• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 /* the following is needed on Linux to define ptsname() in stdlib.h */
26 #if defined(__linux__)
27 #define _GNU_SOURCE 1
28 #endif
29 
30 #include "qemu-common.h"
31 #include "hw/hw.h"
32 #include "hw/boards.h"
33 #include "hw/usb.h"
34 #include "hw/pcmcia.h"
35 #include "hw/pc.h"
36 #include "hw/audiodev.h"
37 #include "hw/isa.h"
38 #include "hw/baum.h"
39 #include "hw/goldfish_nand.h"
40 #include "net.h"
41 #include "console.h"
42 #include "sysemu.h"
43 #include "gdbstub.h"
44 #include "qemu-timer.h"
45 #include "qemu-char.h"
46 #include "block.h"
47 #include "audio/audio.h"
48 
49 #include "qemu_file.h"
50 #include "android/android.h"
51 #include "charpipe.h"
52 #include "shaper.h"
53 #include "modem_driver.h"
54 #include "android/gps.h"
55 #include "android/hw-qemud.h"
56 #include "android/hw-kmsg.h"
57 #include "tcpdump.h"
58 #include "targphys.h"
59 
60 #include <unistd.h>
61 #include <fcntl.h>
62 #include <signal.h>
63 #include <time.h>
64 #include <errno.h>
65 #include <sys/time.h>
66 #include <zlib.h>
67 
68 /* Needed early for HOST_BSD etc. */
69 #include "config-host.h"
70 
71 #ifndef _WIN32
72 #include <libgen.h>
73 #include <pwd.h>
74 #include <sys/times.h>
75 #include <sys/wait.h>
76 #include <termios.h>
77 #include <sys/mman.h>
78 #include <sys/ioctl.h>
79 #include <sys/resource.h>
80 #include <sys/socket.h>
81 #include <netinet/in.h>
82 #include <net/if.h>
83 #if defined(__NetBSD__)
84 #include <net/if_tap.h>
85 #endif
86 #ifdef __linux__
87 #include <linux/if_tun.h>
88 #endif
89 #include <arpa/inet.h>
90 #include <dirent.h>
91 #include <netdb.h>
92 #include <sys/select.h>
93 #ifdef HOST_BSD
94 #include <sys/stat.h>
95 #if defined(__FreeBSD__) || defined(__DragonFly__)
96 #include <libutil.h>
97 #else
98 #include <util.h>
99 #endif
100 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
101 #include <freebsd/stdlib.h>
102 #else
103 #ifdef __linux__
104 #include <pty.h>
105 #include <malloc.h>
106 #include <linux/rtc.h>
107 
108 /* For the benefit of older linux systems which don't supply it,
109    we use a local copy of hpet.h. */
110 /* #include <linux/hpet.h> */
111 #include "hpet.h"
112 
113 #include <linux/ppdev.h>
114 #include <linux/parport.h>
115 #endif
116 #ifdef __sun__
117 #include <sys/stat.h>
118 #include <sys/ethernet.h>
119 #include <sys/sockio.h>
120 #include <netinet/arp.h>
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/ip_icmp.h> // must come after ip.h
125 #include <netinet/udp.h>
126 #include <netinet/tcp.h>
127 #include <net/if.h>
128 #include <syslog.h>
129 #include <stropts.h>
130 #endif
131 #endif
132 #endif
133 
134 #if defined(__OpenBSD__)
135 #include <util.h>
136 #endif
137 
138 #if defined(CONFIG_VDE)
139 #include <libvdeplug.h>
140 #endif
141 
142 #ifdef _WIN32
143 #include <windows.h>
144 #include <malloc.h>
145 #include <sys/timeb.h>
146 #include <mmsystem.h>
147 #define getopt_long_only getopt_long
148 #define memalign(align, size) malloc(size)
149 #endif
150 
151 
152 #ifdef CONFIG_COCOA
153 #undef main
154 #define main qemu_main
155 #endif /* CONFIG_COCOA */
156 
157 #include "hw/hw.h"
158 #include "hw/boards.h"
159 #include "hw/usb.h"
160 #include "hw/pcmcia.h"
161 #include "hw/pc.h"
162 #include "hw/audiodev.h"
163 #include "hw/isa.h"
164 #include "hw/baum.h"
165 #include "hw/bt.h"
166 #include "hw/watchdog.h"
167 #include "hw/smbios.h"
168 #include "hw/xen.h"
169 #include "bt-host.h"
170 #include "net.h"
171 #include "monitor.h"
172 #include "console.h"
173 #include "sysemu.h"
174 #include "gdbstub.h"
175 #include "qemu-timer.h"
176 #include "qemu-char.h"
177 #include "cache-utils.h"
178 #include "block.h"
179 #include "dma.h"
180 #include "audio/audio.h"
181 #include "migration.h"
182 #include "kvm.h"
183 #include "balloon.h"
184 
185 #ifdef CONFIG_SKINS
186 #undef main
187 #define main qemu_main
188 #endif
189 
190 #include "disas.h"
191 
192 #include "exec-all.h"
193 
194 #ifdef CONFIG_TRACE
195 #include "trace.h"
196 #include "dcache.h"
197 #endif
198 
199 #include "qemu_socket.h"
200 
201 #if defined(CONFIG_SLIRP)
202 #include "libslirp.h"
203 #endif
204 
205 //#define DEBUG_UNUSED_IOPORT
206 //#define DEBUG_IOPORT
207 //#define DEBUG_NET
208 //#define DEBUG_SLIRP
209 
210 
211 #ifdef DEBUG_IOPORT
212 #  define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
213 #else
214 #  define LOG_IOPORT(...) do { } while (0)
215 #endif
216 
217 #define DEFAULT_RAM_SIZE 128
218 
219 /* Max number of USB devices that can be specified on the commandline.  */
220 #define MAX_USB_CMDLINE 8
221 
222 /* Max number of bluetooth switches on the commandline.  */
223 #define MAX_BT_CMDLINE 10
224 
225 /* XXX: use a two level table to limit memory usage */
226 #define MAX_IOPORTS 65536
227 
228 static const char *data_dir;
229 const char *bios_name = NULL;
230 static void *ioport_opaque[MAX_IOPORTS];
231 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
232 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
233 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
234    to store the VM snapshots */
