• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Block driver for the QCOW format
3  *
4  * Copyright (c) 2004-2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu-common.h"
25 #include "block_int.h"
26 #include "module.h"
27 #include <zlib.h>
28 #include "aes.h"
29 
30 /**************************************************************/
31 /* QEMU COW block driver with compression and encryption support */
32 
33 #define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
34 #define QCOW_VERSION 1
35 
36 #define QCOW_CRYPT_NONE 0
37 #define QCOW_CRYPT_AES  1
38 
39 #define QCOW_OFLAG_COMPRESSED (1LL << 63)
40 
41 typedef struct QCowHeader {
42     uint32_t magic;
43     uint32_t version;
44     uint64_t backing_file_offset;
45     uint32_t backing_file_size;
46     uint32_t mtime;
47     uint64_t size; /* in bytes */
48     uint8_t cluster_bits;
49     uint8_t l2_bits;
50     uint32_t crypt_method;
51     uint64_t l1_table_offset;
52 } QCowHeader;
53 
54 #define L2_CACHE_SIZE 16
55 
56 typedef struct BDRVQcowState {
57     BlockDriverState *hd;
58     int cluster_bits;
59     int cluster_size;
60     int cluster_sectors;
61     int l2_bits;
62     int l2_size;
63     int l1_size;
64     uint64_t cluster_offset_mask;
65     uint64_t l1_table_offset;
66     uint64_t *l1_table;
67     uint64_t *l2_cache;
68     uint64_t l2_cache_offsets[L2_CACHE_SIZE];
69     uint32_t l2_cache_counts[L2_CACHE_SIZE];
70     uint8_t *cluster_cache;
71     uint8_t *cluster_data;
72     uint64_t cluster_cache_offset;
73     uint32_t crypt_method; /* current crypt method, 0 if no key yet */
74     uint32_t crypt_method_header;
75     AES_KEY aes_encrypt_key;
76     AES_KEY aes_decrypt_key;
77 } BDRVQcowState;
78 
79 static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset);
80 
qcow_probe(const uint8_t * buf,int buf_size,const char * filename)81 static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
82 {
83     const QCowHeader *cow_header = (const void *)buf;
84 
85     if (buf_size >= sizeof(QCowHeader) &&
86         be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
87         be32_to_cpu(cow_header->version) == QCOW_VERSION)
88         return 100;
89     else
90         return 0;
91 }
92 
qcow_open(BlockDriverState * bs,const char * filename,int flags)93 static int qcow_open(BlockDriverState *bs, const char *filename, int flags)
94 {
95     BDRVQcowState *s = bs->opaque;
96     int len, i, shift, ret;
97     QCowHeader header;
98 
99     ret = bdrv_file_open(&s->hd, filename, flags);
100     if (ret < 0)
101         return ret;
102     if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header))
103         goto fail;
104     be32_to_cpus(&header.magic);
105     be32_to_cpus(&header.version);
106     be64_to_cpus(&header.backing_file_offset);
107     be32_to_cpus(&header.backing_file_size);
108     be32_to_cpus(&header.mtime);
109     be64_to_cpus(&header.size);
110     be32_to_cpus(&header.crypt_method);
111     be64_to_cpus(&header.l1_table_offset);
112 
113     if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION)
114         goto fail;
115     if (header.size <= 1 || header.cluster_bits < 9)
116         goto fail;
117     if (header.crypt_method > QCOW_CRYPT_AES)
118         goto fail;
119     s->crypt_method_header = header.crypt_method;
120     if (s->crypt_method_header)
121         bs->encrypted = 1;
122     s->cluster_bits = header.cluster_bits;
123     s->cluster_size = 1 << s->cluster_bits;
124     s->cluster_sectors = 1 << (s->cluster_bits - 9);
125     s->l2_bits = header.l2_bits;
126     s->l2_size = 1 << s->l2_bits;
127     bs->total_sectors = header.size / 512;
128     s->cluster_offset_mask = (1LL << (63 - s->cluster_bits)) - 1;
129 
130     /* read the level 1 table */
131     shift = s->cluster_bits + s->l2_bits;
132     s->l1_size = (header.size + (1LL << shift) - 1) >> shift;
133 
134     s->l1_table_offset = header.l1_table_offset;
