol-handling-invalid">
1292      <title>Invalid Protocol and Spec Extensions</title>
1293
1294      <para>
1295        For security reasons, the D-Bus protocol should be strictly parsed and
1296        validated, with the exception of defined extension points. Any invalid
1297        protocol or spec violations should result in immediately dropping the
1298        connection without notice to the other end. Exceptions should be
1299        carefully considered, e.g. an exception may be warranted for a
1300        well-understood idiosyncrasy of a widely-deployed implementation.  In
1301        cases where the other end of a connection is 100% trusted and known to
1302        be friendly, skipping validation for performance reasons could also make
1303        sense in certain cases.
1304      </para>
1305
1306      <para>
1307        Generally speaking violations of the "must" requirements in this spec
1308        should be considered possible attempts to exploit security, and violations
1309        of the "should" suggestions should be considered legitimate (though perhaps
1310        they should generate an error in some cases).
1311      </para>
1312
1313      <para>
1314        The following extension points are built in to D-Bus on purpose and must
1315        not be treated as invalid protocol. The extension points are intended
1316        for use by future versions of this spec, they are not intended for third
1317        parties.  At the moment, the only way a third party could extend D-Bus
1318        without breaking interoperability would be to introduce a way to negotiate new
1319        feature support as part of the auth protocol, using EXTENSION_-prefixed
1320        commands. There is not yet a standard way to negotiate features.
1321        <itemizedlist>
1322          <listitem>
1323            <para>
1324              In the authentication protocol (see <xref linkend="auth-protocol"/>) unknown
1325                commands result in an ERROR rather than a disconnect. This enables
1326                future extensions to the protocol. Commands starting with EXTENSION_ are
1327                reserved for third parties.
1328            </para>
1329          </listitem>
1330          <listitem>
1331            <para>
1332              The authentication protocol supports pluggable auth mechanisms.
1333            </para>
1334          </listitem>
1335          <listitem>
1336            <para>
1337              The address format (see <xref linkend="addresses"/>) supports new
1338              kinds of transport.
1339            </para>
1340          </listitem>
1341          <listitem>
1342            <para>
1343              Messages with an unknown type (something other than
1344              <literal>METHOD_CALL</literal>, <literal>METHOD_RETURN</literal>,
1345              <literal>ERROR</literal>, <literal>SIGNAL</literal>) are ignored.
1346              Unknown-type messages must still be well-formed in the same way
1347              as the known messages, however. They still have the normal
1348              header and body.
1349            </para>
1350          </listitem>
1351          <listitem>
1352            <para>
1353              Header fields with an unknown or unexpected field code must be ignored,
1354              though again they must still be well-formed.
1355            </para>
1356          </listitem>
1357          <listitem>
1358            <para>
1359              New standard interfaces (with new methods and signals) can of course be added.
1360            </para>
1361          </listitem>
1362        </itemizedlist>
1363      </para>
1364
1365    </sect2>
1366
1367  </sect1>
1368
1369  <sect1 id="auth-protocol">
1370    <title>Authentication Protocol</title>
1371    <para>
1372      Before the flow of messages begins, two applications must
1373      authenticate. A simple plain-text protocol is used for
1374      authentication; this protocol is a SASL profile, and maps fairly
1375      directly from the SASL specification. The message encoding is
1376      NOT used here, only plain text messages.
1377    </para>
1378    <para>
1379      In examples, "C:" and "S:" indicate lines sent by the client and
1380      server respectively.
1381    </para>
1382    <sect2 id="auth-protocol-overview">
1383      <title>Protocol Overview</title>
1384      <para>
1385        The protocol is a line-based protocol, where each line ends with
1386        \r\n. Each line begins with an all-caps ASCII command name containing
1387        only the character range [A-Z_], a space, then any arguments for the
1388        command, then the \r\n ending the line. The protocol is
1389        case-sensitive. All bytes must be in the ASCII character set.
1390
1391        Commands from the client to the server are as follows:
1392
1393        <itemizedlist>
1394	  <listitem><para>AUTH [mechanism] [initial-response]</para></listitem>
1395	  <listitem><para>CANCEL</para></listitem>
1396	  <listitem><para>BEGIN</para></listitem>
1397	  <listitem><para>DATA &lt;data in hex encoding&gt;</para></listitem>
1398	  <listitem><para>ERROR [human-readable error explanation]</para></listitem>
1399	</itemizedlist>
1400
1401        From server to client are as follows:
1402
1403        <itemizedlist>
1404	  <listitem><para>REJECTED &lt;space-separated list of mechanism names&gt;</para></listitem>
1405	  <listitem><para>OK &lt;GUID in hex&gt;</para></listitem>
1406	  <listitem><para>DATA &lt;data in hex encoding&gt;</para></listitem>
1407	  <listitem><para>ERROR</para></listitem>
1408	</itemizedlist>
1409      </para>
1410      <para>
1411        Unofficial extensions to the command set must begin with the letters
1412        "EXTENSION_", to avoid conflicts with future official commands.
1413        For example, "EXTENSION_COM_MYDOMAIN_DO_STUFF".
1414      </para>
1415    </sect2>
1416    <sect2 id="auth-nul-byte">
1417      <title>Special credentials-passing nul byte</title>
1418      <para>
1419        Immediately after connecting to the server, the client must send a
1420        single nul byte. This byte may be accompanied by credentials
1421        information on some operating systems that use sendmsg() with
1422        SCM_CREDS or SCM_CREDENTIALS to pass credentials over UNIX domain
1423        sockets. However, the nul byte must be sent even on other kinds of
1424        socket, and even on operating systems that do not require a byte to be
1425        sent in order to transmit credentials. The text protocol described in
1426        this document begins after the single nul byte. If the first byte
1427        received from the client is not a nul byte, the server may disconnect
1428        that client.
1429      </para>
1430      <para>
1431        A nul byte in any context other than the initial byte is an error;
1432        the protocol is ASCII-only.
1433      </para>
1434      <para>
1435        The credentials sent along with the nul byte may be used with the
1436        SASL mechanism EXTERNAL.
1437      </para>
1438    </sect2>
1439    <sect2 id="auth-command-auth">
1440      <title>AUTH command</title>
1441      <para>
1442        If an AUTH command has no arguments, it is a request to list
1443        available mechanisms. The server must respond with a REJECTED
1444        command listing the mechanisms it understands, or with an error.
1445      </para>
1446      <para>
1447        If an AUTH command specifies a mechanism, and the server supports
1448        said mechanism, the server should begin exchanging SASL
1449        challenge-response data with the client using DATA commands.
1450      </para>
1451      <para>
1452        If the server does not support the mechanism given in the AUTH
1453        command, it must send either a REJECTED command listing the mechanisms
1454        it does support, or an error.
1455      </para>
1456      <para>
1457        If the [initial-response] argument is provided, it is intended for use
1458        with mechanisms that have no initial challenge (or an empty initial
1459        challenge), as if it were the argument to an initial DATA command. If
1460        the selected mechanism has an initial challenge and [initial-response]
1461        was provided, the server should reject authentication by sending
1462        REJECTED.
1463      </para>
1464      <para>
1465        If authentication succeeds after exchanging DATA commands,
1466        an OK command must be sent to the client.
1467      </para>
1468      <para>
1469        The first octet received by the client after the \r\n of the OK
1470        command must be the first octet of the authenticated/encrypted
1471        stream of D-Bus messages.
1472      </para>
1473      <para>
1474        The first octet received by the server after the \r\n of the BEGIN
1475        command from the client must be the first octet of the
1476        authenticated/encrypted stream of D-Bus messages.
1477      </para>
1478    </sect2>
1479    <sect2 id="auth-command-cancel">
1480      <title>CANCEL Command</title>
1481      <para>
1482        At any time up to sending the BEGIN command, the client may send a
1483        CANCEL command. On receiving the CANCEL command, the server must
1484        send a REJECTED command and abort the current authentication
1485        exchange.
1486      </para>
1487    </sect2>
1488    <sect2 id="auth-command-data">
1489      <title>DATA Command</title>
1490      <para>
1491        The DATA command may come from either client or server, and simply
1492        contains a hex-encoded block of data to be interpreted
1493        according to the SASL mechanism in use.
1494      </para>
1495      <para>
1496        Some SASL mechanisms support sending an "empty string";
1497        FIXME we need some way to do this.
1498      </para>
1499    </sect2>
1500    <sect2 id="auth-command-begin">
1501      <title>BEGIN Command</title>
1502      <para>
1503        The BEGIN command acknowledges that the client has received an
1504        OK command from the server, and that the stream of messages
1505        is about to begin.
1506      </para>
1507      <para>
1508        The first octet received by the server after the \r\n of the BEGIN
1509        command from the client must be the first octet of the
1510        authenticated/encrypted stream of D-Bus messages.
1511      </para>
1512    </sect2>
1513    <sect2 id="auth-command-rejected">
1514      <title>REJECTED Command</title>
1515      <para>
1516        The REJECTED command indicates that the current authentication
1517        exchange has failed, and further exchange of DATA is inappropriate.
1518        The client would normally try another mechanism, or try providing
1519        different responses to challenges.
1520      </para><para>
1521        Optionally, the REJECTED command has a space-separated list of
1522        available auth mechanisms as arguments. If a server ever provides
1523        a list of supported mechanisms, it must provide the same list
1524        each time it sends a REJECTED message. Clients are free to
1525        ignore all lists received after the first.
1526      </para>
1527    </sect2>
1528    <sect2 id="auth-command-ok">
1529      <title>OK Command</title>
1530      <para>
1531        The OK command indicates that the client has been authenticated,
1532        and that further communication will be a stream of D-Bus messages
1533        (optionally encrypted, as negotiated) rather than this protocol.
1534      </para>
1535      <para>
1536        The first octet received by the client after the \r\n of the OK
1537        command must be the first octet of the authenticated/encrypted
1538        stream of D-Bus messages.
1539      </para>
1540      <para>
1541        The client must respond to the OK command by sending a BEGIN
1542        command, followed by its stream of messages, or by disconnecting.
1543        The server must not accept additional commands using this protocol
1544        after the OK command has been sent.
1545      </para>
1546      <para>
1547        The OK command has one argument, which is the GUID of the server.
1548        See <xref linkend="addresses"/> for more on server GUIDs.
1549      </para>
1550    </sect2>
1551    <sect2 id="auth-command-error">
1552      <title>ERROR Command</title>
1553      <para>
1554        The ERROR command indicates that either server or client did not
1555        know a command, does not accept the given command in the current
1556        context, or did not understand the arguments to the command. This
1557        allows the protocol to be extended; a client or server can send a
1558        command present or permitted only in new protocol versions, and if
1559        an ERROR is received instead of an appropriate response, fall back
1560        to using some other technique.
1561      </para>
1562      <para>
1563        If an ERROR is sent, the server or client that sent the
1564        error must continue as if the command causing the ERROR had never been
1565        received. However, the the server or client receiving the error
1566        should try something other than whatever caused the error;
1567        if only canceling/rejecting the authentication.
1568      </para>
1569      <para>
1570        If the D-Bus protocol changes incompatibly at some future time,
1571        applications implementing the new protocol would probably be able to
1572        check for support of the new protocol by sending a new command and
1573        receiving an ERROR from applications that don't understand it. Thus the
1574        ERROR feature of the auth protocol is an escape hatch that lets us
1575        negotiate extensions or changes to the D-Bus protocol in the future.