235 DriveInfo drives_table[MAX_DRIVES+1];
236 int nb_drives;
237 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
238 static DisplayState *display_state;
239 DisplayType display_type = DT_DEFAULT;
240 const char* keyboard_layout = NULL;
241 int64_t ticks_per_sec;
242 ram_addr_t ram_size;
243 int nb_nics;
244 NICInfo nd_table[MAX_NICS];
245 int vm_running;
246 static int autostart;
247 static int rtc_utc = 1;
248 static int rtc_date_offset = -1; /* -1 means no change */
249 int cirrus_vga_enabled = 1;
250 int std_vga_enabled = 0;
251 int vmsvga_enabled = 0;
252 int xenfb_enabled = 0;
253 #ifdef TARGET_SPARC
254 int graphic_width = 1024;
255 int graphic_height = 768;
256 int graphic_depth = 8;
257 #else
258 int graphic_width = 800;
259 int graphic_height = 600;
260 int graphic_depth = 15;
261 #endif
262 static int full_screen = 0;
263 #ifdef CONFIG_SDL
264 static int no_frame = 0;
265 #endif
266 int no_quit = 0;
267 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
268 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
269 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
270 #ifdef TARGET_I386
271 int win2k_install_hack = 0;
272 int rtc_td_hack = 0;
273 #endif
274 int usb_enabled = 0;
275 int singlestep = 0;
276 int smp_cpus = 1;
277 const char *vnc_display;
278 int acpi_enabled = 1;
279 int no_hpet = 0;
280 int no_virtio_balloon = 0;
281 int fd_bootchk = 1;
282 int no_reboot = 0;
283 int no_shutdown = 0;
284 int cursor_hide = 1;
285 int graphic_rotate = 0;
286 #ifndef _WIN32
287 int daemonize = 0;
288 #endif
289 WatchdogTimerModel *watchdog = NULL;
290 int watchdog_action = WDT_RESET;
291 const char *option_rom[MAX_OPTION_ROMS];
292 int nb_option_roms;
293 int semihosting_enabled = 0;
294 #ifdef TARGET_ARM
295 int old_param = 0;
296 #endif
297 const char *qemu_name;
298 int alt_grab = 0;
299 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
300 unsigned int nb_prom_envs = 0;
301 const char *prom_envs[MAX_PROM_ENVS];
302 #endif
303 int nb_drives_opt;
304 struct drive_opt drives_opt[MAX_DRIVES];
305 
306 int nb_numa_nodes;
307 uint64_t node_mem[MAX_NODES];
308 uint64_t node_cpumask[MAX_NODES];
309 
310 static CPUState *cur_cpu;
311 static CPUState *next_cpu;
312 static int timer_alarm_pending = 1;
313 /* Conversion factor from emulated instructions to virtual clock ticks.  */
314 static int icount_time_shift;
315 /* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
316 #define MAX_ICOUNT_SHIFT 10
317 /* Compensate for varying guest execution speed.  */
318 static int64_t qemu_icount_bias;
319 static QEMUTimer *icount_rt_timer;
320 static QEMUTimer *icount_vm_timer;
321 static QEMUTimer *nographic_timer;
322 
323 uint8_t qemu_uuid[16];
324 
325 
326 extern int   qemu_cpu_delay;
327 extern char* audio_input_source;
328 
329 extern void  dprint( const char* format, ... );
330 
331 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
332 
333 /***********************************************************/
334 /* x86 ISA bus support */
335 
336 target_phys_addr_t isa_mem_base = 0;
337 PicState2 *isa_pic;
338 
339 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
340 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
341 
ioport_read(int index,uint32_t address)342 static uint32_t ioport_read(int index, uint32_t address)
343 {
344     static IOPortReadFunc *default_func[3] = {
345         default_ioport_readb,
346         default_ioport_readw,
347         default_ioport_readl
348     };
349     IOPortReadFunc *func = ioport_read_table[index][address];
350     if (!func)
351         func = default_func[index];
352     return func(ioport_opaque[address], address);
353 }
354 
ioport_write(int index,uint32_t address,uint32_t data)355 static void ioport_write(int index, uint32_t address, uint32_t data)
356 {
357     static IOPortWriteFunc *default_func[3] = {
358         default_ioport_writeb,
359         default_ioport_writew,
360         default_ioport_writel
361     };
362     IOPortWriteFunc *func = ioport_write_table[index][address];
363     if (!func)
364         func = default_func[index];
365     func(ioport_opaque[address], address, data);
366 }
367 
default_ioport_readb(void * opaque,uint32_t address)368 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
369 {
370 #ifdef DEBUG_UNUSED_IOPORT
371     fprintf(stderr, "unused inb: port=0x%04x\n", address);
372 #endif
373     return 0xff;
374 }
375 
default_ioport_writeb(void * opaque,uint32_t address,uint32_t data)376 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
377 {
378 #ifdef DEBUG_UNUSED_IOPORT
379     fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
380 #endif
381 }
382 
383 /* default is to make two byte accesses */
default_ioport_readw(void * opaque,uint32_t address)384 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
385 {
386     uint32_t data;
387     data = ioport_read(0, address);
388     address = (address + 1) & (MAX_IOPORTS - 1);
389     data |= ioport_read(0, address) << 8;
390     return data;
391 }
392 
default_ioport_writew(void * opaque,uint32_t address,uint32_t data)393 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