135     s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
136     if (!s->l1_table)
137         goto fail;
138     if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) !=
139         s->l1_size * sizeof(uint64_t))
140         goto fail;
141     for(i = 0;i < s->l1_size; i++) {
142         be64_to_cpus(&s->l1_table[i]);
143     }
144     /* alloc L2 cache */
145     s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
146     if (!s->l2_cache)
147         goto fail;
148     s->cluster_cache = qemu_malloc(s->cluster_size);
149     if (!s->cluster_cache)
150         goto fail;
151     s->cluster_data = qemu_malloc(s->cluster_size);
152     if (!s->cluster_data)
153         goto fail;
154     s->cluster_cache_offset = -1;
155 
156     /* read the backing file name */
157     if (header.backing_file_offset != 0) {
158         len = header.backing_file_size;
159         if (len > 1023)
160             len = 1023;
161         if (bdrv_pread(s->hd, header.backing_file_offset, bs->backing_file, len) != len)
162             goto fail;
163         bs->backing_file[len] = '\0';
164     }
165     return 0;
166 
167  fail:
168     qemu_free(s->l1_table);
169     qemu_free(s->l2_cache);
170     qemu_free(s->cluster_cache);
171     qemu_free(s->cluster_data);
172     bdrv_delete(s->hd);
173     return -1;
174 }
175 
qcow_set_key(BlockDriverState * bs,const char * key)176 static int qcow_set_key(BlockDriverState *bs, const char *key)
177 {
178     BDRVQcowState *s = bs->opaque;
179     uint8_t keybuf[16];
180     int len, i;
181 
182     memset(keybuf, 0, 16);
183     len = strlen(key);
184     if (len > 16)
185         len = 16;
186     /* XXX: we could compress the chars to 7 bits to increase
187        entropy */
188     for(i = 0;i < len;i++) {
189         keybuf[i] = key[i];
190     }
191     s->crypt_method = s->crypt_method_header;
192 
193     if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
194         return -1;
195     if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
196         return -1;
197 #if 0
198     /* test */
199     {
200         uint8_t in[16];
201         uint8_t out[16];
202         uint8_t tmp[16];
203         for(i=0;i<16;i++)
204             in[i] = i;
205         AES_encrypt(in, tmp, &s->aes_encrypt_key);
206         AES_decrypt(tmp, out, &s->aes_decrypt_key);
207         for(i = 0; i < 16; i++)
208             printf(" %02x", tmp[i]);
209         printf("\n");
210         for(i = 0; i < 16; i++)
211             printf(" %02x", out[i]);
212         printf("\n");
213     }
214 #endif
215     return 0;
216 }
217 
218 /* The crypt function is compatible with the linux cryptoloop
219    algorithm for < 4 GB images. NOTE: out_buf == in_buf is
220    supported */
encrypt_sectors(BDRVQcowState * s,int64_t sector_num,uint8_t * out_buf,const uint8_t * in_buf,int nb_sectors,int enc,const AES_KEY * key)221 static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
222                             uint8_t *out_buf, const uint8_t *in_buf,
223                             int nb_sectors, int enc,
224                             const AES_KEY *key)
225 {
226     union {
227         uint64_t ll[2];
228         uint8_t b[16];
229     } ivec;
230     int i;
231 
232     for(i = 0; i < nb_sectors; i++) {
233         ivec.ll[0] = cpu_to_le64(sector_num);
234         ivec.ll[1] = 0;
235         AES_cbc_encrypt(in_buf, out_buf, 512, key,
236                         ivec.b, enc);
237         sector_num++;
238         in_buf += 512;
239         out_buf += 512;
240     }
241 }
242 
243 /* 'allocate' is:
244  *
245  * 0 to not allocate.
246  *
247  * 1 to allocate a normal cluster (for sector indexes 'n_start' to
248  * 'n_end')
249  *
250  * 2 to allocate a compressed cluster of size
251  * 'compressed_size'. 'compressed_size' must be > 0 and <
252  * cluster_size
253  *
254  * return 0 if not allocated.