1576      </para>
1577    </sect2>
1578    <sect2 id="auth-examples">
1579      <title>Authentication examples</title>
1580
1581      <para>
1582        <figure>
1583	  <title>Example of successful magic cookie authentication</title>
1584	  <programlisting>
1585            (MAGIC_COOKIE is a made up mechanism)
1586
1587            C: AUTH MAGIC_COOKIE 3138363935333137393635383634
1588            S: OK 1234deadbeef
1589            C: BEGIN
1590          </programlisting>
1591	</figure>
1592        <figure>
1593	  <title>Example of finding out mechanisms then picking one</title>
1594	  <programlisting>
1595            C: AUTH
1596            S: REJECTED KERBEROS_V4 SKEY
1597            C: AUTH SKEY 7ab83f32ee
1598            S: DATA 8799cabb2ea93e
1599            C: DATA 8ac876e8f68ee9809bfa876e6f9876g8fa8e76e98f
1600            S: OK 1234deadbeef
1601            C: BEGIN
1602          </programlisting>
1603	</figure>
1604        <figure>
1605	  <title>Example of client sends unknown command then falls back to regular auth</title>
1606	  <programlisting>
1607            C: FOOBAR
1608            S: ERROR
1609            C: AUTH MAGIC_COOKIE 3736343435313230333039
1610            S: OK 1234deadbeef
1611            C: BEGIN
1612          </programlisting>
1613	</figure>
1614        <figure>
1615	  <title>Example of server doesn't support initial auth mechanism</title>
1616	  <programlisting>
1617            C: AUTH MAGIC_COOKIE 3736343435313230333039
1618            S: REJECTED KERBEROS_V4 SKEY
1619            C: AUTH SKEY 7ab83f32ee
1620            S: DATA 8799cabb2ea93e
1621            C: DATA 8ac876e8f68ee9809bfa876e6f9876g8fa8e76e98f
1622            S: OK 1234deadbeef
1623            C: BEGIN
1624          </programlisting>
1625	</figure>
1626        <figure>
1627	  <title>Example of wrong password or the like followed by successful retry</title>
1628	  <programlisting>
1629            C: AUTH MAGIC_COOKIE 3736343435313230333039
1630            S: REJECTED KERBEROS_V4 SKEY
1631            C: AUTH SKEY 7ab83f32ee
1632            S: DATA 8799cabb2ea93e
1633            C: DATA 8ac876e8f68ee9809bfa876e6f9876g8fa8e76e98f
1634            S: REJECTED
1635            C: AUTH SKEY 7ab83f32ee
1636            S: DATA 8799cabb2ea93e
1637            C: DATA 8ac876e8f68ee9809bfa876e6f9876g8fa8e76e98f
1638            S: OK 1234deadbeef
1639            C: BEGIN
1640          </programlisting>
1641	</figure>
1642        <figure>
1643	  <title>Example of skey cancelled and restarted</title>
1644	  <programlisting>
1645            C: AUTH MAGIC_COOKIE 3736343435313230333039
1646            S: REJECTED KERBEROS_V4 SKEY
1647            C: AUTH SKEY 7ab83f32ee
1648            S: DATA 8799cabb2ea93e
1649            C: CANCEL
1650            S: REJECTED
1651            C: AUTH SKEY 7ab83f32ee
1652            S: DATA 8799cabb2ea93e
1653            C: DATA 8ac876e8f68ee9809bfa876e6f9876g8fa8e76e98f
1654            S: OK 1234deadbeef
1655            C: BEGIN
1656          </programlisting>
1657	</figure>
1658      </para>
1659    </sect2>
1660    <sect2 id="auth-states">
1661      <title>Authentication state diagrams</title>
1662
1663      <para>
1664        This section documents the auth protocol in terms of
1665        a state machine for the client and the server. This is
1666        probably the most robust way to implement the protocol.
1667      </para>
1668
1669      <sect3 id="auth-states-client">
1670        <title>Client states</title>
1671
1672        <para>
1673          To more precisely describe the interaction between the
1674          protocol state machine and the authentication mechanisms the
1675          following notation is used: MECH(CHALL) means that the
1676          server challenge CHALL was fed to the mechanism MECH, which
1677          returns one of
1678
1679          <itemizedlist>
1680            <listitem>
1681              <para>
1682                CONTINUE(RESP) means continue the auth conversation
1683                and send RESP as the response to the server;
1684              </para>
1685            </listitem>
1686
1687            <listitem>
1688              <para>
1689                OK(RESP) means that after sending RESP to the server
1690                the client side of the auth conversation is finished
1691                and the server should return "OK";
1692              </para>
1693            </listitem>
1694
1695            <listitem>
1696              <para>
1697                ERROR means that CHALL was invalid and could not be
1698                processed.
1699              </para>
1700            </listitem>
1701          </itemizedlist>
1702
1703          Both RESP and CHALL may be empty.
1704        </para>
1705
1706        <para>
1707          The Client starts by getting an initial response from the
1708          default mechanism and sends AUTH MECH RESP, or AUTH MECH if
1709          the mechanism did not provide an initial response.  If the
1710          mechanism returns CONTINUE, the client starts in state
1711          <emphasis>WaitingForData</emphasis>, if the mechanism
1712          returns OK the client starts in state
1713          <emphasis>WaitingForOK</emphasis>.
1714        </para>
1715
1716        <para>
1717          The client should keep track of available mechanisms and
1718          which it mechanisms it has already attempted. This list is
1719          used to decide which AUTH command to send. When the list is
1720          exhausted, the client should give up and close the
1721          connection.
1722        </para>
1723
1724        <formalpara>
1725          <title><emphasis>WaitingForData</emphasis></title>
1726          <para>
1727            <itemizedlist>
1728              <listitem>
1729                <para>
1730                  Receive DATA CHALL
1731                  <simplelist>
1732                    <member>
1733                      MECH(CHALL) returns CONTINUE(RESP) &rarr; send
1734                      DATA RESP, goto
1735                      <emphasis>WaitingForData</emphasis>
1736                    </member>
1737
1738                    <member>
1739                      MECH(CHALL) returns OK(RESP) &rarr; send DATA
1740                      RESP, goto <emphasis>WaitingForOK</emphasis>
1741                    </member>
1742
1743                    <member>
1744                      MECH(CHALL) returns ERROR &rarr; send ERROR
1745                      [msg], goto <emphasis>WaitingForData</emphasis>
1746                    </member>
1747                  </simplelist>
1748                </para>
1749              </listitem>
1750
1751              <listitem>
1752                <para>
1753                  Receive REJECTED [mechs] &rarr;
1754                  send AUTH [next mech], goto
1755                  WaitingForData or <emphasis>WaitingForOK</emphasis>
1756                </para>
1757              </listitem>
1758              <listitem>
1759                <para>
1760                  Receive ERROR &rarr; send
1761                  CANCEL, goto
1762                  <emphasis>WaitingForReject</emphasis>
1763                </para>
1764              </listitem>
1765              <listitem>
1766                <para>
1767                  Receive OK &rarr; send
1768                  BEGIN, terminate auth
1769                  conversation, authenticated
1770                </para>
1771              </listitem>
1772              <listitem>
1773                <para>
1774                  Receive anything else &rarr; send
1775                  ERROR, goto
1776                  <emphasis>WaitingForData</emphasis>
1777                </para>
1778              </listitem>
1779            </itemizedlist>
1780          </para>
1781        </formalpara>
1782
1783        <formalpara>
1784          <title><emphasis>WaitingForOK</emphasis></title>
1785          <para>
1786            <itemizedlist>
1787              <listitem>
1788                <para>
1789                  Receive OK &rarr; send BEGIN, terminate auth
1790                  conversation, <emphasis>authenticated</emphasis>
1791                </para>
1792              </listitem>
1793              <listitem>
1794                <para>
1795                  Receive REJECT [mechs] &rarr; send AUTH [next mech],
1796                  goto <emphasis>WaitingForData</emphasis> or
1797                  <emphasis>WaitingForOK</emphasis>
1798                </para>
1799              </listitem>
1800
1801              <listitem>
1802                <para>
1803                  Receive DATA &rarr; send CANCEL, goto
1804                  <emphasis>WaitingForReject</emphasis>
1805                </para>
1806              </listitem>
1807
1808              <listitem>
1809                <para>
1810                  Receive ERROR &rarr; send CANCEL, goto
1811                  <emphasis>WaitingForReject</emphasis>
1812                </para>
1813              </listitem>
1814
1815              <listitem>
1816                <para>
1817                  Receive anything else &rarr; send ERROR, goto
1818                  <emphasis>WaitingForOK</emphasis>
1819                </para>
1820              </listitem>
1821            </itemizedlist>
1822          </para>
1823        </formalpara>
1824
1825        <formalpara>
1826          <title><emphasis>WaitingForReject</emphasis></title>
1827          <para>
1828            <itemizedlist>
1829              <listitem>
1830                <para>
1831                  Receive REJECT [mechs] &rarr; send AUTH [next mech],
1832                  goto <emphasis>WaitingForData</emphasis> or
1833                  <emphasis>WaitingForOK</emphasis>
1834                </para>
1835              </listitem>
1836
1837              <listitem>
1838                <para>
1839                  Receive anything else &rarr; terminate auth
1840                  conversation, disconnect
1841                </para>
1842              </listitem>
1843            </itemizedlist>
1844          </para>
1845        </formalpara>
1846
1847      </sect3>
1848
1849      <sect3 id="auth-states-server">
1850        <title>Server states</title>
1851
1852        <para>
1853          For the server MECH(RESP) means that the client response
1854          RESP was fed to the the mechanism MECH, which returns one of
1855
1856          <itemizedlist>
1857            <listitem>
1858              <para>
1859                CONTINUE(CHALL) means continue the auth conversation and
1860                send CHALL as the challenge to the client;
1861              </para>
1862            </listitem>
1863
1864            <listitem>
1865              <para>
1866                OK means that the client has been successfully
1867                authenticated;
1868              </para>
1869            </listitem>
1870
1871            <listitem>
1872              <para>
1873                REJECT means that the client failed to authenticate or
1874                there was an error in RESP.
1875              </para>
1876            </listitem>
1877          </itemizedlist>
1878
1879          The server starts out in state
1880          <emphasis>WaitingForAuth</emphasis>.  If the client is
1881          rejected too many times the server must disconnect the
1882          client.