394 {
395     ioport_write(0, address, data & 0xff);
396     address = (address + 1) & (MAX_IOPORTS - 1);
397     ioport_write(0, address, (data >> 8) & 0xff);
398 }
399 
default_ioport_readl(void * opaque,uint32_t address)400 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
401 {
402 #ifdef DEBUG_UNUSED_IOPORT
403     fprintf(stderr, "unused inl: port=0x%04x\n", address);
404 #endif
405     return 0xffffffff;
406 }
407 
default_ioport_writel(void * opaque,uint32_t address,uint32_t data)408 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
409 {
410 #ifdef DEBUG_UNUSED_IOPORT
411     fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
412 #endif
413 }
414 
415 /* size is the word size in byte */
register_ioport_read(int start,int length,int size,IOPortReadFunc * func,void * opaque)416 int register_ioport_read(int start, int length, int size,
417                          IOPortReadFunc *func, void *opaque)
418 {
419     int i, bsize;
420 
421     if (size == 1) {
422         bsize = 0;
423     } else if (size == 2) {
424         bsize = 1;
425     } else if (size == 4) {
426         bsize = 2;
427     } else {
428         hw_error("register_ioport_read: invalid size");
429         return -1;
430     }
431     for(i = start; i < start + length; i += size) {
432         ioport_read_table[bsize][i] = func;
433         if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
434             hw_error("register_ioport_read: invalid opaque");
435         ioport_opaque[i] = opaque;
436     }
437     return 0;
438 }
439 
440 /* size is the word size in byte */
register_ioport_write(int start,int length,int size,IOPortWriteFunc * func,void * opaque)441 int register_ioport_write(int start, int length, int size,
442                           IOPortWriteFunc *func, void *opaque)
443 {
444     int i, bsize;
445 
446     if (size == 1) {
447         bsize = 0;
448     } else if (size == 2) {
449         bsize = 1;
450     } else if (size == 4) {
451         bsize = 2;
452     } else {
453         hw_error("register_ioport_write: invalid size");
454         return -1;
455     }
456     for(i = start; i < start + length; i += size) {
457         ioport_write_table[bsize][i] = func;
458         if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
459             hw_error("register_ioport_write: invalid opaque");
460         ioport_opaque[i] = opaque;
461     }
462     return 0;
463 }
464 
isa_unassign_ioport(int start,int length)465 void isa_unassign_ioport(int start, int length)
466 {
467     int i;
468 
469     for(i = start; i < start + length; i++) {
470         ioport_read_table[0][i] = default_ioport_readb;
471         ioport_read_table[1][i] = default_ioport_readw;
472         ioport_read_table[2][i] = default_ioport_readl;
473 
474         ioport_write_table[0][i] = default_ioport_writeb;
475         ioport_write_table[1][i] = default_ioport_writew;
476         ioport_write_table[2][i] = default_ioport_writel;
477 
478         ioport_opaque[i] = NULL;
479     }
480 }
481 
482 /***********************************************************/
483 
cpu_outb(CPUState * env,int addr,int val)484 void cpu_outb(CPUState *env, int addr, int val)
485 {
486     LOG_IOPORT("outb: %04x %02x\n", addr, val);
487     ioport_write(0, addr, val);
488 #ifdef CONFIG_KQEMU
489     if (env)
490         env->last_io_time = cpu_get_time_fast();
491 #endif
492 }
493 
cpu_outw(CPUState * env,int addr,int val)494 void cpu_outw(CPUState *env, int addr, int val)
495 {
496     LOG_IOPORT("outw: %04x %04x\n", addr, val);
497     ioport_write(1, addr, val);
498 #ifdef CONFIG_KQEMU
499     if (env)
500         env->last_io_time = cpu_get_time_fast();
501 #endif
502 }
503 
cpu_outl(CPUState * env,int addr,int val)504 void cpu_outl(CPUState *env, int addr, int val)
505 {
506     LOG_IOPORT("outl: %04x %08x\n", addr, val);
507     ioport_write(2, addr, val);
508 #ifdef CONFIG_KQEMU
509     if (env)
510         env->last_io_time = cpu_get_time_fast();
511 #endif
512 }
513 
cpu_inb(CPUState * env,int addr)514 int cpu_inb(CPUState *env, int addr)
515 {
516     int val;
517     val = ioport_read(0, addr);
518     LOG_IOPORT("inb : %04x %02x\n", addr, val);
519 #ifdef CONFIG_KQEMU
520     if (env)
521         env->last_io_time = cpu_get_time_fast();
522 #endif
523     return val;
524 }
525 
cpu_inw(CPUState * env,int addr)526 int cpu_inw(CPUState *env, int addr)
527 {
528     int val;
529     val = ioport_read(1, addr);
530     LOG_IOPORT("inw : %04x %04x\n", addr, val);
531 #ifdef CONFIG_KQEMU
532     if (env)
533         env->last_io_time = cpu_get_time_fast();
534 #endif
535     return val;
536 }
537 
cpu_inl(CPUState * env,int addr)538 int cpu_inl(CPUState *env, int addr)
539 {
540     int val;
541     val = ioport_read(2, addr);
542     LOG_IOPORT("inl : %04x %08x\n", addr, val);
543 #ifdef CONFIG_KQEMU
544     if (env)
545         env->last_io_time = cpu_get_time_fast();
546 #endif
547     return val;
548 }
549 
550 /***********************************************************/
hw_error(const char * fmt,...)551 void hw_error(const char *fmt, ...)