255  */
get_cluster_offset(BlockDriverState * bs,uint64_t offset,int allocate,int compressed_size,int n_start,int n_end)256 static uint64_t get_cluster_offset(BlockDriverState *bs,
257                                    uint64_t offset, int allocate,
258                                    int compressed_size,
259                                    int n_start, int n_end)
260 {
261     BDRVQcowState *s = bs->opaque;
262     int min_index, i, j, l1_index, l2_index;
263     uint64_t l2_offset, *l2_table, cluster_offset, tmp;
264     uint32_t min_count;
265     int new_l2_table;
266 
267     l1_index = offset >> (s->l2_bits + s->cluster_bits);
268     l2_offset = s->l1_table[l1_index];
269     new_l2_table = 0;
270     if (!l2_offset) {
271         if (!allocate)
272             return 0;
273         /* allocate a new l2 entry */
274         l2_offset = bdrv_getlength(s->hd);
275         /* round to cluster size */
276         l2_offset = (l2_offset + s->cluster_size - 1) & ~(s->cluster_size - 1);
277         /* update the L1 entry */
278         s->l1_table[l1_index] = l2_offset;
279         tmp = cpu_to_be64(l2_offset);
280         if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
281                         &tmp, sizeof(tmp)) != sizeof(tmp))
282             return 0;
283         new_l2_table = 1;
284     }
285     for(i = 0; i < L2_CACHE_SIZE; i++) {
286         if (l2_offset == s->l2_cache_offsets[i]) {
287             /* increment the hit count */
288             if (++s->l2_cache_counts[i] == 0xffffffff) {
289                 for(j = 0; j < L2_CACHE_SIZE; j++) {
290                     s->l2_cache_counts[j] >>= 1;
291                 }
292             }
293             l2_table = s->l2_cache + (i << s->l2_bits);
294             goto found;
295         }
296     }
297     /* not found: load a new entry in the least used one */
298     min_index = 0;
299     min_count = 0xffffffff;
300     for(i = 0; i < L2_CACHE_SIZE; i++) {
301         if (s->l2_cache_counts[i] < min_count) {
302             min_count = s->l2_cache_counts[i];
303             min_index = i;
304         }
305     }
306     l2_table = s->l2_cache + (min_index << s->l2_bits);
307     if (new_l2_table) {
308         memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
309         if (bdrv_pwrite(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
310             s->l2_size * sizeof(uint64_t))
311             return 0;
312     } else {
313         if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
314             s->l2_size * sizeof(uint64_t))
315             return 0;
316     }
317     s->l2_cache_offsets[min_index] = l2_offset;
318     s->l2_cache_counts[min_index] = 1;
319  found:
320     l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
321     cluster_offset = be64_to_cpu(l2_table[l2_index]);
322     if (!cluster_offset ||
323         ((cluster_offset & QCOW_OFLAG_COMPRESSED) && allocate == 1)) {
324         if (!allocate)
325             return 0;
326         /* allocate a new cluster */
327         if ((cluster_offset & QCOW_OFLAG_COMPRESSED) &&
328             (n_end - n_start) < s->cluster_sectors) {
329             /* if the cluster is already compressed, we must
330                decompress it in the case it is not completely
331                overwritten */
332             if (decompress_cluster(s, cluster_offset) < 0)
333                 return 0;
334             cluster_offset = bdrv_getlength(s->hd);
335             cluster_offset = (cluster_offset + s->cluster_size - 1) &
336                 ~(s->cluster_size - 1);
337             /* write the cluster content */
338             if (bdrv_pwrite(s->hd, cluster_offset, s->cluster_cache, s->cluster_size) !=
339                 s->cluster_size)
340                 return -1;
341         } else {
342             cluster_offset = bdrv_getlength(s->hd);
343             if (allocate == 1) {
344                 /* round to cluster size */
345                 cluster_offset = (cluster_offset + s->cluster_size - 1) &
346                     ~(s->cluster_size - 1);
347                 bdrv_truncate(s->hd, cluster_offset + s->cluster_size);
348                 /* if encrypted, we must initialize the cluster
349                    content which won't be written */
350                 if (s->crypt_method &&