1883        </para>
1884
1885        <formalpara>
1886          <title><emphasis>WaitingForAuth</emphasis></title>
1887          <para>
1888            <itemizedlist>
1889
1890              <listitem>
1891                <para>
1892                  Receive AUTH &rarr; send REJECTED [mechs], goto
1893                  <emphasis>WaitingForAuth</emphasis>
1894                </para>
1895              </listitem>
1896
1897              <listitem>
1898                <para>
1899                  Receive AUTH MECH RESP
1900
1901                  <simplelist>
1902                    <member>
1903                      MECH not valid mechanism &rarr; send REJECTED
1904                      [mechs], goto
1905                      <emphasis>WaitingForAuth</emphasis>
1906                    </member>
1907
1908                    <member>
1909                      MECH(RESP) returns CONTINUE(CHALL) &rarr; send
1910                      DATA CHALL, goto
1911                      <emphasis>WaitingForData</emphasis>
1912                    </member>
1913
1914                    <member>
1915                      MECH(RESP) returns OK &rarr; send OK, goto
1916                      <emphasis>WaitingForBegin</emphasis>
1917                    </member>
1918
1919                    <member>
1920                      MECH(RESP) returns REJECT &rarr; send REJECTED
1921                      [mechs], goto
1922                      <emphasis>WaitingForAuth</emphasis>
1923                    </member>
1924                  </simplelist>
1925                </para>
1926              </listitem>
1927
1928              <listitem>
1929                <para>
1930                  Receive BEGIN &rarr; terminate
1931                  auth conversation, disconnect
1932                </para>
1933              </listitem>
1934
1935              <listitem>
1936                <para>
1937                  Receive ERROR &rarr; send REJECTED [mechs], goto
1938                  <emphasis>WaitingForAuth</emphasis>
1939                </para>
1940              </listitem>
1941
1942              <listitem>
1943                <para>
1944                  Receive anything else &rarr; send
1945                  ERROR, goto
1946                  <emphasis>WaitingForAuth</emphasis>
1947                </para>
1948              </listitem>
1949            </itemizedlist>
1950          </para>
1951        </formalpara>
1952
1953
1954        <formalpara>
1955          <title><emphasis>WaitingForData</emphasis></title>
1956          <para>
1957            <itemizedlist>
1958              <listitem>
1959                <para>
1960                  Receive DATA RESP
1961                  <simplelist>
1962                    <member>
1963                      MECH(RESP) returns CONTINUE(CHALL) &rarr; send
1964                      DATA CHALL, goto
1965                      <emphasis>WaitingForData</emphasis>
1966                    </member>
1967
1968                    <member>
1969                      MECH(RESP) returns OK &rarr; send OK, goto
1970                      <emphasis>WaitingForBegin</emphasis>
1971                    </member>
1972
1973                    <member>
1974                      MECH(RESP) returns REJECT &rarr; send REJECTED
1975                      [mechs], goto
1976                      <emphasis>WaitingForAuth</emphasis>
1977                    </member>
1978                  </simplelist>
1979                </para>
1980              </listitem>
1981
1982              <listitem>
1983                <para>
1984                  Receive BEGIN &rarr; terminate auth conversation,
1985                  disconnect
1986                </para>
1987              </listitem>
1988
1989              <listitem>
1990                <para>
1991                  Receive CANCEL &rarr; send REJECTED [mechs], goto
1992                  <emphasis>WaitingForAuth</emphasis>
1993                </para>
1994              </listitem>
1995
1996              <listitem>
1997                <para>
1998                  Receive ERROR &rarr; send REJECTED [mechs], goto
1999                  <emphasis>WaitingForAuth</emphasis>
2000                </para>
2001              </listitem>
2002
2003              <listitem>
2004                <para>
2005                  Receive anything else &rarr; send ERROR, goto
2006                  <emphasis>WaitingForData</emphasis>
2007                </para>
2008              </listitem>
2009            </itemizedlist>
2010          </para>
2011        </formalpara>
2012
2013        <formalpara>
2014          <title><emphasis>WaitingForBegin</emphasis></title>
2015          <para>
2016            <itemizedlist>
2017              <listitem>
2018                <para>
2019                  Receive BEGIN &rarr; terminate auth conversation,
2020                  client authenticated
2021                </para>
2022              </listitem>
2023
2024              <listitem>
2025                <para>
2026                  Receive CANCEL &rarr; send REJECTED [mechs], goto
2027                  <emphasis>WaitingForAuth</emphasis>
2028                </para>
2029              </listitem>
2030
2031              <listitem>
2032                <para>
2033                  Receive ERROR &rarr; send REJECTED [mechs], goto
2034                  <emphasis>WaitingForAuth</emphasis>
2035                </para>
2036              </listitem>
2037
2038              <listitem>
2039                <para>
2040                  Receive anything else &rarr; send ERROR, goto
2041                  <emphasis>WaitingForBegin</emphasis>
2042                </para>
2043              </listitem>
2044            </itemizedlist>
2045          </para>
2046        </formalpara>
2047
2048      </sect3>
2049
2050    </sect2>
2051    <sect2 id="auth-mechanisms">
2052      <title>Authentication mechanisms</title>
2053      <para>
2054        This section describes some new authentication mechanisms.
2055        D-Bus also allows any standard SASL mechanism of course.
2056      </para>
2057      <sect3 id="auth-mechanisms-sha">
2058        <title>DBUS_COOKIE_SHA1</title>
2059        <para>
2060          The DBUS_COOKIE_SHA1 mechanism is designed to establish that a client
2061          has the ability to read a private file owned by the user being
2062          authenticated. If the client can prove that it has access to a secret
2063          cookie stored in this file, then the client is authenticated.
2064          Thus the security of DBUS_COOKIE_SHA1 depends on a secure home
2065          directory.
2066        </para>
2067        <para>
2068          Authentication proceeds as follows:
2069          <itemizedlist>
2070            <listitem>
2071              <para>
2072                The client sends the username it would like to authenticate
2073                as.
2074              </para>
2075            </listitem>
2076            <listitem>
2077              <para>
2078                The server sends the name of its "cookie context" (see below); a
2079                space character; the integer ID of the secret cookie the client
2080                must demonstrate knowledge of; a space character; then a
2081                hex-encoded randomly-generated challenge string.
2082              </para>
2083            </listitem>
2084            <listitem>
2085              <para>
2086                The client locates the cookie, and generates its own hex-encoded
2087                randomly-generated challenge string.  The client then
2088                concatenates the server's hex-encoded challenge, a ":"
2089                character, its own hex-encoded challenge, another ":" character,
2090                and the hex-encoded cookie.  It computes the SHA-1 hash of this
2091                composite string.  It sends back to the server the client's
2092                hex-encoded challenge string, a space character, and the SHA-1
2093                hash.
2094              </para>
2095            </listitem>
2096            <listitem>
2097              <para>
2098                The server generates the same concatenated string used by the
2099                client and computes its SHA-1 hash. It compares the hash with
2100                the hash received from the client; if the two hashes match, the
2101                client is authenticated.
2102              </para>
2103            </listitem>
2104          </itemizedlist>
2105        </para>
2106        <para>
2107          Each server has a "cookie context," which is a name that identifies a
2108          set of cookies that apply to that server. A sample context might be
2109          "org_freedesktop_session_bus". Context names must be valid ASCII,
2110          nonzero length, and may not contain the characters slash ("/"),
2111          backslash ("\"), space (" "), newline ("\n"), carriage return ("\r"),
2112          tab ("\t"), or period ("."). There is a default context,
2113          "org_freedesktop_general" that's used by servers that do not specify
2114          otherwise.
2115        </para>
2116        <para>
2117          Cookies are stored in a user's home directory, in the directory
2118          <filename>~/.dbus-keyrings/</filename>. This directory must
2119          not be readable or writable by other users. If it is,
2120          clients and servers must ignore it. The directory
2121          contains cookie files named after the cookie context.
2122        </para>
2123        <para>
2124          A cookie file contains one cookie per line. Each line
2125          has three space-separated fields:
2126          <itemizedlist>
2127            <listitem>
2128              <para>
2129                The cookie ID number, which must be a non-negative integer and
2130                may not be used twice in the same file.
2131              </para>
2132            </listitem>
2133            <listitem>
2134              <para>
2135                The cookie's creation time, in UNIX seconds-since-the-epoch
2136                format.
2137              </para>
2138            </listitem>
2139            <listitem>
2140              <para>
2141                The cookie itself, a hex-encoded random block of bytes. The cookie
2142                may be of any length, though obviously security increases
2143                as the length increases.
2144              </para>
2145            </listitem>
2146          </itemizedlist>
2147        </para>
2148        <para>
2149          Only server processes modify the cookie file.
2150          They must do so with this procedure:
2151          <itemizedlist>
2152            <listitem>
2153              <para>
2154                Create a lockfile name by appending ".lock" to the name of the
2155                cookie file.  The server should attempt to create this file
2156                using <literal>O_CREAT | O_EXCL</literal>.  If file creation
2157                fails, the lock fails. Servers should retry for a reasonable
2158                period of time, then they may choose to delete an existing lock
2159                to keep users from having to manually delete a stale
2160                lock. <footnote><para>Lockfiles are used instead of real file
2161                locking <literal>fcntl()</literal> because real locking
2162                implementations are still flaky on network
2163                filesystems.</para></footnote>
2164              </para>
2165            </listitem>
2166            <listitem>
2167              <para>
2168                Once the lockfile has been created, the server loads the cookie
2169                file. It should then delete any cookies that are old (the
2170                timeout can be fairly short), or more than a reasonable
2171                time in the future (so that cookies never accidentally
2172                become permanent, if the clock was set far into the future
2173                at some point). If no recent keys remain, the
2174                server may generate a new key.
2175              </para>
2176            </listitem>
2177            <listitem>
2178              <para>
2179                The pruned and possibly added-to cookie file
2180                must be resaved atomically (using a temporary
2181                file which is rename()'d).
2182              </para>
2183            </listitem>
2184            <listitem>
2185              <para>
2186                The lock must be dropped by deleting the lockfile.
2187              </para>
2188            </listitem>
2189          </itemizedlist>
2190        </para>
2191        <para>
2192          Clients need not lock the file in order to load it,
2193          because servers are required to save the file atomically.
2194        </para>
2195      </sect3>
2196    </sect2>
2197  </sect1>
2198  <sect1 id="addresses">
2199    <title>Server Addresses</title>
2200    <para>
2201      Server addresses consist of a transport name followed by a colon, and
2202      then an optional, comma-separated list of keys and values in the form key=value.
2203      Each value is escaped.
2204    </para>
2205    <para>
2206      For example:
2207      <programlisting>unix:path=/tmp/dbus-test</programlisting>
2208      Which is the address to a unix socket with the path /tmp/dbus-test.
2209    </para>
2210    <para>
2211      Value escaping is similar to URI escaping but simpler.
2212      <itemizedlist>
2213        <listitem>
2214          <para>
2215            The set of optionally-escaped bytes is:
2216            <literal>[0-9A-Za-z_-/.\]</literal>. To escape, each
2217            <emphasis>byte</emphasis> (note, not character) which is not in the
2218            set of optionally-escaped bytes must be replaced with an ASCII
2219            percent (<literal>%</literal>) and the value of the byte in hex.
2220            The hex value must always be two digits, even if the first digit is
2221            zero. The optionally-escaped bytes may be escaped if desired.
2222          </para>
2223        </listitem>
2224        <listitem>
2225          <para>
2226            To unescape, append each byte in the value; if a byte is an ASCII
2227            percent (<literal>%</literal>) character then append the following
2228            hex value instead. It is an error if a <literal>%</literal> byte
2229            does not have two hex digits following. It is an error if a
2230            non-optionally-escaped byte is seen unescaped.
2231          </para>
2232        </listitem>
2233      </itemizedlist>
2234      The set of optionally-escaped bytes is intended to preserve address
2235      readability and convenience.
2236    </para>
2237
2238    <para>
2239      A server may specify a key-value pair with the key <literal>guid</literal>
2240      and the value a hex-encoded 16-byte sequence. <xref linkend="uuids"/>
2241      describes the format of the <literal>guid</literal> field.  If present,
2242      this UUID may be used to distinguish one server address from another. A
2243      server should use a different UUID for each address it listens on. For
2244      example, if a message bus daemon offers both UNIX domain socket and TCP
2245      connections, but treats clients the same regardless of how they connect,
2246      those two connections are equivalent post-connection but should have
2247      distinct UUIDs to distinguish the kinds of connection.
2248    </para>
2249
2250    <para>
2251      The intent of the address UUID feature is to allow a client to avoid
2252      opening multiple identical connections to the same server, by allowing the
2253      client to check whether an address corresponds to an already-existing
2254      connection.  Comparing two addresses is insufficient, because addresses
2255      can be recycled by distinct servers, and equivalent addresses may look
2256      different if simply compared as strings (for example, the host in a TCP
2257      address can be given as an IP address or as a hostname).
2258    </para>
2259
2260    <para>
2261      Note that the address key is <literal>guid</literal> even though the
2262      rest of the API and documentation says "UUID," for historical reasons.
2263    </para>
2264
2265    <para>
2266      [FIXME clarify if attempting to connect to each is a requirement
2267      or just a suggestion]
2268      When connecting to a server, multiple server addresses can be
2269      separated by a semi-colon. The library will then try to connect
2270      to the first address and if that fails, it'll try to connect to
2271      the next one specified, and so forth. For example
2272      <programlisting>unix:path=/tmp/dbus-test;unix:path=/tmp/dbus-test2</programlisting>
2273    </para>
2274
2275  </sect1>
2276
2277  <sect1 id="transports">
2278    <title>Transports</title>
2279    <para>
2280      [FIXME we need to specify in detail each transport and its possible arguments]
2281
2282      Current transports include: unix domain sockets (including
2283      abstract namespace on linux), TCP/IP, and a debug/testing transport using
2284      in-process pipes. Future possible transports include one that
2285      tunnels over X11 protocol.
2286    </para>
2287
2288    <sect2 id="transports-unix-domain-sockets">
2289      <title>Unix Domain Sockets</title>
2290      <para>
2291        Unix domain sockets can be either paths in the file system or on Linux
2292	kernels, they can be abstract which are similar to paths but
2293	do not show up in the file system.
2294      </para>
2295
2296      <para>
2297        When a socket is opened by the D-Bus library it truncates the path
2298	name right before the first trailing Nul byte.  This is true for both
2299	normal paths and abstract paths.  Note that this is a departure from
2300	previous versions of D-Bus that would create sockets with a fixed
2301	length path name.  Names which were shorter than the fixed length
2302	would be padded by Nul bytes.
2303      </para>
2304    </sect2>
2305  </sect1>
2306
2307  <sect1 id="naming-conventions">
2308    <title>Naming Conventions</title>
2309
2310    <para>
2311      D-Bus namespaces are all lowercase and correspond to reversed domain
2312      names, as with Java. e.g. "org.freedesktop"
2313    </para>
2314    <para>
2315      Interface, signal, method, and property names are "WindowsStyleCaps", note
2316      that the first letter is capitalized, unlike Java.
2317    </para>
2318    <para>
2319      Object paths are normally all lowercase with underscores used rather than
2320      hyphens.