552 {
553     va_list ap;
554     CPUState *env;
555 
556     va_start(ap, fmt);
557     fprintf(stderr, "qemu: hardware error: ");
558     vfprintf(stderr, fmt, ap);
559     fprintf(stderr, "\n");
560     for(env = first_cpu; env != NULL; env = env->next_cpu) {
561         fprintf(stderr, "CPU #%d:\n", env->cpu_index);
562 #ifdef TARGET_I386
563         cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
564 #else
565         cpu_dump_state(env, stderr, fprintf, 0);
566 #endif
567     }
568     va_end(ap);
569     abort();
570 }
571 
572 /***************/
573 /* ballooning */
574 
575 static QEMUBalloonEvent *qemu_balloon_event;
576 void *qemu_balloon_event_opaque;
577 
qemu_add_balloon_handler(QEMUBalloonEvent * func,void * opaque)578 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
579 {
580     qemu_balloon_event = func;
581     qemu_balloon_event_opaque = opaque;
582 }
583 
qemu_balloon(ram_addr_t target)584 void qemu_balloon(ram_addr_t target)
585 {
586     if (qemu_balloon_event)
587         qemu_balloon_event(qemu_balloon_event_opaque, target);
588 }
589 
qemu_balloon_status(void)590 ram_addr_t qemu_balloon_status(void)
591 {
592     if (qemu_balloon_event)
593         return qemu_balloon_event(qemu_balloon_event_opaque, 0);
594     return 0;
595 }
596 
597 /***********************************************************/
598 /* keyboard/mouse */
599 
600 static QEMUPutKBDEvent*  qemu_put_kbd_event;
601 static void*             qemu_put_kbd_event_opaque;
602 
603 static QEMUPutKBDEventN*  qemu_put_kbd_event_n;
604 static void*              qemu_put_kbd_event_n_opaque;
605 
606 
607 static QEMUPutGenericEvent*  qemu_put_generic_event;
608 static void*                 qemu_put_generic_event_opaque;
609 
610 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
611 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
612 
qemu_add_kbd_event_handler(QEMUPutKBDEvent * func,void * opaque)613 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
614 {
615     qemu_put_kbd_event_opaque = opaque;
616     qemu_put_kbd_event = func;
617 }
618 
qemu_add_kbd_event_n_handler(QEMUPutKBDEventN * func,void * opaque)619 void qemu_add_kbd_event_n_handler(QEMUPutKBDEventN *func, void *opaque)
620 {
621     qemu_put_kbd_event_n_opaque = opaque;
622     qemu_put_kbd_event_n = func;
623 }
624 
625 #if 0
626 void qemu_add_mouse_event_handler(QEMUPutMouseEvent *func, void *opaque, int absolute)
627 {
628     qemu_put_mouse_event_opaque = opaque;
629     qemu_put_mouse_event = func;
630     qemu_put_mouse_event_absolute = absolute;
631 }
632 #else
qemu_add_mouse_event_handler(QEMUPutMouseEvent * func,void * opaque,int absolute,const char * name)633 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
634                                                 void *opaque, int absolute,
635                                                 const char *name)
636 {
637     QEMUPutMouseEntry *s, *cursor;
638 
639     s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
640     if (!s)
641         return NULL;
642 
643     s->qemu_put_mouse_event = func;
644     s->qemu_put_mouse_event_opaque = opaque;
645     s->qemu_put_mouse_event_absolute = absolute;
646     s->qemu_put_mouse_event_name = qemu_strdup(name);
647     s->next = NULL;
648 
649     if (!qemu_put_mouse_event_head) {
650         qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
651         return s;
652     }
653 
654     cursor = qemu_put_mouse_event_head;
655     while (cursor->next != NULL)
656         cursor = cursor->next;
657 
658     cursor->next = s;
659     qemu_put_mouse_event_current = s;
660 
661     return s;
662 }
663 
qemu_remove_mouse_event_handler(QEMUPutMouseEntry * entry)664 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
665 {
666     QEMUPutMouseEntry *prev = NULL, *cursor;
667 
668     if (!qemu_put_mouse_event_head || entry == NULL)
669         return;
670 
671     cursor = qemu_put_mouse_event_head;
672     while (cursor != NULL && cursor != entry) {
673         prev = cursor;
674         cursor = cursor->next;
675     }
676 
677     if (cursor == NULL) // does not exist or list empty
678         return;
679     else if (prev == NULL) { // entry is head
680         qemu_put_mouse_event_head = cursor->next;
681         if (qemu_put_mouse_event_current == entry)
682             qemu_put_mouse_event_current = cursor->next;
683         qemu_free(entry->qemu_put_mouse_event_name);
684         qemu_free(entry);
685         return;
686     }
687 
688     prev->next = entry->next;
689 
690     if (qemu_put_mouse_event_current == entry)
691         qemu_put_mouse_event_current = prev;
692 
693     qemu_free(entry->qemu_put_mouse_event_name);
694     qemu_free(entry);
695 }
696 #endif
697 
qemu_add_generic_event_handler(QEMUPutGenericEvent * func,void * opaque)698 void qemu_add_generic_event_handler(QEMUPutGenericEvent *func, void*  opaque)
699 {
700     qemu_put_generic_event = func;
701     qemu_put_generic_event_opaque = opaque;
702 }
703 
kbd_put_keycode(int keycode)704 void kbd_put_keycode(int keycode)
705 {
706     if (qemu_put_kbd_event) {
707         qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
708     }
709 }
710 
kbd_put_keycodes(int * keycodes,int count)711 void kbd_put_keycodes(int*  keycodes, int  count)