351                     (n_end - n_start) < s->cluster_sectors) {
352                     uint64_t start_sect;
353                     start_sect = (offset & ~(s->cluster_size - 1)) >> 9;
354                     memset(s->cluster_data + 512, 0x00, 512);
355                     for(i = 0; i < s->cluster_sectors; i++) {
356                         if (i < n_start || i >= n_end) {
357                             encrypt_sectors(s, start_sect + i,
358                                             s->cluster_data,
359                                             s->cluster_data + 512, 1, 1,
360                                             &s->aes_encrypt_key);
361                             if (bdrv_pwrite(s->hd, cluster_offset + i * 512,
362                                             s->cluster_data, 512) != 512)
363                                 return -1;
364                         }
365                     }
366                 }
367             } else if (allocate == 2) {
368                 cluster_offset |= QCOW_OFLAG_COMPRESSED |
369                     (uint64_t)compressed_size << (63 - s->cluster_bits);
370             }
371         }
372         /* update L2 table */
373         tmp = cpu_to_be64(cluster_offset);
374         l2_table[l2_index] = tmp;
375         if (bdrv_pwrite(s->hd,
376                         l2_offset + l2_index * sizeof(tmp), &tmp, sizeof(tmp)) != sizeof(tmp))
377             return 0;
378     }
379     return cluster_offset;
380 }
381 
qcow_is_allocated(BlockDriverState * bs,int64_t sector_num,int nb_sectors,int * pnum)382 static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num,
383                              int nb_sectors, int *pnum)
384 {
385     BDRVQcowState *s = bs->opaque;
386     int index_in_cluster, n;
387     uint64_t cluster_offset;
388 
389     cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
390     index_in_cluster = sector_num & (s->cluster_sectors - 1);
391     n = s->cluster_sectors - index_in_cluster;
392     if (n > nb_sectors)
393         n = nb_sectors;
394     *pnum = n;
395     return (cluster_offset != 0);
396 }
397 
decompress_buffer(uint8_t * out_buf,int out_buf_size,const uint8_t * buf,int buf_size)398 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
399                              const uint8_t *buf, int buf_size)
400 {
401     z_stream strm1, *strm = &strm1;
402     int ret, out_len;
403 
404     memset(strm, 0, sizeof(*strm));
405 
406     strm->next_in = (uint8_t *)buf;
407     strm->avail_in = buf_size;
408     strm->next_out = out_buf;
409     strm->avail_out = out_buf_size;
410 
411     ret = inflateInit2(strm, -12);
412     if (ret != Z_OK)
413         return -1;
414     ret = inflate(strm, Z_FINISH);
415     out_len = strm->next_out - out_buf;
416     if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
417         out_len != out_buf_size) {
418         inflateEnd(strm);
419         return -1;
420     }
421     inflateEnd(strm);
422     return 0;
423 }
424 
decompress_cluster(BDRVQcowState * s,uint64_t cluster_offset)425 static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
426 {
427     int ret, csize;
428     uint64_t coffset;
429 
430     coffset = cluster_offset & s->cluster_offset_mask;
431     if (s->cluster_cache_offset != coffset) {
432         csize = cluster_offset >> (63 - s->cluster_bits);
433         csize &= (s->cluster_size - 1);
434         ret = bdrv_pread(s->hd, coffset, s->cluster_data, csize);
435         if (ret != csize)
436             return -1;
437         if (decompress_buffer(s->cluster_cache, s->cluster_size,
438                               s->cluster_data, csize) < 0) {
439             return -1;
440         }
441         s->cluster_cache_offset = coffset;
442     }
443     return 0;
444 }
445 
446 #if 0
447 
448 static int qcow_read(BlockDriverState *bs, int64_t sector_num,
449                      uint8_t *buf, int nb_sectors)
450 {
451     BDRVQcowState *s = bs->opaque;
452     int ret, index_in_cluster, n;
453     uint64_t cluster_offset;
454 
455     while (nb_sectors > 0) {
456         cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
457         index_in_cluster = sector_num & (s->cluster_sectors - 1);
458         n = s->cluster_sectors - index_in_cluster;
459         if (n > nb_sectors)
460             n = nb_sectors;
461         if (!cluster_offset) {