2321    </para>
2322  </sect1>
2323
2324  <sect1 id="uuids">
2325    <title>UUIDs</title>
2326    <para>
2327      A working D-Bus implementation uses universally-unique IDs in two places.
2328      First, each server address has a UUID identifying the address,
2329      as described in <xref linkend="addresses"/>. Second, each operating
2330      system kernel instance running a D-Bus client or server has a UUID
2331      identifying that kernel, retrieved by invoking the method
2332      org.freedesktop.DBus.Peer.GetMachineId() (see <xref
2333      linkend="standard-interfaces-peer"/>).
2334    </para>
2335    <para>
2336      The term "UUID" in this document is intended literally, i.e. an
2337      identifier that is universally unique. It is not intended to refer to
2338      RFC4122, and in fact the D-Bus UUID is not compatible with that RFC.
2339    </para>
2340    <para>
2341      The UUID must contain 128 bits of data and be hex-encoded.  The
2342      hex-encoded string may not contain hyphens or other non-hex-digit
2343      characters, and it must be exactly 32 characters long.  To generate a
2344      UUID, the current reference implementation concatenates 96 bits of random
2345      data followed by the 32-bit time in seconds since the UNIX epoch (in big
2346      endian byte order).
2347    </para>
2348    <para>
2349      It would also be acceptable and probably better to simply generate 128
2350      bits of random data, as long as the random number generator is of high
2351      quality. The timestamp could conceivably help if the random bits are not
2352      very random. With a quality random number generator, collisions are
2353      extremely unlikely even with only 96 bits, so it's somewhat academic.
2354    </para>
2355    <para>
2356      Implementations should, however, stick to random data for the first 96 bits
2357      of the UUID.
2358    </para>
2359  </sect1>
2360
2361  <sect1 id="standard-interfaces">
2362    <title>Standard Interfaces</title>
2363    <para>
2364      See <xref linkend="message-protocol-types-notation"/> for details on
2365       the notation used in this section. There are some standard interfaces
2366      that may be useful across various D-Bus applications.
2367    </para>
2368    <sect2 id="standard-interfaces-peer">
2369      <title><literal>org.freedesktop.DBus.Peer</literal></title>
2370      <para>
2371        The <literal>org.freedesktop.DBus.Peer</literal> interface
2372        has two methods:
2373        <programlisting>
2374          org.freedesktop.DBus.Peer.Ping ()
2375          org.freedesktop.DBus.Peer.GetMachineId (out STRING machine_uuid)
2376        </programlisting>
2377      </para>
2378      <para>
2379        On receipt of the <literal>METHOD_CALL</literal> message
2380        <literal>org.freedesktop.DBus.Peer.Ping</literal>, an application should do
2381        nothing other than reply with a <literal>METHOD_RETURN</literal> as
2382        usual.  It does not matter which object path a ping is sent to.  The
2383        reference implementation handles this method automatically.
2384      </para>
2385      <para>
2386        On receipt of the <literal>METHOD_CALL</literal> message
2387        <literal>org.freedesktop.DBus.Peer.GetMachineId</literal>, an application should
2388        reply with a <literal>METHOD_RETURN</literal> containing a hex-encoded
2389        UUID representing the identity of the machine the process is running on.
2390        This UUID must be the same for all processes on a single system at least
2391        until that system next reboots. It should be the same across reboots
2392        if possible, but this is not always possible to implement and is not
2393        guaranteed.
2394        It does not matter which object path a GetMachineId is sent to.  The
2395        reference implementation handles this method automatically.
2396      </para>
2397      <para>
2398        The UUID is intended to be per-instance-of-the-operating-system, so may represent
2399        a virtual machine running on a hypervisor, rather than a physical machine.
2400        Basically if two processes see the same UUID, they should also see the same
2401        shared memory, UNIX domain sockets, process IDs, and other features that require
2402        a running OS kernel in common between the processes.
2403      </para>
2404      <para>
2405        The UUID is often used where other programs might use a hostname. Hostnames
2406        can change without rebooting, however, or just be "localhost" - so the UUID
2407        is more robust.
2408      </para>
2409      <para>
2410        <xref linkend="uuids"/> explains the format of the UUID.
2411      </para>
2412    </sect2>
2413
2414    <sect2 id="standard-interfaces-introspectable">
2415      <title><literal>org.freedesktop.DBus.Introspectable</literal></title>
2416      <para>
2417        This interface has one method:
2418        <programlisting>
2419          org.freedesktop.DBus.Introspectable.Introspect (out STRING xml_data)
2420        </programlisting>
2421      </para>
2422      <para>
2423        Objects instances may implement
2424        <literal>Introspect</literal> which returns an XML description of
2425        the object, including its interfaces (with signals and methods), objects
2426        below it in the object path tree, and its properties.
2427      </para>
2428      <para>
2429        <xref linkend="introspection-format"/> describes the format of this XML string.
2430      </para>
2431    </sect2>
2432    <sect2 id="standard-interfaces-properties">
2433      <title><literal>org.freedesktop.DBus.Properties</literal></title>
2434      <para>
2435        Many native APIs will have a concept of object <firstterm>properties</firstterm>
2436        or <firstterm>attributes</firstterm>. These can be exposed via the
2437        <literal>org.freedesktop.DBus.Properties</literal> interface.
2438      </para>
2439      <para>
2440        <programlisting>
2441              org.freedesktop.DBus.Properties.Get (in STRING interface_name,
2442                                                   in STRING property_name,
2443                                                   out VARIANT value);
2444              org.freedesktop.DBus.Properties.Set (in STRING interface_name,
2445                                                   in STRING property_name,
2446                                                   in VARIANT value);
2447        </programlisting>
2448      </para>
2449      <para>
2450        The available properties and whether they are writable can be determined
2451        by calling <literal>org.freedesktop.DBus.Introspectable.Introspect</literal>,
2452        see <xref linkend="standard-interfaces-introspectable"/>.
2453      </para>
2454      <para>
2455        An empty string may be provided for the interface name; in this case,
2456        if there are multiple properties on an object with the same name,
2457        the results are undefined (picking one by according to an arbitrary
2458        deterministic rule, or returning an error, are the reasonable
2459        possibilities).
2460      </para>
2461    </sect2>
2462  </sect1>
2463
2464  <sect1 id="introspection-format">
2465    <title>Introspection Data Format</title>
2466    <para>
2467      As described in <xref linkend="standard-interfaces-introspectable"/>,
2468      objects may be introspected at runtime, returning an XML string
2469      that describes the object. The same XML format may be used in
2470      other contexts as well, for example as an "IDL" for generating
2471      static language bindings.
2472    </para>
2473    <para>
2474      Here is an example of introspection data:
2475      <programlisting>
2476        &lt;!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS Object Introspection 1.0//EN"
2477         "http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd"&gt;
2478        &lt;node name="/org/freedesktop/sample_object"&gt;
2479          &lt;interface name="org.freedesktop.SampleInterface"&gt;
2480            &lt;method name="Frobate"&gt;
2481              &lt;arg name="foo" type="i" direction="in"/&gt;
2482              &lt;arg name="bar" type="s" direction="out"/&gt;
2483              &lt;arg name="baz" type="a{us}" direction="out"/&gt;
2484              &lt;annotation name="org.freedesktop.DBus.Deprecated" value="true"/&gt;
2485            &lt;/method&gt;
2486            &lt;method name="Bazify"&gt;
2487              &lt;arg name="bar" type="(iiu)" direction="in"/&gt;
2488              &lt;arg name="bar" type="v" direction="out"/&gt;
2489            &lt;/method&gt;
2490            &lt;method name="Mogrify"&gt;
2491              &lt;arg name="bar" type="(iiav)" direction="in"/&gt;
2492            &lt;/method&gt;
2493            &lt;signal name="Changed"&gt;
2494              &lt;arg name="new_value" type="b"/&gt;
2495            &lt;/signal&gt;
2496            &lt;property name="Bar" type="y" access="readwrite"/&gt;
2497          &lt;/interface&gt;
2498          &lt;node name="child_of_sample_object"/&gt;
2499          &lt;node name="another_child_of_sample_object"/&gt;
2500       &lt;/node&gt;
2501      </programlisting>
2502    </para>
2503    <para>
2504      A more formal DTD and spec needs writing, but here are some quick notes.
2505      <itemizedlist>
2506        <listitem>
2507          <para>
2508            Only the root &lt;node&gt; element can omit the node name, as it's
2509            known to be the object that was introspected.  If the root
2510            &lt;node&gt; does have a name attribute, it must be an absolute
2511            object path. If child &lt;node&gt; have object paths, they must be
2512            relative.
2513          </para>
2514        </listitem>
2515        <listitem>
2516          <para>
2517            If a child &lt;node&gt; has any sub-elements, then they
2518            must represent a complete introspection of the child.
2519            If a child &lt;node&gt; is empty, then it may or may
2520            not have sub-elements; the child must be introspected
2521            in order to find out. The intent is that if an object
2522            knows that its children are "fast" to introspect
2523            it can go ahead and return their information, but
2524            otherwise it can omit it.
2525          </para>
2526        </listitem>
2527        <listitem>
2528          <para>
2529            The direction element on &lt;arg&gt; may be omitted,
2530            in which case it defaults to "in" for method calls
2531            and "out" for signals. Signals only allow "out"
2532            so while direction may be specified, it's pointless.
2533          </para>
2534        </listitem>
2535        <listitem>
2536          <para>
2537            The possible directions are "in" and "out",
2538            unlike CORBA there is no "inout"
2539          </para>
2540        </listitem>
2541        <listitem>
2542          <para>
2543            The possible property access flags are
2544            "readwrite", "read", and "write"
2545          </para>
2546        </listitem>
2547        <listitem>
2548          <para>
2549            Multiple interfaces can of course be listed for
2550            one &lt;node&gt;.
2551          </para>
2552        </listitem>
2553        <listitem>
2554          <para>
2555            The "name" attribute on arguments is optional.
2556          </para>
2557        </listitem>
2558      </itemizedlist>
2559    </para>
2560    <para>
2561        Method, interface, property, and signal elements may have
2562        "annotations", which are generic key/value pairs of metadata.
2563	They are similar conceptually to Java's annotations and C# attributes.
2564        Well-known annotations:
2565     </para>
2566     <informaltable>
2567       <tgroup cols="3">
2568	 <thead>
2569	   <row>
2570	     <entry>Name</entry>
2571	     <entry>Values (separated by ,)</entry>
2572	     <entry>Description</entry>
2573	   </row>
2574	 </thead>
2575	 <tbody>
2576	   <row>
2577	     <entry>org.freedesktop.DBus.Deprecated</entry>
2578	     <entry>true,false</entry>
2579	     <entry>Whether or not the entity is deprecated; defaults to false</entry>
2580	   </row>
2581	   <row>
2582	     <entry>org.freedesktop.DBus.GLib.CSymbol</entry>
2583	     <entry>(string)</entry>
2584	     <entry>The C symbol; may be used for methods and interfaces</entry>
2585	   </row>
2586	   <row>
2587	     <entry>org.freedesktop.DBus.Method.NoReply</entry>
2588	     <entry>true,false</entry>
2589	     <entry>If set, don't expect a reply to the method call; defaults to false.</entry>
2590	   </row>
2591	 </tbody>
2592       </tgroup>
2593     </informaltable>
2594  </sect1>
2595  <sect1 id="message-bus">
2596    <title>Message Bus Specification</title>
2597    <sect2 id="message-bus-overview">
2598      <title>Message Bus Overview</title>
2599      <para>
2600        The message bus accepts connections from one or more applications.
2601        Once connected, applications can exchange messages with other
2602        applications that are also connected to the bus.
2603      </para>
2604      <para>
2605        In order to route messages among connections, the message bus keeps a
2606        mapping from names to connections. Each connection has one
2607        unique-for-the-lifetime-of-the-bus name automatically assigned.
2608        Applications may request additional names for a connection. Additional
2609        names are usually "well-known names" such as
2610        "org.freedesktop.TextEditor". When a name is bound to a connection,
2611        that connection is said to <firstterm>own</firstterm> the name.
2612      </para>
2613      <para>
2614        The bus itself owns a special name, <literal>org.freedesktop.DBus</literal>.
2615        This name routes messages to the bus, allowing applications to make
2616        administrative requests. For example, applications can ask the bus
2617        to assign a name to a connection.
2618      </para>
2619      <para>
2620        Each name may have <firstterm>queued owners</firstterm>.  When an
2621        application requests a name for a connection and the name is already in
2622        use, the bus will optionally add the connection to a queue waiting for
2623        the name. If the current owner of the name disconnects or releases
2624        the name, the next connection in the queue will become the new owner.