712 {
713     if (qemu_put_kbd_event_n)
714     {
715         qemu_put_kbd_event_n(qemu_put_kbd_event_n_opaque, keycodes, count);
716     }
717     else if (qemu_put_kbd_event)
718     {
719         int  nn;
720 
721         for (nn = 0; nn < count; nn++)
722             qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycodes[nn]);
723     }
724 }
725 
726 
kbd_generic_event(int type,int code,int value)727 void  kbd_generic_event(int  type, int code, int  value)
728 {
729     if (qemu_put_generic_event)
730         qemu_put_generic_event(qemu_put_generic_event_opaque, type, code, value);
731 }
732 
733 
kbd_mouse_event(int dx,int dy,int dz,int buttons_state)734 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
735 {
736     QEMUPutMouseEvent *mouse_event;
737     void *mouse_event_opaque;
738     int width;
739 
740     if (!qemu_put_mouse_event_current) {
741         return;
742     }
743 
744     mouse_event =
745         qemu_put_mouse_event_current->qemu_put_mouse_event;
746     mouse_event_opaque =
747         qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
748 
749     if (mouse_event) {
750         if (graphic_rotate) {
751             if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
752                 width = 0x7fff;
753             else
754                 width = graphic_width - 1;
755             mouse_event(mouse_event_opaque,
756                                  width - dy, dx, dz, buttons_state);
757         } else
758             mouse_event(mouse_event_opaque,
759                                  dx, dy, dz, buttons_state);
760     }
761 }
762 
kbd_mouse_is_absolute(void)763 int kbd_mouse_is_absolute(void)
764 {
765     if (!qemu_put_mouse_event_current)
766         return 0;
767 
768     return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
769 }
770 
do_info_mice(Monitor * mon)771 void do_info_mice(Monitor *mon)
772 {
773     QEMUPutMouseEntry *cursor;
774     int index = 0;
775 
776     if (!qemu_put_mouse_event_head) {
777         monitor_printf(mon, "No mouse devices connected\n");
778         return;
779     }
780 
781     monitor_printf(mon, "Mouse devices available:\n");
782     cursor = qemu_put_mouse_event_head;
783     while (cursor != NULL) {
784         monitor_printf(mon, "%c Mouse #%d: %s\n",
785                        (cursor == qemu_put_mouse_event_current ? '*' : ' '),
786                        index, cursor->qemu_put_mouse_event_name);
787         index++;
788         cursor = cursor->next;
789     }
790 }
791 
do_mouse_set(Monitor * mon,int index)792 void do_mouse_set(Monitor *mon, int index)
793 {
794     QEMUPutMouseEntry *cursor;
795     int i = 0;
796 
797     if (!qemu_put_mouse_event_head) {
798         monitor_printf(mon, "No mouse devices connected\n");
799         return;
800     }
801 
802     cursor = qemu_put_mouse_event_head;
803     while (cursor != NULL && index != i) {
804         i++;
805         cursor = cursor->next;
806     }
807 
808     if (cursor != NULL)
809         qemu_put_mouse_event_current = cursor;
810     else
811         monitor_printf(mon, "Mouse at given index not found\n");
812 }
813 
814 /* compute with 96 bit intermediate result: (a*b)/c */
muldiv64(uint64_t a,uint32_t b,uint32_t c)815 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
816 {
817     union {
818         uint64_t ll;
819         struct {
820 #ifdef WORDS_BIGENDIAN
821             uint32_t high, low;
822 #else
823             uint32_t low, high;
824 #endif
825         } l;
826     } u, res;
827     uint64_t rl, rh;
828 
829     u.ll = a;
830     rl = (uint64_t)u.l.low * (uint64_t)b;
831     rh = (uint64_t)u.l.high * (uint64_t)b;
832     rh += (rl >> 32);
833     res.l.high = rh / c;
834     res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
835     return res.ll;
836 }
837 
838 /***********************************************************/
839 /* real time host monotonic timer */
840 
841 #define QEMU_TIMER_BASE 1000000000LL
842 
843 #ifdef WIN32
844 
845 static int64_t clock_freq;
846 
init_get_clock(void)847 static void init_get_clock(void)
848 {
849     LARGE_INTEGER freq;
850     int ret;
851     ret = QueryPerformanceFrequency(&freq);
852     if (ret == 0) {
853         fprintf(stderr, "Could not calibrate ticks\n");
854         exit(1);
855     }
856     clock_freq = freq.QuadPart;
857 }
858 
get_clock(void)859 static int64_t get_clock(void)
860 {
861     LARGE_INTEGER ti;
862     QueryPerformanceCounter(&ti);
863     return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
864 }
865 
866 #else
867 
868 static int use_rt_clock;
869 
init_get_clock(void)870 static void init_get_clock(void)
871 {
872     use_rt_clock = 0;
873 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
874     || defined(__DragonFly__)
875     {
876         struct timespec ts;
877         if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
878             use_rt_clock = 1;
879         }
880     }
881 #endif
882 }
883 
get_clock(void)884 static int64_t get_clock(void)
885 {
886 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
887 	|| defined(__DragonFly__)
888     if (use_rt_clock) {
889         struct timespec ts;
890         clock_gettime(CLOCK_MONOTONIC, &ts);