462             if (bs->backing_hd) {
463                 /* read from the base image */
464                 ret = bdrv_read(bs->backing_hd, sector_num, buf, n);
465                 if (ret < 0)
466                     return -1;
467             } else {
468                 memset(buf, 0, 512 * n);
469             }
470         } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
471             if (decompress_cluster(s, cluster_offset) < 0)
472                 return -1;
473             memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
474         } else {
475             ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
476             if (ret != n * 512)
477                 return -1;
478             if (s->crypt_method) {
479                 encrypt_sectors(s, sector_num, buf, buf, n, 0,
480                                 &s->aes_decrypt_key);
481             }
482         }
483         nb_sectors -= n;
484         sector_num += n;
485         buf += n * 512;
486     }
487     return 0;
488 }
489 #endif
490 
491 typedef struct QCowAIOCB {
492     BlockDriverAIOCB common;
493     int64_t sector_num;
494     QEMUIOVector *qiov;
495     uint8_t *buf;
496     void *orig_buf;
497     int nb_sectors;
498     int n;
499     uint64_t cluster_offset;
500     uint8_t *cluster_data;
501     struct iovec hd_iov;
502     QEMUIOVector hd_qiov;
503     BlockDriverAIOCB *hd_aiocb;
504 } QCowAIOCB;
505 
qcow_aio_cancel(BlockDriverAIOCB * blockacb)506 static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
507 {
508     QCowAIOCB *acb = (QCowAIOCB *)blockacb;
509     if (acb->hd_aiocb)
510         bdrv_aio_cancel(acb->hd_aiocb);
511     qemu_aio_release(acb);
512 }
513 
514 static AIOPool qcow_aio_pool = {
515     .aiocb_size         = sizeof(QCowAIOCB),
516     .cancel             = qcow_aio_cancel,
517 };
518 
qcow_aio_setup(BlockDriverState * bs,int64_t sector_num,QEMUIOVector * qiov,int nb_sectors,BlockDriverCompletionFunc * cb,void * opaque,int is_write)519 static QCowAIOCB *qcow_aio_setup(BlockDriverState *bs,
520         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
521         BlockDriverCompletionFunc *cb, void *opaque, int is_write)
522 {
523     QCowAIOCB *acb;
524 
525     acb = qemu_aio_get(&qcow_aio_pool, bs, cb, opaque);
526     if (!acb)
527         return NULL;
528     acb->hd_aiocb = NULL;
529     acb->sector_num = sector_num;
530     acb->qiov = qiov;
531     if (qiov->niov > 1) {
532         acb->buf = acb->orig_buf = qemu_blockalign(bs, qiov->size);
533         if (is_write)
534             qemu_iovec_to_buffer(qiov, acb->buf);
535     } else {
536         acb->buf = (uint8_t *)qiov->iov->iov_base;
537     }
538     acb->nb_sectors = nb_sectors;
539     acb->n = 0;
540     acb->cluster_offset = 0;
541     return acb;
542 }
543 
qcow_aio_read_cb(void * opaque,int ret)544 static void qcow_aio_read_cb(void *opaque, int ret)
545 {
546     QCowAIOCB *acb = opaque;
547     BlockDriverState *bs = acb->common.bs;
548     BDRVQcowState *s = bs->opaque;
549     int index_in_cluster;
550 
551     acb->hd_aiocb = NULL;
552     if (ret < 0)
553         goto done;
554 
555  redo:
556     /* post process the read buffer */
557     if (!acb->cluster_offset) {
558         /* nothing to do */
559     } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
560         /* nothing to do */
561     } else {
562         if (s->crypt_method) {
563             encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
564                             acb->n, 0,
565                             &s->aes_decrypt_key);
566         }
567     }
568 
569     acb->nb_sectors -= acb->n;
570     acb->sector_num += acb->n;
571     acb->buf += acb->n * 512;
572 
573     if (acb->nb_sectors == 0) {
574         /* request completed */
575         ret = 0;
576         goto done;
577     }
578 
579     /* prepare next AIO request */
580     acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9,
581                                              0, 0, 0, 0);
582     index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
583     acb->n = s->cluster_sectors - index_in_cluster;
584     if (acb->n > acb->nb_sectors)
585         acb->n = acb->nb_sectors;
586 
587     if (!acb->cluster_offset) {
588         if (bs->backing_hd) {
589             /* read from the base image */