2625      </para>
2626
2627      <para>
2628        This feature causes the right thing to happen if you start two text
2629        editors for example; the first one may request "org.freedesktop.TextEditor",
2630        and the second will be queued as a possible owner of that name. When
2631        the first exits, the second will take over.
2632      </para>
2633
2634      <para>
2635        Messages may have a <literal>DESTINATION</literal> field (see <xref
2636        linkend="message-protocol-header-fields"/>).  If the
2637        <literal>DESTINATION</literal> field is present, it specifies a message
2638        recipient by name. Method calls and replies normally specify this field.
2639      </para>
2640
2641      <para>
2642        Signals normally do not specify a destination; they are sent to all
2643        applications with <firstterm>message matching rules</firstterm> that
2644        match the message.
2645      </para>
2646
2647      <para>
2648        When the message bus receives a method call, if the
2649        <literal>DESTINATION</literal> field is absent, the call is taken to be
2650        a standard one-to-one message and interpreted by the message bus
2651        itself. For example, sending an
2652        <literal>org.freedesktop.DBus.Peer.Ping</literal> message with no
2653        <literal>DESTINATION</literal> will cause the message bus itself to
2654        reply to the ping immediately; the message bus will not make this
2655        message visible to other applications.
2656      </para>
2657
2658      <para>
2659        Continuing the <literal>org.freedesktop.DBus.Peer.Ping</literal> example, if
2660        the ping message were sent with a <literal>DESTINATION</literal> name of
2661        <literal>com.yoyodyne.Screensaver</literal>, then the ping would be
2662        forwarded, and the Yoyodyne Corporation screensaver application would be
2663        expected to reply to the ping.
2664      </para>
2665    </sect2>
2666
2667    <sect2 id="message-bus-names">
2668      <title>Message Bus Names</title>
2669      <para>
2670        Each connection has at least one name, assigned at connection time and
2671        returned in response to the
2672        <literal>org.freedesktop.DBus.Hello</literal> method call.  This
2673        automatically-assigned name is called the connection's <firstterm>unique
2674        name</firstterm>.  Unique names are never reused for two different
2675        connections to the same bus.
2676      </para>
2677      <para>
2678        Ownership of a unique name is a prerequisite for interaction with
2679        the message bus. It logically follows that the unique name is always
2680        the first name that an application comes to own, and the last
2681        one that it loses ownership of.
2682      </para>
2683      <para>
2684        Unique connection names must begin with the character ':' (ASCII colon
2685        character); bus names that are not unique names must not begin
2686        with this character. (The bus must reject any attempt by an application
2687        to manually request a name beginning with ':'.) This restriction
2688        categorically prevents "spoofing"; messages sent to a unique name
2689        will always go to the expected connection.
2690      </para>
2691      <para>
2692        When a connection is closed, all the names that it owns are deleted (or
2693        transferred to the next connection in the queue if any).
2694      </para>
2695      <para>
2696        A connection can request additional names to be associated with it using
2697        the <literal>org.freedesktop.DBus.RequestName</literal> message. <xref
2698        linkend="message-protocol-names-bus"/> describes the format of a valid
2699        name. These names can be released again using the
2700        <literal>org.freedesktop.DBus.ReleaseName</literal> message.
2701      </para>
2702
2703      <sect3 id="bus-messages-request-name">
2704        <title><literal>org.freedesktop.DBus.RequestName</literal></title>
2705        <para>
2706          As a method:
2707          <programlisting>
2708            UINT32 RequestName (in STRING name, in UINT32 flags)
2709          </programlisting>
2710          Message arguments:
2711          <informaltable>
2712            <tgroup cols="3">
2713              <thead>
2714                <row>
2715                  <entry>Argument</entry>
2716                  <entry>Type</entry>
2717                  <entry>Description</entry>
2718                </row>
2719              </thead>
2720              <tbody>
2721                <row>
2722                  <entry>0</entry>
2723                  <entry>STRING</entry>
2724                  <entry>Name to request</entry>
2725                </row>
2726	        <row>
2727		  <entry>1</entry>
2728		  <entry>UINT32</entry>
2729		  <entry>Flags</entry>
2730	        </row>
2731              </tbody>
2732            </tgroup>
2733          </informaltable>
2734          Reply arguments:
2735          <informaltable>
2736            <tgroup cols="3">
2737              <thead>
2738                <row>
2739                  <entry>Argument</entry>
2740                  <entry>Type</entry>
2741                  <entry>Description</entry>
2742                </row>
2743              </thead>
2744              <tbody>
2745                <row>
2746                  <entry>0</entry>
2747                  <entry>UINT32</entry>
2748                  <entry>Return value</entry>
2749                </row>
2750              </tbody>
2751            </tgroup>
2752          </informaltable>
2753        </para>
2754        <para>
2755          This method call should be sent to
2756          <literal>org.freedesktop.DBus</literal> and asks the message bus to
2757          assign the given name to the method caller. Each name maintains a
2758          queue of possible owners, where the head of the queue is the primary
2759          or current owner of the name. Each potential owner in the queue
2760          maintains the DBUS_NAME_FLAG_ALLOW_REPLACEMENT and
2761          DBUS_NAME_FLAG_DO_NOT_QUEUE settings from its latest RequestName
2762          call.  When RequestName is invoked the following occurs:
2763          <itemizedlist>
2764            <listitem>
2765              <para>
2766                If the method caller is currently the primary owner of the name,
2767                the DBUS_NAME_FLAG_ALLOW_REPLACEMENT and DBUS_NAME_FLAG_DO_NOT_QUEUE
2768                values are updated with the values from the new RequestName call,
2769                and nothing further happens.
2770              </para>
2771            </listitem>
2772
2773            <listitem>
2774              <para>
2775                If the current primary owner (head of the queue) has
2776                DBUS_NAME_FLAG_ALLOW_REPLACEMENT set, and the RequestName
2777                invocation has the DBUS_NAME_FLAG_REPLACE_EXISTING flag, then
2778                the caller of RequestName replaces the current primary owner at
2779                the head of the queue and the current primary owner moves to the
2780                second position in the queue. If the caller of RequestName was
2781                in the queue previously its flags are updated with the values from
2782                the new RequestName in addition to moving it to the head of the queue.
2783              </para>
2784            </listitem>
2785
2786            <listitem>
2787              <para>
2788                If replacement is not possible, and the method caller is
2789                currently in the queue but not the primary owner, its flags are
2790                updated with the values from the new RequestName call.
2791              </para>
2792            </listitem>
2793
2794            <listitem>
2795              <para>
2796                If replacement is not possible, and the method caller is
2797                currently not in the queue, the method caller is appended to the
2798                queue.
2799              </para>
2800            </listitem>
2801
2802            <listitem>
2803              <para>
2804                If any connection in the queue has DBUS_NAME_FLAG_DO_NOT_QUEUE
2805                set and is not the primary owner, it is removed from the
2806                queue. This can apply to the previous primary owner (if it
2807                was replaced) or the method caller (if it updated the
2808                DBUS_NAME_FLAG_DO_NOT_QUEUE flag while still stuck in the
2809                queue, or if it was just added to the queue with that flag set).
2810              </para>
2811            </listitem>
2812          </itemizedlist>
2813        </para>
2814        <para>
2815          Note that DBUS_NAME_FLAG_REPLACE_EXISTING results in "jumping the
2816          queue," even if another application already in the queue had specified
2817          DBUS_NAME_FLAG_REPLACE_EXISTING.  This comes up if a primary owner
2818          that does not allow replacement goes away, and the next primary owner
2819          does allow replacement. In this case, queued items that specified
2820          DBUS_NAME_FLAG_REPLACE_EXISTING <emphasis>do not</emphasis>
2821          automatically replace the new primary owner. In other words,
2822          DBUS_NAME_FLAG_REPLACE_EXISTING is not saved, it is only used at the
2823          time RequestName is called. This is deliberate to avoid an infinite loop
2824          anytime two applications are both DBUS_NAME_FLAG_ALLOW_REPLACEMENT
2825          and DBUS_NAME_FLAG_REPLACE_EXISTING.
2826        </para>
2827        <para>
2828          The flags argument contains any of the following values logically ORed
2829          together:
2830
2831          <informaltable>
2832            <tgroup cols="3">
2833              <thead>
2834                <row>
2835                  <entry>Conventional Name</entry>
2836                  <entry>Value</entry>
2837                  <entry>Description</entry>
2838                </row>
2839              </thead>
2840              <tbody>
2841	        <row>
2842		  <entry>DBUS_NAME_FLAG_ALLOW_REPLACEMENT</entry>
2843		  <entry>0x1</entry>
2844		  <entry>
2845
2846                    If an application A specifies this flag and succeeds in
2847                    becoming the owner of the name, and another application B
2848                    later calls RequestName with the
2849                    DBUS_NAME_FLAG_REPLACE_EXISTING flag, then application A
2850                    will lose ownership and receive a
2851                    <literal>org.freedesktop.DBus.NameLost</literal> signal, and
2852                    application B will become the new owner. If DBUS_NAME_FLAG_ALLOW_REPLACEMENT
2853                    is not specified by application A, or DBUS_NAME_FLAG_REPLACE_EXISTING
2854                    is not specified by application B, then application B will not replace
2855                    application A as the owner.
2856
2857                  </entry>
2858	        </row>
2859	        <row>
2860		  <entry>DBUS_NAME_FLAG_REPLACE_EXISTING</entry>
2861		  <entry>0x2</entry>
2862		  <entry>
2863
2864                    Try to replace the current owner if there is one. If this
2865                    flag is not set the application will only become the owner of
2866                    the name if there is no current owner. If this flag is set,
2867                    the application will replace the current owner if
2868                    the current owner specified DBUS_NAME_FLAG_ALLOW_REPLACEMENT.
2869
2870                  </entry>
2871	        </row>
2872	        <row>
2873		  <entry>DBUS_NAME_FLAG_DO_NOT_QUEUE</entry>
2874		  <entry>0x4</entry>
2875		  <entry>
2876
2877                    Without this flag, if an application requests a name that is
2878                    already owned, the application will be placed in a queue to
2879                    own the name when the current owner gives it up. If this
2880                    flag is given, the application will not be placed in the
2881                    queue, the request for the name will simply fail.  This flag
2882                    also affects behavior when an application is replaced as
2883                    name owner; by default the application moves back into the
2884                    waiting queue, unless this flag was provided when the application
2885                    became the name owner.
2886
2887                  </entry>
2888	        </row>
2889	      </tbody>
2890	    </tgroup>
2891	  </informaltable>
2892
2893          The return code can be one of the following values:
2894
2895          <informaltable>
2896            <tgroup cols="3">
2897              <thead>
2898                <row>
2899                  <entry>Conventional Name</entry>
2900                  <entry>Value</entry>
2901                  <entry>Description</entry>
2902                </row>
2903              </thead>
2904              <tbody>
2905	        <row>
2906                  <entry>DBUS_REQUEST_NAME_REPLY_PRIMARY_OWNER</entry>
2907		  <entry>1</entry> <entry>The caller is now the primary owner of
2908		  the name, replacing any previous owner. Either the name had no
2909		  owner before, or the caller specified
2910		  DBUS_NAME_FLAG_REPLACE_EXISTING and the current owner specified
2911                  DBUS_NAME_FLAG_ALLOW_REPLACEMENT.</entry>
2912	        </row>
2913	        <row>
2914		  <entry>DBUS_REQUEST_NAME_REPLY_IN_QUEUE</entry>
2915		  <entry>2</entry>
2916
2917		  <entry>The name already had an owner,
2918                    DBUS_NAME_FLAG_DO_NOT_QUEUE was not specified, and either
2919                    the current owner did not specify
2920                    DBUS_NAME_FLAG_ALLOW_REPLACEMENT or the requesting
2921                    application did not specify DBUS_NAME_FLAG_REPLACE_EXISTING.