891         return ts.tv_sec * 1000000000LL + ts.tv_nsec;
892     } else
893 #endif
894     {
895         /* XXX: using gettimeofday leads to problems if the date
896            changes, so it should be avoided. */
897         struct timeval tv;
898         gettimeofday(&tv, NULL);
899         return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
900     }
901 }
902 #endif
903 
904 /* Return the virtual CPU time, based on the instruction counter.  */
cpu_get_icount(void)905 static int64_t cpu_get_icount(void)
906 {
907     int64_t icount;
908     CPUState *env = cpu_single_env;;
909     icount = qemu_icount;
910     if (env) {
911         if (!can_do_io(env))
912             fprintf(stderr, "Bad clock read\n");
913         icount -= (env->icount_decr.u16.low + env->icount_extra);
914     }
915     return qemu_icount_bias + (icount << icount_time_shift);
916 }
917 
918 /***********************************************************/
919 /* guest cycle counter */
920 
921 static int64_t cpu_ticks_prev;
922 static int64_t cpu_ticks_offset;
923 static int64_t cpu_clock_offset;
924 static int cpu_ticks_enabled;
925 
926 /* return the host CPU cycle counter and handle stop/restart */
cpu_get_ticks(void)927 int64_t cpu_get_ticks(void)
928 {
929     if (use_icount) {
930         return cpu_get_icount();
931     }
932     if (!cpu_ticks_enabled) {
933         return cpu_ticks_offset;
934     } else {
935         int64_t ticks;
936         ticks = cpu_get_real_ticks();
937         if (cpu_ticks_prev > ticks) {
938             /* Note: non increasing ticks may happen if the host uses
939                software suspend */
940             cpu_ticks_offset += cpu_ticks_prev - ticks;
941         }
942         cpu_ticks_prev = ticks;
943         return ticks + cpu_ticks_offset;
944     }
945 }
946 
947 /* return the host CPU monotonic timer and handle stop/restart */
cpu_get_clock(void)948 static int64_t cpu_get_clock(void)
949 {
950     int64_t ti;
951     if (!cpu_ticks_enabled) {
952         return cpu_clock_offset;
953     } else {
954         ti = get_clock();
955         return ti + cpu_clock_offset;
956     }
957 }
958 
959 /* enable cpu_get_ticks() */
cpu_enable_ticks(void)960 void cpu_enable_ticks(void)
961 {
962     if (!cpu_ticks_enabled) {
963         cpu_ticks_offset -= cpu_get_real_ticks();
964         cpu_clock_offset -= get_clock();
965         cpu_ticks_enabled = 1;
966     }
967 }
968 
969 /* disable cpu_get_ticks() : the clock is stopped. You must not call
970    cpu_get_ticks() after that.  */
cpu_disable_ticks(void)971 void cpu_disable_ticks(void)
972 {
973     if (cpu_ticks_enabled) {
974         cpu_ticks_offset = cpu_get_ticks();
975         cpu_clock_offset = cpu_get_clock();
976         cpu_ticks_enabled = 0;
977     }
978 }
979 
980 /***********************************************************/
981 /* timers */
982 
983 #define QEMU_TIMER_REALTIME 0
984 #define QEMU_TIMER_VIRTUAL  1
985 
986 struct QEMUClock {
987     int type;
988     /* XXX: add frequency */
989 };
990 
991 struct QEMUTimer {
992     QEMUClock *clock;
993     int64_t expire_time;
994     QEMUTimerCB *cb;
995     void *opaque;
996     struct QEMUTimer *next;
997 };
998 
999 struct qemu_alarm_timer {
1000     char const *name;
1001     unsigned int flags;
1002 
1003     int (*start)(struct qemu_alarm_timer *t);
1004     void (*stop)(struct qemu_alarm_timer *t);
1005     void (*rearm)(struct qemu_alarm_timer *t);
1006     void *priv;
1007 };
1008 
1009 #define ALARM_FLAG_DYNTICKS  0x1
1010 #define ALARM_FLAG_EXPIRED   0x2
1011 
alarm_has_dynticks(struct qemu_alarm_timer * t)1012 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
1013 {
1014     return t && (t->flags & ALARM_FLAG_DYNTICKS);
1015 }
1016 
qemu_rearm_alarm_timer(struct qemu_alarm_timer * t)1017 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
1018 {
1019     if (!alarm_has_dynticks(t))
1020         return;
1021 
1022     t->rearm(t);
1023 }
1024 
1025 /* TODO: MIN_TIMER_REARM_US should be optimized */
1026 #define MIN_TIMER_REARM_US 250
1027 
1028 static struct qemu_alarm_timer *alarm_timer;
1029 
1030 #ifdef _WIN32
1031 
1032 struct qemu_alarm_win32 {
1033     MMRESULT timerId;
1034     unsigned int period;
1035 } alarm_win32_data = {0, -1};
1036 
1037 static int win32_start_timer(struct qemu_alarm_timer *t);
1038 static void win32_stop_timer(struct qemu_alarm_timer *t);
1039 static void win32_rearm_timer(struct qemu_alarm_timer *t);
1040 
1041 #else
1042 
1043 static int unix_start_timer(struct qemu_alarm_timer *t);
1044 static void unix_stop_timer(struct qemu_alarm_timer *t);
1045 
1046 #ifdef __linux__
1047 
1048 static int dynticks_start_timer(struct qemu_alarm_timer *t);
1049 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
1050 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
1051 
1052 static int hpet_start_timer(struct qemu_alarm_timer *t);
1053 static void hpet_stop_timer(struct qemu_alarm_timer *t);
1054 
1055 static int rtc_start_timer(struct qemu_alarm_timer *t);
1056 static void rtc_stop_timer(struct qemu_alarm_timer *t);
1057 
1058 #endif /* __linux__ */
1059 
1060 #endif /* _WIN32 */
1061 
1062 /* Correlation between real and virtual time is always going to be
1063    fairly approximate, so ignore small variation.