590             acb->hd_iov.iov_base = (void *)acb->buf;
591             acb->hd_iov.iov_len = acb->n * 512;
592             qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
593             acb->hd_aiocb = bdrv_aio_readv(bs->backing_hd, acb->sector_num,
594                 &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
595             if (acb->hd_aiocb == NULL)
596                 goto done;
597         } else {
598             /* Note: in this case, no need to wait */
599             memset(acb->buf, 0, 512 * acb->n);
600             goto redo;
601         }
602     } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
603         /* add AIO support for compressed blocks ? */
604         if (decompress_cluster(s, acb->cluster_offset) < 0)
605             goto done;
606         memcpy(acb->buf,
607                s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
608         goto redo;
609     } else {
610         if ((acb->cluster_offset & 511) != 0) {
611             ret = -EIO;
612             goto done;
613         }
614         acb->hd_iov.iov_base = (void *)acb->buf;
615         acb->hd_iov.iov_len = acb->n * 512;
616         qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
617         acb->hd_aiocb = bdrv_aio_readv(s->hd,
618                             (acb->cluster_offset >> 9) + index_in_cluster,
619                             &acb->hd_qiov, acb->n, qcow_aio_read_cb, acb);
620         if (acb->hd_aiocb == NULL)
621             goto done;
622     }
623 
624     return;
625 
626 done:
627     if (acb->qiov->niov > 1) {
628         qemu_iovec_from_buffer(acb->qiov, acb->orig_buf, acb->qiov->size);
629         qemu_vfree(acb->orig_buf);
630     }
631     acb->common.cb(acb->common.opaque, ret);
632     qemu_aio_release(acb);
633 }
634 
qcow_aio_readv(BlockDriverState * bs,int64_t sector_num,QEMUIOVector * qiov,int nb_sectors,BlockDriverCompletionFunc * cb,void * opaque)635 static BlockDriverAIOCB *qcow_aio_readv(BlockDriverState *bs,
636         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
637         BlockDriverCompletionFunc *cb, void *opaque)
638 {
639     QCowAIOCB *acb;
640 
641     acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
642     if (!acb)
643         return NULL;
644 
645     qcow_aio_read_cb(acb, 0);
646     return &acb->common;
647 }
648 
qcow_aio_write_cb(void * opaque,int ret)649 static void qcow_aio_write_cb(void *opaque, int ret)
650 {
651     QCowAIOCB *acb = opaque;
652     BlockDriverState *bs = acb->common.bs;
653     BDRVQcowState *s = bs->opaque;
654     int index_in_cluster;
655     uint64_t cluster_offset;
656     const uint8_t *src_buf;
657 
658     acb->hd_aiocb = NULL;
659 
660     if (ret < 0)
661         goto done;
662 
663     acb->nb_sectors -= acb->n;
664     acb->sector_num += acb->n;
665     acb->buf += acb->n * 512;
666 
667     if (acb->nb_sectors == 0) {
668         /* request completed */
669         ret = 0;
670         goto done;
671     }
672 
673     index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
674     acb->n = s->cluster_sectors - index_in_cluster;
675     if (acb->n > acb->nb_sectors)
676         acb->n = acb->nb_sectors;
677     cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, 1, 0,
678                                         index_in_cluster,
679                                         index_in_cluster + acb->n);
680     if (!cluster_offset || (cluster_offset & 511) != 0) {
681         ret = -EIO;
682         goto done;
683     }
684     if (s->crypt_method) {
685         if (!acb->cluster_data) {
686             acb->cluster_data = qemu_mallocz(s->cluster_size);
687             if (!acb->cluster_data) {
688                 ret = -ENOMEM;
689                 goto done;
690             }
691         }
692         encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
693                         acb->n, 1, &s->aes_encrypt_key);
694         src_buf = acb->cluster_data;
695     } else {
696         src_buf = acb->buf;
697     }
698 
699     acb->hd_iov.iov_base = (void *)src_buf;
700     acb->hd_iov.iov_len = acb->n * 512;
701     qemu_iovec_init_external(&acb->hd_qiov, &acb->hd_iov, 1);
702     acb->hd_aiocb = bdrv_aio_writev(s->hd,
703                                     (cluster_offset >> 9) + index_in_cluster,
704                                     &acb->hd_qiov, acb->n,