2922                    </entry>
2923	        </row>
2924	        <row>
2925		  <entry>DBUS_REQUEST_NAME_REPLY_EXISTS</entry> <entry>3</entry>
2926		  <entry>The name already has an owner,
2927		  DBUS_NAME_FLAG_DO_NOT_QUEUE was specified, and either
2928		  DBUS_NAME_FLAG_ALLOW_REPLACEMENT was not specified by the
2929		  current owner, or DBUS_NAME_FLAG_REPLACE_EXISTING was not
2930		  specified by the requesting application.</entry>
2931	        </row>
2932	        <row>
2933		  <entry>DBUS_REQUEST_NAME_REPLY_ALREADY_OWNER</entry>
2934		  <entry>4</entry>
2935		  <entry>The application trying to request ownership of a name is already the owner of it.</entry>
2936	        </row>
2937	      </tbody>
2938	    </tgroup>
2939	  </informaltable>
2940        </para>
2941       </sect3>
2942
2943       <sect3 id="bus-messages-release-name">
2944        <title><literal>org.freedesktop.DBus.ReleaseName</literal></title>
2945        <para>
2946          As a method:
2947          <programlisting>
2948            UINT32 ReleaseName (in STRING name)
2949          </programlisting>
2950          Message arguments:
2951          <informaltable>
2952            <tgroup cols="3">
2953              <thead>
2954                <row>
2955                  <entry>Argument</entry>
2956                  <entry>Type</entry>
2957                  <entry>Description</entry>
2958                </row>
2959              </thead>
2960              <tbody>
2961                <row>
2962                  <entry>0</entry>
2963                  <entry>STRING</entry>
2964                  <entry>Name to release</entry>
2965                </row>
2966              </tbody>
2967            </tgroup>
2968          </informaltable>
2969          Reply arguments:
2970          <informaltable>
2971            <tgroup cols="3">
2972              <thead>
2973                <row>
2974                  <entry>Argument</entry>
2975                  <entry>Type</entry>
2976                  <entry>Description</entry>
2977                </row>
2978              </thead>
2979              <tbody>
2980                <row>
2981                  <entry>0</entry>
2982                  <entry>UINT32</entry>
2983                  <entry>Return value</entry>
2984                </row>
2985              </tbody>
2986            </tgroup>
2987          </informaltable>
2988        </para>
2989        <para>
2990          This method call should be sent to
2991          <literal>org.freedesktop.DBus</literal> and asks the message bus to
2992          release the method caller's claim to the given name. If the caller is
2993          the primary owner, a new primary owner will be selected from the
2994          queue if any other owners are waiting. If the caller is waiting in
2995          the queue for the name, the caller will removed from the queue and
2996          will not be made an owner of the name if it later becomes available.
2997          If there are no other owners in the queue for the name, it will be
2998          removed from the bus entirely.
2999
3000          The return code can be one of the following values:
3001
3002          <informaltable>
3003            <tgroup cols="3">
3004              <thead>
3005                <row>
3006                  <entry>Conventional Name</entry>
3007                  <entry>Value</entry>
3008                  <entry>Description</entry>
3009                </row>
3010              </thead>
3011              <tbody>
3012	        <row>
3013                  <entry>DBUS_RELEASE_NAME_REPLY_RELEASED</entry>
3014                  <entry>1</entry> <entry>The caller has released his claim on
3015                  the given name. Either the caller was the primary owner of
3016                  the name, and the name is now unused or taken by somebody
3017                  waiting in the queue for the name, or the caller was waiting
3018                  in the queue for the name and has now been removed from the
3019                  queue.</entry>
3020	        </row>
3021	        <row>
3022		  <entry>DBUS_RELEASE_NAME_REPLY_NON_EXISTENT</entry>
3023		  <entry>2</entry>
3024		  <entry>The given name does not exist on this bus.</entry>
3025	        </row>
3026	        <row>
3027		  <entry>DBUS_RELEASE_NAME_REPLY_NOT_OWNER</entry>
3028		  <entry>3</entry>
3029		  <entry>The caller was not the primary owner of this name,
3030                  and was also not waiting in the queue to own this name.</entry>
3031	        </row>
3032	      </tbody>
3033	    </tgroup>
3034	  </informaltable>
3035        </para>
3036      </sect3>
3037    </sect2>
3038
3039    <sect2 id="message-bus-routing">
3040      <title>Message Bus Message Routing</title>
3041      <para>
3042        FIXME
3043      </para>
3044      <sect3 id="message-bus-routing-match-rules">
3045        <title>Match Rules</title>
3046        <para>
3047	  An important part of the message bus routing protocol is match
3048	  rules. Match rules describe what messages can be sent to a client
3049          based on the contents of the message.  When a message is routed
3050          through the bus it is compared to clients' match rules.  If any
3051          of the rules match, the message is dispatched to the client.
3052          If none of the rules match the message never leaves the bus.  This
3053          is an effective way to control traffic over the bus and to make sure
3054          only relevant message need to be processed by the client.
3055        </para>
3056        <para>
3057          Match rules are added using the AddMatch bus method
3058          (see xref linkend="bus-messages-add-match"/>).  Rules are
3059          specified as a string of comma separated key/value pairs.
3060          Excluding a key from the rule indicates a wildcard match.
3061          For instance excluding the the member from a match rule but
3062          adding a sender would let all messages from that sender through.
3063          An example of a complete rule would be
3064          "type='signal',sender='org.freedesktop.DBus',interface='org.freedesktop.DBus',member='Foo',path='/bar/foo',destination=':452345.34',arg2='bar'"
3065        </para>
3066        <para>
3067          The following table describes the keys that can be used to create
3068          a match rule:
3069          The following table summarizes the D-Bus types.
3070          <informaltable>
3071            <tgroup cols="3">
3072              <thead>
3073                <row>
3074                  <entry>Key</entry>
3075                  <entry>Possible Values</entry>
3076                  <entry>Description</entry>
3077                </row>
3078              </thead>
3079              <tbody>
3080                <row>
3081                  <entry><literal>type</literal></entry>
3082                  <entry>'signal', 'method_call', 'method_return', 'error'</entry>
3083                  <entry>Match on the message type.  An example of a type match is type='signal'</entry>
3084                </row>
3085                <row>
3086                  <entry><literal>sender</literal></entry>
3087                  <entry>A bus or unique name (see <xref linkend="term-bus-name"/>
3088                  and <xref linkend="term-unique-name"/> respectively)
3089                  </entry>
3090                  <entry>Match messages sent by a particular sender.  An example of a sender match
3091                  is sender='org.freedesktop.Hal'</entry>
3092                </row>
3093                <row>
3094                  <entry><literal>interface</literal></entry>
3095                  <entry>An interface name (see <xref linkend="message-protocol-names-interface"/>)</entry>
3096                  <entry>Match messages sent over or to a particular interface.  An example of an
3097                  interface match is interface='org.freedesktop.Hal.Manager'.
3098                  If a message omits the interface header, it must not match any rule
3099                  that specifies this key.</entry>
3100                </row>
3101                <row>
3102                  <entry><literal>member</literal></entry>
3103                  <entry>Any valid method or signal name</entry>
3104                  <entry>Matches messages which have the give method or signal name. An example of
3105                  a member match is member='NameOwnerChanged'</entry>
3106                </row>
3107                <row>
3108                  <entry><literal>path</literal></entry>
3109                  <entry>An object path (see <xref linkend="message-protocol-marshaling-object-path"/>)</entry>
3110                  <entry>Matches messages which are sent from or to the given object. An example of a
3111                  path match is path='/org/freedesktop/Hal/Manager'</entry>
3112                </row>
3113                <row>
3114                  <entry><literal>destination</literal></entry>
3115                  <entry>A unique name (see <xref linkend="term-unique-name"/>)</entry>
3116                  <entry>Matches messages which are being sent to the given unique name. An
3117                  example of a destination match is destination=':1.0'</entry>
3118                </row>
3119                <row>
3120                  <entry><literal>arg[0, 1, 2, 3, ...]</literal></entry>
3121                  <entry>Any string</entry>
3122                  <entry>Arg matches are special and are used for further restricting the
3123                  match based on the arguments in the body of a message.  As of this time
3124                  only string arguments can be matched.  An example of an argument match
3125                  would be arg3='Foo'. Only argument indexes from 0 to 63 should be
3126                  accepted.</entry>
3127                </row>
3128              </tbody>
3129            </tgroup>
3130          </informaltable>
3131        </para>
3132      </sect3>
3133    </sect2>
3134    <sect2 id="message-bus-starting-services">
3135      <title>Message Bus Starting Services</title>
3136      <para>
3137        The message bus can start applications on behalf of other applications.
3138        In CORBA terms, this would be called <firstterm>activation</firstterm>.
3139        An application that can be started in this way is called a
3140        <firstterm>service</firstterm>.
3141      </para>
3142      <para>
3143        With D-Bus, starting a service is normally done by name. That is,
3144        applications ask the message bus to start some program that will own a
3145        well-known name, such as <literal>org.freedesktop.TextEditor</literal>.
3146        This implies a contract documented along with the name
3147        <literal>org.freedesktop.TextEditor</literal> for which objects
3148        the owner of that name will provide, and what interfaces those
3149        objects will have.
3150      </para>
3151      <para>
3152        To find an executable corresponding to a particular name, the bus daemon
3153        looks for <firstterm>service description files</firstterm>.  Service
3154        description files define a mapping from names to executables. Different
3155        kinds of message bus will look for these files in different places, see
3156        <xref linkend="message-bus-types"/>.
3157      </para>
3158      <para>
3159        [FIXME the file format should be much better specified than "similar to
3160        .desktop entries" esp. since desktop entries are already
3161        badly-specified. ;-)] Service description files have the ".service" file
3162        extension. The message bus will only load service description files
3163        ending with .service; all other files will be ignored.  The file format
3164        is similar to that of <ulink
3165        url="http://www.freedesktop.org/standards/desktop-entry-spec/desktop-entry-spec.html">desktop
3166        entries</ulink>. All service description files must be in UTF-8
3167        encoding. To ensure that there will be no name collisions, service files
3168        must be namespaced using the same mechanism as messages and service
3169        names.
3170
3171        <figure>
3172	  <title>Example service description file</title>
3173	  <programlisting>
3174            # Sample service description file
3175            [D-BUS Service]
3176            Names=org.freedesktop.ConfigurationDatabase;org.gnome.GConf;
3177            Exec=/usr/libexec/gconfd-2
3178          </programlisting>
3179	</figure>
3180      </para>
3181      <para>
3182        When an application asks to start a service by name, the bus daemon tries to
3183        find a service that will own that name. It then tries to spawn the
3184        executable associated with it. If this fails, it will report an
3185        error. [FIXME what happens if two .service files offer the same service;
3186        what kind of error is reported, should we have a way for the client to
3187        choose one?]
3188      </para>
3189      <para>
3190        The executable launched will have the environment variable
3191        <literal>DBUS_STARTER_ADDRESS</literal> set to the address of the
3192        message bus so it can connect and request the appropriate names.
3193      </para>
3194      <para>
3195        The executable being launched may want to know whether the message bus
3196        starting it is one of the well-known message buses (see <xref
3197        linkend="message-bus-types"/>). To facilitate this, the bus must also set
3198        the <literal>DBUS_STARTER_BUS_TYPE</literal> environment variable if it is one
3199        of the well-known buses. The currently-defined values for this variable
3200        are <literal>system</literal> for the systemwide message bus,
3201        and <literal>session</literal> for the per-login-session message
3202        bus. The new executable must still connect to the address given
3203        in <literal>DBUS_STARTER_ADDRESS</literal>, but may assume that the
3204        resulting connection is to the well-known bus.
3205      </para>
3206      <para>
3207        [FIXME there should be a timeout somewhere, either specified
3208        in the .service file, by the client, or just a global value
3209        and if the client being activated fails to connect within that
3210        timeout, an error should be sent back.]
3211      </para>
3212
3213      <sect3 id="message-bus-starting-services-scope">
3214        <title>Message Bus Service Scope</title>
3215        <para>
3216          The "scope" of a service is its "per-", such as per-session,
3217          per-machine, per-home-directory, or per-display. The reference
3218          implementation doesn't yet support starting services in a different
3219          scope from the message bus itself. So e.g. if you start a service
3220          on the session bus its scope is per-session.
3221        </para>
3222        <para>
3223          We could add an optional scope to a bus name. For example, for
3224          per-(display,session pair), we could have a unique ID for each display
3225          generated automatically at login and set on screen 0 by executing a
3226          special "set display ID" binary. The ID would be stored in a
3227          <literal>_DBUS_DISPLAY_ID</literal> property and would be a string of
3228          random bytes. This ID would then be used to scope names.
3229          Starting/locating a service could be done by ID-name pair rather than
3230          only by name.