1064    When the guest is idle real and virtual time will be aligned in
1065    the IO wait loop.  */
1066 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
1067 
icount_adjust(void)1068 static void icount_adjust(void)
1069 {
1070     int64_t cur_time;
1071     int64_t cur_icount;
1072     int64_t delta;
1073     static int64_t last_delta;
1074     /* If the VM is not running, then do nothing.  */
1075     if (!vm_running)
1076         return;
1077 
1078     cur_time = cpu_get_clock();
1079     cur_icount = qemu_get_clock(vm_clock);
1080     delta = cur_icount - cur_time;
1081     /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
1082     if (delta > 0
1083         && last_delta + ICOUNT_WOBBLE < delta * 2
1084         && icount_time_shift > 0) {
1085         /* The guest is getting too far ahead.  Slow time down.  */
1086         icount_time_shift--;
1087     }
1088     if (delta < 0
1089         && last_delta - ICOUNT_WOBBLE > delta * 2
1090         && icount_time_shift < MAX_ICOUNT_SHIFT) {
1091         /* The guest is getting too far behind.  Speed time up.  */
1092         icount_time_shift++;
1093     }
1094     last_delta = delta;
1095     qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1096 }
1097 
icount_adjust_rt(void * opaque)1098 static void icount_adjust_rt(void * opaque)
1099 {
1100     qemu_mod_timer(icount_rt_timer,
1101                    qemu_get_clock(rt_clock) + 1000);
1102     icount_adjust();
1103 }
1104 
icount_adjust_vm(void * opaque)1105 static void icount_adjust_vm(void * opaque)
1106 {
1107     qemu_mod_timer(icount_vm_timer,
1108                    qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1109     icount_adjust();
1110 }
1111 
init_icount_adjust(void)1112 static void init_icount_adjust(void)
1113 {
1114     /* Have both realtime and virtual time triggers for speed adjustment.
1115        The realtime trigger catches emulated time passing too slowly,
1116        the virtual time trigger catches emulated time passing too fast.
1117        Realtime triggers occur even when idle, so use them less frequently
1118        than VM triggers.  */
1119     icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1120     qemu_mod_timer(icount_rt_timer,
1121                    qemu_get_clock(rt_clock) + 1000);
1122     icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1123     qemu_mod_timer(icount_vm_timer,
1124                    qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1125 }
1126 
1127 static struct qemu_alarm_timer alarm_timers[] = {
1128 #ifndef _WIN32
1129 #ifdef __linux__
1130     {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1131      dynticks_stop_timer, dynticks_rearm_timer, NULL},
1132     /* HPET - if available - is preferred */
1133     {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1134     /* ...otherwise try RTC */
1135     {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1136 #endif
1137     {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1138 #else
1139     {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1140      win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1141     {"win32", 0, win32_start_timer,
1142      win32_stop_timer, NULL, &alarm_win32_data},
1143 #endif
1144     {NULL, 0, NULL, NULL, NULL, NULL}
1145 };
1146 
show_available_alarms(void)1147 static void show_available_alarms(void)
1148 {
1149     int i;
1150 
1151     printf("Available alarm timers, in order of precedence:\n");
1152     for (i = 0; alarm_timers[i].name; i++)
1153         printf("%s\n", alarm_timers[i].name);
1154 }
1155 
configure_alarms(char const * opt)1156 static void configure_alarms(char const *opt)
1157 {
1158     int i;
1159     int cur = 0;
1160     int count = ARRAY_SIZE(alarm_timers) - 1;
1161     char *arg;
1162     char *name;
1163     struct qemu_alarm_timer tmp;
1164 
1165     if (!strcmp(opt, "?")) {
1166         show_available_alarms();
1167         exit(0);
1168     }
1169 
1170     arg = strdup(opt);
1171 
1172     /* Reorder the array */
1173     name = strtok(arg, ",");
1174     while (name) {
1175         for (i = 0; i < count && alarm_timers[i].name; i++) {
1176             if (!strcmp(alarm_timers[i].name, name))
1177                 break;
1178         }
1179 
1180         if (i == count) {
1181             fprintf(stderr, "Unknown clock %s\n", name);
1182             goto next;
1183         }
1184 
1185         if (i < cur)
1186             /* Ignore */
1187             goto next;
1188 
1189 	/* Swap */
1190         tmp = alarm_timers[i];
1191         alarm_timers[i] = alarm_timers[cur];
1192         alarm_timers[cur] = tmp;
1193 
1194         cur++;
1195 next:
1196         name = strtok(NULL, ",");
1197     }
1198 
1199     free(arg);
1200 
1201     if (cur) {
1202         /* Disable remaining timers */
1203         for (i = cur; i < count; i++)
1204             alarm_timers[i].name = NULL;
1205     } else {
1206         show_available_alarms();
1207         exit(1);
1208     }
1209 }
1210 
1211 QEMUClock *rt_clock;
1212 QEMUClock *vm_clock;
1213 
1214 static QEMUTimer *active_timers[2];
1215 
qemu_new_clock(int type)1216 static QEMUClock *qemu_new_clock(int type)
1217 {
1218     QEMUClock *clock;
1219     clock = qemu_mallocz(sizeof(QEMUClock));
1220     clock->type = type;
1221     return clock;
1222 }
1223 
qemu_new_timer(QEMUClock * clock,QEMUTimerCB * cb,void * opaque)1224 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1225 {
1226     QEMUTimer *ts;
1227 
1228     ts = qemu_mallocz(sizeof(QEMUTimer));
1229     ts->clock = clock;
1230     ts->cb = cb;
1231     ts->opaque = opaque;