705                                     qcow_aio_write_cb, acb);
706     if (acb->hd_aiocb == NULL)
707         goto done;
708     return;
709 
710 done:
711     if (acb->qiov->niov > 1)
712         qemu_vfree(acb->orig_buf);
713     acb->common.cb(acb->common.opaque, ret);
714     qemu_aio_release(acb);
715 }
716 
qcow_aio_writev(BlockDriverState * bs,int64_t sector_num,QEMUIOVector * qiov,int nb_sectors,BlockDriverCompletionFunc * cb,void * opaque)717 static BlockDriverAIOCB *qcow_aio_writev(BlockDriverState *bs,
718         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
719         BlockDriverCompletionFunc *cb, void *opaque)
720 {
721     BDRVQcowState *s = bs->opaque;
722     QCowAIOCB *acb;
723 
724     s->cluster_cache_offset = -1; /* disable compressed cache */
725 
726     acb = qcow_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
727     if (!acb)
728         return NULL;
729 
730 
731     qcow_aio_write_cb(acb, 0);
732     return &acb->common;
733 }
734 
qcow_close(BlockDriverState * bs)735 static void qcow_close(BlockDriverState *bs)
736 {
737     BDRVQcowState *s = bs->opaque;
738     qemu_free(s->l1_table);
739     qemu_free(s->l2_cache);
740     qemu_free(s->cluster_cache);
741     qemu_free(s->cluster_data);
742     bdrv_delete(s->hd);
743 }
744 
qcow_create(const char * filename,QEMUOptionParameter * options)745 static int qcow_create(const char *filename, QEMUOptionParameter *options)
746 {
747     int fd, header_size, backing_filename_len, l1_size, i, shift;
748     QCowHeader header;
749     uint64_t tmp;
750     int64_t total_size = 0;
751     const char *backing_file = NULL;
752     int flags = 0;
753 
754     /* Read out options */
755     while (options && options->name) {
756         if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
757             total_size = options->value.n / 512;
758         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
759             backing_file = options->value.s;
760         } else if (!strcmp(options->name, BLOCK_OPT_ENCRYPT)) {
761             flags |= options->value.n ? BLOCK_FLAG_ENCRYPT : 0;
762         }
763         options++;
764     }
765 
766     fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
767     if (fd < 0)
768         return -1;
769     memset(&header, 0, sizeof(header));
770     header.magic = cpu_to_be32(QCOW_MAGIC);
771     header.version = cpu_to_be32(QCOW_VERSION);
772     header.size = cpu_to_be64(total_size * 512);
773     header_size = sizeof(header);
774     backing_filename_len = 0;
775     if (backing_file) {
776         if (strcmp(backing_file, "fat:")) {
777             header.backing_file_offset = cpu_to_be64(header_size);
778             backing_filename_len = strlen(backing_file);
779             header.backing_file_size = cpu_to_be32(backing_filename_len);
780             header_size += backing_filename_len;
781         } else {
782             /* special backing file for vvfat */
783             backing_file = NULL;
784         }
785         header.cluster_bits = 9; /* 512 byte cluster to avoid copying
786                                     unmodifyed sectors */
787         header.l2_bits = 12; /* 32 KB L2 tables */
788     } else {
789         header.cluster_bits = 12; /* 4 KB clusters */
790         header.l2_bits = 9; /* 4 KB L2 tables */
791     }
792     header_size = (header_size + 7) & ~7;
793     shift = header.cluster_bits + header.l2_bits;
794     l1_size = ((total_size * 512) + (1LL << shift) - 1) >> shift;
795 
796     header.l1_table_offset = cpu_to_be64(header_size);
797     if (flags & BLOCK_FLAG_ENCRYPT) {
798         header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
799     } else {
800         header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
801     }
802 
803     /* write all the data */
804     write(fd, &header, sizeof(header));
805     if (backing_file) {
806         write(fd, backing_file, backing_filename_len);
807     }
808     lseek(fd, header_size, SEEK_SET);
809     tmp = 0;
810     for(i = 0;i < l1_size; i++) {
811         write(fd, &tmp, sizeof(tmp));
812     }
813     close(fd);
814     return 0;
815 }
816 
qcow_make_empty(BlockDriverState * bs)817 static int qcow_make_empty(BlockDriverState *bs)
818 {
819     BDRVQcowState *s = bs->opaque;
820     uint32_t l1_length = s->l1_size * sizeof(uint64_t);