3231        </para>
3232        <para>
3233          Contrast this with a per-display scope. To achieve that, we would
3234          want a single bus spanning all sessions using a given display.
3235          So we might set a <literal>_DBUS_DISPLAY_BUS_ADDRESS</literal>
3236          property on screen 0 of the display, pointing to this bus.
3237        </para>
3238      </sect3>
3239    </sect2>
3240
3241    <sect2 id="message-bus-types">
3242      <title>Well-known Message Bus Instances</title>
3243      <para>
3244        Two standard message bus instances are defined here, along with how
3245        to locate them and where their service files live.
3246      </para>
3247      <sect3 id="message-bus-types-login">
3248        <title>Login session message bus</title>
3249        <para>
3250          Each time a user logs in, a <firstterm>login session message
3251            bus</firstterm> may be started. All applications in the user's login
3252          session may interact with one another using this message bus.
3253        </para>
3254        <para>
3255          The address of the login session message bus is given
3256          in the <literal>DBUS_SESSION_BUS_ADDRESS</literal> environment
3257          variable. If that variable is not set, applications may
3258          also try to read the address from the X Window System root
3259          window property <literal>_DBUS_SESSION_BUS_ADDRESS</literal>.
3260          The root window property must have type <literal>STRING</literal>.
3261          The environment variable should have precedence over the
3262          root window property.
3263        </para>
3264        <para>
3265          [FIXME specify location of .service files, probably using
3266          DESKTOP_DIRS etc. from basedir specification, though login session
3267          bus is not really desktop-specific]
3268        </para>
3269      </sect3>
3270      <sect3 id="message-bus-types-system">
3271        <title>System message bus</title>
3272        <para>
3273          A computer may have a <firstterm>system message bus</firstterm>,
3274          accessible to all applications on the system. This message bus may be
3275          used to broadcast system events, such as adding new hardware devices,
3276          changes in the printer queue, and so forth.
3277        </para>
3278        <para>
3279          The address of the system message bus is given
3280          in the <literal>DBUS_SYSTEM_BUS_ADDRESS</literal> environment
3281          variable. If that variable is not set, applications should try
3282          to connect to the well-known address
3283          <literal>unix:path=/var/run/dbus/system_bus_socket</literal>.
3284          <footnote>
3285            <para>
3286              The D-Bus reference implementation actually honors the
3287              <literal>$(localstatedir)</literal> configure option
3288              for this address, on both client and server side.
3289            </para>
3290          </footnote>
3291        </para>
3292        <para>
3293          [FIXME specify location of system bus .service files]
3294        </para>
3295      </sect3>
3296    </sect2>
3297
3298    <sect2 id="message-bus-messages">
3299      <title>Message Bus Messages</title>
3300      <para>
3301        The special message bus name <literal>org.freedesktop.DBus</literal>
3302        responds to a number of additional messages.
3303      </para>
3304
3305      <sect3 id="bus-messages-hello">
3306        <title><literal>org.freedesktop.DBus.Hello</literal></title>
3307        <para>
3308          As a method:
3309          <programlisting>
3310            STRING Hello ()
3311          </programlisting>
3312          Reply arguments:
3313          <informaltable>
3314            <tgroup cols="3">
3315              <thead>
3316                <row>
3317                  <entry>Argument</entry>
3318                  <entry>Type</entry>
3319                  <entry>Description</entry>
3320                </row>
3321              </thead>
3322              <tbody>
3323                <row>
3324                  <entry>0</entry>
3325                  <entry>STRING</entry>
3326                  <entry>Unique name assigned to the connection</entry>
3327                </row>
3328              </tbody>
3329            </tgroup>
3330          </informaltable>
3331        </para>
3332        <para>
3333          Before an application is able to send messages to other applications
3334          it must send the <literal>org.freedesktop.DBus.Hello</literal> message
3335          to the message bus to obtain a unique name. If an application without
3336          a unique name tries to send a message to another application, or a
3337          message to the message bus itself that isn't the
3338          <literal>org.freedesktop.DBus.Hello</literal> message, it will be
3339          disconnected from the bus.
3340        </para>
3341        <para>
3342          There is no corresponding "disconnect" request; if a client wishes to
3343          disconnect from the bus, it simply closes the socket (or other
3344          communication channel).
3345        </para>
3346      </sect3>
3347      <sect3 id="bus-messages-list-names">
3348        <title><literal>org.freedesktop.DBus.ListNames</literal></title>
3349        <para>
3350          As a method:
3351          <programlisting>
3352            ARRAY of STRING ListNames ()
3353          </programlisting>
3354          Reply arguments:
3355          <informaltable>
3356            <tgroup cols="3">
3357              <thead>
3358                <row>
3359                  <entry>Argument</entry>
3360                  <entry>Type</entry>
3361                  <entry>Description</entry>
3362                </row>
3363              </thead>
3364              <tbody>
3365                <row>
3366                  <entry>0</entry>
3367                  <entry>ARRAY of STRING</entry>
3368                  <entry>Array of strings where each string is a bus name</entry>
3369                </row>
3370              </tbody>
3371            </tgroup>
3372          </informaltable>
3373        </para>
3374        <para>
3375          Returns a list of all currently-owned names on the bus.
3376        </para>
3377      </sect3>
3378      <sect3 id="bus-messages-list-activatable-names">
3379        <title><literal>org.freedesktop.DBus.ListActivatableNames</literal></title>
3380        <para>
3381          As a method:
3382          <programlisting>
3383            ARRAY of STRING ListActivatableNames ()
3384          </programlisting>
3385          Reply arguments:
3386          <informaltable>
3387            <tgroup cols="3">
3388              <thead>
3389                <row>
3390                  <entry>Argument</entry>
3391                  <entry>Type</entry>
3392                  <entry>Description</entry>
3393                </row>
3394              </thead>
3395              <tbody>
3396                <row>
3397                  <entry>0</entry>
3398                  <entry>ARRAY of STRING</entry>
3399                  <entry>Array of strings where each string is a bus name</entry>
3400                </row>
3401              </tbody>
3402            </tgroup>
3403          </informaltable>
3404        </para>
3405        <para>
3406          Returns a list of all names that can be activated on the bus.
3407        </para>
3408      </sect3>
3409      <sect3 id="bus-messages-name-exists">
3410        <title><literal>org.freedesktop.DBus.NameHasOwner</literal></title>
3411        <para>
3412          As a method:
3413          <programlisting>
3414            BOOLEAN NameHasOwner (in STRING name)
3415          </programlisting>
3416          Message arguments:
3417          <informaltable>
3418            <tgroup cols="3">
3419              <thead>
3420                <row>
3421                  <entry>Argument</entry>
3422                  <entry>Type</entry>
3423                  <entry>Description</entry>
3424                </row>
3425              </thead>
3426              <tbody>
3427                <row>
3428                  <entry>0</entry>
3429                  <entry>STRING</entry>
3430                  <entry>Name to check</entry>
3431                </row>
3432              </tbody>
3433            </tgroup>
3434          </informaltable>
3435          Reply arguments:
3436          <informaltable>
3437            <tgroup cols="3">
3438              <thead>
3439                <row>
3440                  <entry>Argument</entry>
3441                  <entry>Type</entry>
3442                  <entry>Description</entry>
3443                </row>
3444              </thead>
3445              <tbody>
3446                <row>
3447                  <entry>0</entry>
3448                  <entry>BOOLEAN</entry>
3449                  <entry>Return value, true if the name exists</entry>
3450                </row>
3451              </tbody>
3452            </tgroup>
3453          </informaltable>
3454        </para>
3455        <para>
3456          Checks if the specified name exists (currently has an owner).
3457        </para>
3458      </sect3>
3459
3460      <sect3 id="bus-messages-name-owner-changed">
3461        <title><literal>org.freedesktop.DBus.NameOwnerChanged</literal></title>
3462        <para>
3463          This is a signal:
3464          <programlisting>
3465            NameOwnerChanged (STRING name, STRING old_owner, STRING new_owner)
3466          </programlisting>
3467          Message arguments:
3468          <informaltable>
3469            <tgroup cols="3">
3470              <thead>
3471                <row>
3472                  <entry>Argument</entry>
3473                  <entry>Type</entry>
3474                  <entry>Description</entry>
3475                </row>
3476              </thead>
3477              <tbody>
3478                <row>
3479                  <entry>0</entry>
3480                  <entry>STRING</entry>
3481                  <entry>Name with a new owner</entry>
3482                </row>
3483	        <row>
3484		  <entry>1</entry>
3485		  <entry>STRING</entry>
3486		  <entry>Old owner or empty string if none</entry>
3487	        </row>
3488	        <row>
3489		  <entry>2</entry>
3490		  <entry>STRING</entry>
3491		  <entry>New owner or empty string if none</entry>
3492	        </row>
3493              </tbody>
3494            </tgroup>
3495          </informaltable>
3496        </para>
3497        <para>
3498          This signal indicates that the owner of a name has changed.
3499          It's also the signal to use to detect the appearance of
3500          new names on the bus.
3501        </para>
3502      </sect3>
3503      <sect3 id="bus-messages-name-lost">
3504        <title><literal>org.freedesktop.DBus.NameLost</literal></title>
3505        <para>
3506          This is a signal:
3507          <programlisting>
3508            NameLost (STRING name)
3509          </programlisting>
3510          Message arguments:
3511          <informaltable>
3512            <tgroup cols="3">
3513              <thead>
3514                <row>
3515                  <entry>Argument</entry>
3516                  <entry>Type</entry>
3517                  <entry>Description</entry>
3518                </row>
3519              </thead>
3520              <tbody>
3521                <row>
3522                  <entry>0</entry>
3523                  <entry>STRING</entry>
3524                  <entry>Name which was lost</entry>
3525                </row>
3526              </tbody>
3527            </tgroup>
3528          </informaltable>
3529        </para>
3530        <para>
3531          This signal is sent to a specific application when it loses
3532          ownership of a name.
3533        </para>
3534      </sect3>
3535
3536      <sect3 id="bus-messages-name-acquired">
3537        <title><literal>org.freedesktop.DBus.NameAcquired</literal></title>
3538        <para>
3539          This is a signal:
3540          <programlisting>
3541            NameAcquired (STRING name)
3542          </programlisting>
3543          Message arguments:
3544          <informaltable>
3545            <tgroup cols="3">
3546              <thead>
3547                <row>
3548                  <entry>Argument</entry>
3549                  <entry>Type</entry>
3550                  <entry>Description</entry>
3551                </row>
3552              </thead>
3553              <tbody>
3554                <row>
3555                  <entry>0</entry>
3556                  <entry>STRING</entry>
3557                  <entry>Name which was acquired</entry>
3558                </row>
3559              </tbody>
3560            </tgroup>
3561          </informaltable>
3562        </para>
3563        <para>
3564          This signal is sent to a specific application when it gains
3565          ownership of a name.
3566        </para>
3567      </sect3>
3568
3569      <sect3 id="bus-messages-start-service-by-name">
3570        <title><literal>org.freedesktop.DBus.StartServiceByName</literal></title>
3571        <para>
3572          As a method:
3573          <programlisting>
3574            UINT32 StartServiceByName (in STRING name, in UINT32 flags)
3575          </programlisting>
3576          Message arguments:
3577          <informaltable>
3578            <tgroup cols="3">
3579              <thead>
3580                <row>
3581                  <entry>Argument</entry>
3582                  <entry>Type</entry>
3583                  <entry>Description</entry>
3584                </row>
3585              </thead>
3586              <tbody>
3587                <row>
3588                  <entry>0</entry>
3589                  <entry>STRING</entry>
3590                  <entry>Name of the service to start</entry>
3591                </row>
3592	        <row>
3593		  <entry>1</entry>
3594		  <entry>UINT32</entry>
3595		  <entry>Flags (currently not used)</entry>
3596	        </row>
3597              </tbody>
3598            </tgroup>
3599          </informaltable>
3600        Reply arguments:
3601        <informaltable>
3602          <tgroup cols="3">
3603            <thead>
3604              <row>
3605                <entry>Argument</entry>
3606                <entry>Type</entry>
3607                <entry>Description</entry>
3608              </row>
3609            </thead>
3610            <tbody>
3611              <row>
3612                <entry>0</entry>
3613                <entry>UINT32</entry>
3614                <entry>Return value</entry>
3615              </row>
3616            </tbody>
3617          </tgroup>
3618        </informaltable>
3619          Tries to launch the executable associated with a name. For more information, see <xref linkend="message-bus-starting-services"/>.
3620
3621        </para>
3622        <para>
3623          The return value can be one of the following values:
3624          <informaltable>
3625            <tgroup cols="3">
3626              <thead>
3627                <row>
3628                  <entry>Identifier</entry>
3629                  <entry>Value</entry>
3630                  <entry>Description</entry>
3631                </row>
3632              </thead>
3633              <tbody>
3634	        <row>
3635                  <entry>DBUS_START_REPLY_SUCCESS</entry>
3636                  <entry>1</entry>
3637                  <entry>The service was successfully started.</entry>
3638                </row>
3639                <row>
3640                  <entry>DBUS_START_REPLY_ALREADY_RUNNING</entry>
3641                  <entry>2</entry>
3642                  <entry>A connection already owns the given name.</entry>
3643                </row>
3644              </tbody>
3645             </tgroup>
3646           </informaltable>
3647        </para>
3648
3649      </sect3>
3650
3651      <sect3 id="bus-messages-get-name-owner">
3652        <title><literal>org.freedesktop.DBus.GetNameOwner</literal></title>
3653        <para>
3654          As a method:
3655          <programlisting>
3656            STRING GetNameOwner (in STRING name)
3657          </programlisting>
3658          Message arguments:
3659          <informaltable>
3660            <tgroup cols="3">
3661              <thead>
3662                <row>
3663                  <entry>Argument</entry>
3664                  <entry>Type</entry>
3665                  <entry>Description</entry>
3666                </row>
3667              </thead>
3668              <tbody>
3669                <row>
3670                  <entry>0</entry>
3671                  <entry>STRING</entry>
3672                  <entry>Name to get the owner of</entry>
3673                </row>
3674              </tbody>
3675            </tgroup>
3676          </informaltable>
3677        Reply arguments:
3678        <informaltable>
3679          <tgroup cols="3">
3680            <thead>
3681              <row>
3682                <entry>Argument</entry>
3683                <entry>Type</entry>
3684                <entry>Description</entry>
3685              </row>
3686            </thead>
3687            <tbody>
3688              <row>
3689                <entry>0</entry>
3690                <entry>STRING</entry>
3691                <entry>Return value, a unique connection name</entry>
3692              </row>
3693            </tbody>
3694          </tgroup>
3695        </informaltable>
3696        Returns the unique connection name of the primary owner of the name
3697        given. If the requested name doesn't have an owner, returns a
3698        <literal>org.freedesktop.DBus.Error.NameHasNoOwner</literal> error.
3699       </para>
3700      </sect3>
3701
3702      <sect3 id="bus-messages-get-connection-unix-user">
3703        <title><literal>org.freedesktop.DBus.GetConnectionUnixUser</literal></title>
3704        <para>
3705          As a method:
3706          <programlisting>
3707            UINT32 GetConnectionUnixUser (in STRING connection_name)
3708          </programlisting>
3709          Message arguments:
3710          <informaltable>
3711            <tgroup cols="3">
3712              <thead>
3713                <row>
3714                  <entry>Argument</entry>
3715                  <entry>Type</entry>
3716                  <entry>Description</entry>
3717                </row>
3718              </thead>
3719              <tbody>
3720                <row>
3721                  <entry>0</entry>
3722                  <entry>STRING</entry>
3723                  <entry>Name of the connection to query</entry>
3724                </row>
3725              </tbody>
3726            </tgroup>
3727          </informaltable>
3728        Reply arguments:
3729        <informaltable>
3730          <tgroup cols="3">
3731            <thead>
3732              <row>
3733                <entry>Argument</entry>
3734                <entry>Type</entry>
3735                <entry>Description</entry>
3736              </row>
3737            </thead>
3738            <tbody>
3739              <row>
3740                <entry>0</entry>
3741                <entry>UINT32</entry>
3742                <entry>unix user id</entry>
3743              </row>
3744            </tbody>
3745          </tgroup>
3746        </informaltable>
3747        Returns the unix uid of the process connected to the server. If unable to
3748	determine it, a <literal>org.freedesktop.DBus.Error.Failed</literal>
3749	error is returned.
3750       </para>
3751      </sect3>
3752
3753      <sect3 id="bus-messages-add-match">
3754        <title><literal>org.freedesktop.DBus.AddMatch</literal></title>
3755        <para>
3756          As a method:
3757          <programlisting>
3758            AddMatch (in STRING rule)
3759          </programlisting>
3760          Message arguments:
3761          <informaltable>
3762            <tgroup cols="3">
3763              <thead>
3764                <row>
3765                  <entry>Argument</entry>
3766                  <entry>Type</entry>
3767                  <entry>Description</entry>
3768                </row>
3769              </thead>
3770              <tbody>
3771                <row>
3772                  <entry>0</entry>
3773                  <entry>STRING</entry>
3774                  <entry>Match rule to add to the connection</entry>
3775                </row>
3776              </tbody>
3777            </tgroup>
3778          </informaltable>
3779        Adds a match rule to match messages going through the message bus (see <xref linkend='message-bus-routing-match-rules'/>).
3780	If the bus does not have enough resources the <literal>org.freedesktop.DBus.Error.OOM</literal>
3781	error is returned.
3782       </para>
3783      </sect3>
3784      <sect3 id="bus-messages-remove-match">
3785        <title><literal>org.freedesktop.DBus.RemoveMatch</literal></title>
3786        <para>
3787          As a method:
3788          <programlisting>
3789            RemoveMatch (in STRING rule)
3790          </programlisting>
3791          Message arguments:
3792          <informaltable>
3793            <tgroup cols="3">
3794              <thead>
3795                <row>
3796                  <entry>Argument</entry>
3797                  <entry>Type</entry>
3798                  <entry>Description</entry>
3799                </row>
3800              </thead>
3801              <tbody>
3802                <row>
3803                  <entry>0</entry>
3804                  <entry>STRING</entry>
3805                  <entry>Match rule to remove from the connection</entry>
3806                </row>
3807              </tbody>
3808            </tgroup>
3809          </informaltable>
3810        Removes the first rule that matches (see <xref linkend='message-bus-routing-match-rules'/>).
3811	If the rule is not found the <literal>org.freedesktop.DBus.Error.MatchRuleNotFound</literal>
3812	error is returned.
3813       </para>
3814      </sect3>
3815
3816    </sect2>
3817
3818  </sect1>
3819<!--
3820  <appendix id="implementation-notes">
3821    <title>Implementation notes</title>
3822    <sect1 id="implementation-notes-subsection">
3823      <title></title>
3824      <para>
3825      </para>
3826    </sect1>
3827  </appendix>
3828-->
3829
3830  <glossary><title>Glossary</title>
3831    <para>
3832      This glossary defines some of the terms used in this specification.
3833    </para>
3834
3835    <glossentry id="term-bus-name"><glossterm>Bus Name</glossterm>
3836      <glossdef>
3837        <para>
3838          The message bus maintains an association between names and
3839          connections. (Normally, there's one connection per application.)  A
3840          bus name is simply an identifier used to locate connections. For
3841          example, the hypothetical <literal>com.yoyodyne.Screensaver</literal>
3842          name might be used to send a message to a screensaver from Yoyodyne
3843          Corporation.  An application is said to <firstterm>own</firstterm> a
3844          name if the message bus has associated the application's connection
3845          with the name.  Names may also have <firstterm>queued
3846          owners</firstterm> (see <xref linkend="term-queued-owner"/>).
3847            The bus assigns a unique name to each connection,
3848            see <xref linkend="term-unique-name"/>. Other names
3849              can be thought of as "well-known names" and are
3850              used to find applications that offer specific functionality.
3851        </para>
3852      </glossdef>
3853    </glossentry>
3854
3855    <glossentry id="term-message"><glossterm>Message</glossterm>
3856      <glossdef>
3857        <para>
3858          A message is the atomic unit of communication via the D-Bus
3859          protocol. It consists of a <firstterm>header</firstterm> and a
3860          <firstterm>body</firstterm>; the body is made up of
3861          <firstterm>arguments</firstterm>.
3862        </para>
3863      </glossdef>
3864    </glossentry>
3865
3866    <glossentry id="term-message-bus"><glossterm>Message Bus</glossterm>
3867      <glossdef>
3868        <para>
3869          The message bus is a special application that forwards
3870          or routes messages between a group of applications
3871          connected to the message bus. It also manages
3872          <firstterm>names</firstterm> used for routing
3873          messages.
3874        </para>
3875      </glossdef>
3876    </glossentry>
3877
3878    <glossentry id="term-name"><glossterm>Name</glossterm>
3879      <glossdef>
3880        <para>
3881          See <xref linkend="term-bus-name"/>. "Name" may
3882            also be used to refer to some of the other names
3883            in D-Bus, such as interface names.
3884        </para>
3885      </glossdef>
3886    </glossentry>
3887
3888    <glossentry id="namespace"><glossterm>Namespace</glossterm>
3889      <glossdef>
3890	<para>
3891          Used to prevent collisions when defining new interfaces or bus
3892	  names. The convention used is the same one Java uses for defining
3893	  classes: a reversed domain name.
3894        </para>
3895      </glossdef>
3896    </glossentry>
3897
3898    <glossentry id="term-object"><glossterm>Object</glossterm>
3899      <glossdef>
3900        <para>
3901          Each application contains <firstterm>objects</firstterm>, which have
3902          <firstterm>interfaces</firstterm> and
3903          <firstterm>methods</firstterm>. Objects are referred to by a name,
3904          called a <firstterm>path</firstterm>.
3905        </para>
3906      </glossdef>
3907    </glossentry>
3908
3909    <glossentry id="one-to-one"><glossterm>One-to-One</glossterm>
3910      <glossdef>
3911	<para>
3912          An application talking directly to another application, without going
3913          through a message bus. One-to-one connections may be "peer to peer" or
3914          "client to server." The D-Bus protocol has no concept of client
3915          vs. server after a connection has authenticated; the flow of messages
3916          is symmetrical (full duplex).
3917        </para>
3918      </glossdef>
3919    </glossentry>
3920
3921    <glossentry id="term-path"><glossterm>Path</glossterm>
3922      <glossdef>
3923        <para>
3924          Object references (object names) in D-Bus are organized into a
3925          filesystem-style hierarchy, so each object is named by a path. As in
3926          LDAP, there's no difference between "files" and "directories"; a path
3927          can refer to an object, while still having child objects below it.
3928        </para>
3929      </glossdef>
3930    </glossentry>
3931
3932    <glossentry id="term-queued-owner"><glossterm>Queued Name Owner</glossterm>
3933      <glossdef>
3934        <para>
3935          Each bus name has a primary owner; messages sent to the name go to the
3936          primary owner. However, certain names also maintain a queue of
3937          secondary owners "waiting in the wings." If the primary owner releases
3938          the name, then the first secondary owner in the queue automatically
3939          becomes the new owner of the name.
3940        </para>
3941      </glossdef>
3942    </glossentry>
3943
3944    <glossentry id="term-service"><glossterm>Service</glossterm>
3945      <glossdef>
3946        <para>
3947          A service is an executable that can be launched by the bus daemon.
3948          Services normally guarantee some particular features, for example they
3949          may guarantee that they will request a specific name such as
3950          "org.freedesktop.Screensaver", have a singleton object
3951          "/org/freedesktop/Application", and that object will implement the
3952          interface "org.freedesktop.ScreensaverControl".
3953        </para>
3954      </glossdef>
3955    </glossentry>
3956
3957    <glossentry id="term-service-description-files"><glossterm>Service Description Files</glossterm>
3958      <glossdef>
3959        <para>
3960          ".service files" tell the bus about service applications that can be
3961          launched (see <xref linkend="term-service"/>). Most importantly they
3962          provide a mapping from bus names to services that will request those
3963            names when they start up.
3964        </para>
3965      </glossdef>
3966    </glossentry>
3967
3968    <glossentry id="term-unique-name"><glossterm>Unique Connection Name</glossterm>
3969      <glossdef>
3970        <para>
3971          The special name automatically assigned to each connection by the
3972          message bus. This name will never change owner, and will be unique
3973          (never reused during the lifetime of the message bus).
3974          It will begin with a ':' character.
3975        </para>
3976      </glossdef>
3977    </glossentry>
3978
3979  </glossary>
3980</article>
3981
3982