821     int ret;
822 
823     memset(s->l1_table, 0, l1_length);
824     if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_length) < 0)
825 	return -1;
826     ret = bdrv_truncate(s->hd, s->l1_table_offset + l1_length);
827     if (ret < 0)
828         return ret;
829 
830     memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
831     memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
832     memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
833 
834     return 0;
835 }
836 
837 /* XXX: put compressed sectors first, then all the cluster aligned
838    tables to avoid losing bytes in alignment */
qcow_write_compressed(BlockDriverState * bs,int64_t sector_num,const uint8_t * buf,int nb_sectors)839 static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
840                                  const uint8_t *buf, int nb_sectors)
841 {
842     BDRVQcowState *s = bs->opaque;
843     z_stream strm;
844     int ret, out_len;
845     uint8_t *out_buf;
846     uint64_t cluster_offset;
847 
848     if (nb_sectors != s->cluster_sectors)
849         return -EINVAL;
850 
851     out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
852     if (!out_buf)
853         return -1;
854 
855     /* best compression, small window, no zlib header */
856     memset(&strm, 0, sizeof(strm));
857     ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
858                        Z_DEFLATED, -12,
859                        9, Z_DEFAULT_STRATEGY);
860     if (ret != 0) {
861         qemu_free(out_buf);
862         return -1;
863     }
864 
865     strm.avail_in = s->cluster_size;
866     strm.next_in = (uint8_t *)buf;
867     strm.avail_out = s->cluster_size;
868     strm.next_out = out_buf;
869 
870     ret = deflate(&strm, Z_FINISH);
871     if (ret != Z_STREAM_END && ret != Z_OK) {
872         qemu_free(out_buf);
873         deflateEnd(&strm);
874         return -1;
875     }
876     out_len = strm.next_out - out_buf;
877 
878     deflateEnd(&strm);
879 
880     if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
881         /* could not compress: write normal cluster */
882         bdrv_write(bs, sector_num, buf, s->cluster_sectors);
883     } else {
884         cluster_offset = get_cluster_offset(bs, sector_num << 9, 2,
885                                             out_len, 0, 0);
886         cluster_offset &= s->cluster_offset_mask;
887         if (bdrv_pwrite(s->hd, cluster_offset, out_buf, out_len) != out_len) {
888             qemu_free(out_buf);
889             return -1;
890         }
891     }
892 
893     qemu_free(out_buf);
894     return 0;
895 }
896 
qcow_flush(BlockDriverState * bs)897 static void qcow_flush(BlockDriverState *bs)
898 {
899     BDRVQcowState *s = bs->opaque;
900     bdrv_flush(s->hd);
901 }
902 
qcow_get_info(BlockDriverState * bs,BlockDriverInfo * bdi)903 static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
904 {
905     BDRVQcowState *s = bs->opaque;
906     bdi->cluster_size = s->cluster_size;
907     return 0;
908 }
909 
910 
911 static QEMUOptionParameter qcow_create_options[] = {
912     {
913         .name = BLOCK_OPT_SIZE,
914         .type = OPT_SIZE,
915         .help = "Virtual disk size"
916     },
917     {
918         .name = BLOCK_OPT_BACKING_FILE,
919         .type = OPT_STRING,
920         .help = "File name of a base image"
921     },
922     {
923         .name = BLOCK_OPT_ENCRYPT,
924         .type = OPT_FLAG,
925         .help = "Encrypt the image"
926     },
927     { NULL }
928 };
929 
930 static BlockDriver bdrv_qcow = {
931     .format_name	= "qcow",
932     .instance_size	= sizeof(BDRVQcowState),
933     .bdrv_probe		= qcow_probe,
934     .bdrv_open		= qcow_open,
935     .bdrv_close		= qcow_close,
936     .bdrv_create	= qcow_create,
937     .bdrv_flush		= qcow_flush,
938     .bdrv_is_allocated	= qcow_is_allocated,
939     .bdrv_set_key	= qcow_set_key,
940     .bdrv_make_empty	= qcow_make_empty,
941     .bdrv_aio_readv	= qcow_aio_readv,
942     .bdrv_aio_writev	= qcow_aio_writev,
943     .bdrv_write_compressed = qcow_write_compressed,
944     .bdrv_get_info	= qcow_get_info,
945 
946     .create_options = qcow_create_options,
947 };
948 
bdrv_qcow_init(void)949 static void bdrv_qcow_init(void)
950 {
951     bdrv_register(&bdrv_qcow);
952 }
953 
954 block_init(bdrv_qcow_init);
955