1232     return ts;
1233 }
1234 
qemu_free_timer(QEMUTimer * ts)1235 void qemu_free_timer(QEMUTimer *ts)
1236 {
1237     qemu_free(ts);
1238 }
1239 
1240 /* stop a timer, but do not dealloc it */
qemu_del_timer(QEMUTimer * ts)1241 void qemu_del_timer(QEMUTimer *ts)
1242 {
1243     QEMUTimer **pt, *t;
1244 
1245     /* NOTE: this code must be signal safe because
1246        qemu_timer_expired() can be called from a signal. */
1247     pt = &active_timers[ts->clock->type];
1248     for(;;) {
1249         t = *pt;
1250         if (!t)
1251             break;
1252         if (t == ts) {
1253             *pt = t->next;
1254             break;
1255         }
1256         pt = &t->next;
1257     }
1258 }
1259 
1260 /* modify the current timer so that it will be fired when current_time
1261    >= expire_time. The corresponding callback will be called. */
qemu_mod_timer(QEMUTimer * ts,int64_t expire_time)1262 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1263 {
1264     QEMUTimer **pt, *t;
1265 
1266     qemu_del_timer(ts);
1267 
1268     /* add the timer in the sorted list */
1269     /* NOTE: this code must be signal safe because
1270        qemu_timer_expired() can be called from a signal. */
1271     pt = &active_timers[ts->clock->type];
1272     for(;;) {
1273         t = *pt;
1274         if (!t)
1275             break;
1276         if (t->expire_time > expire_time)
1277             break;
1278         pt = &t->next;
1279     }
1280     ts->expire_time = expire_time;
1281     ts->next = *pt;
1282     *pt = ts;
1283 
1284     /* Rearm if necessary  */
1285     if (pt == &active_timers[ts->clock->type]) {
1286         if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1287             qemu_rearm_alarm_timer(alarm_timer);
1288         }
1289         /* Interrupt execution to force deadline recalculation.  */
1290         if (use_icount)
1291             qemu_notify_event();
1292     }
1293 }
1294 
qemu_timer_pending(QEMUTimer * ts)1295 int qemu_timer_pending(QEMUTimer *ts)
1296 {
1297     QEMUTimer *t;
1298     for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1299         if (t == ts)
1300             return 1;
1301     }
1302     return 0;
1303 }
1304 
qemu_timer_expired(QEMUTimer * timer_head,int64_t current_time)1305 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1306 {
1307     if (!timer_head)
1308         return 0;
1309     return (timer_head->expire_time <= current_time);
1310 }
1311 
qemu_run_timers(QEMUTimer ** ptimer_head,int64_t current_time)1312 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1313 {
1314     QEMUTimer *ts;
1315 
1316     for(;;) {
1317         ts = *ptimer_head;
1318         if (!ts || ts->expire_time > current_time)
1319             break;
1320         /* remove timer from the list before calling the callback */
1321         *ptimer_head = ts->next;
1322         ts->next = NULL;
1323 
1324         /* run the callback (the timer list can be modified) */
1325         ts->cb(ts->opaque);
1326     }
1327 }
1328 
qemu_get_clock(QEMUClock * clock)1329 int64_t qemu_get_clock(QEMUClock *clock)
1330 {
1331     switch(clock->type) {
1332     case QEMU_TIMER_REALTIME:
1333         return get_clock() / 1000000;
1334     default:
1335     case QEMU_TIMER_VIRTUAL:
1336         if (use_icount) {
1337             return cpu_get_icount();
1338         } else {
1339             return cpu_get_clock();
1340         }
1341     }
1342 }
1343 
init_timers(void)1344 static void init_timers(void)
1345 {
1346     init_get_clock();
1347     ticks_per_sec = QEMU_TIMER_BASE;
1348     rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1349     vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1350 }
1351 
1352 /* save a timer */
qemu_put_timer(QEMUFile * f,QEMUTimer * ts)1353 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1354 {
1355     uint64_t expire_time;
1356 
1357     if (qemu_timer_pending(ts)) {
1358         expire_time = ts->expire_time;
1359     } else {
1360         expire_time = -1;
1361     }
1362     qemu_put_be64(f, expire_time);
1363 }
1364 
qemu_get_timer(QEMUFile * f,QEMUTimer * ts)1365 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1366 {
1367     uint64_t expire_time;
1368 
1369     expire_time = qemu_get_be64(f);
1370     if (expire_time != -1) {
1371         qemu_mod_timer(ts, expire_time);
1372     } else {
1373         qemu_del_timer(ts);
1374     }
1375 }
1376 
timer_save(QEMUFile * f,void * opaque)1377 static void timer_save(QEMUFile *f, void *opaque)
1378 {
1379     if (cpu_ticks_enabled) {
1380         hw_error("cannot save state if virtual timers are running");
1381     }
1382     qemu_put_be64(f, cpu_ticks_offset);
1383     qemu_put_be64(f, ticks_per_sec);
1384     qemu_put_be64(f, cpu_clock_offset);
1385 }
1386 
timer_load(QEMUFile * f,void * opaque,int version_id)1387 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1388 {
1389     if (version_id != 1 && version_id != 2)
1390         return -EINVAL;
1391     if (cpu_ticks_enabled) {
1392         return -EINVAL;
1393     }
1394     cpu_ticks_offset=qemu_get_be64(f);
1395     ticks_per_sec=qemu_get_be64(f);
1396     if (version_id == 2) {
1397         cpu_clock_offset=qemu_get_be64(f);
1398     }
1399     return 0;
1400 }
1401 
1402 static void qemu_event_increment(void);
1403 
1404 #ifdef _WIN32
host_alarm_handler(UINT uTimerID,UINT uMsg,DWORD_PTR dwUser,DWORD_PTR dw1,DWORD_PTR dw2)1405 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1406                                         DWORD_PTR dwUser, DWORD_PTR dw1,
1407                                         DWORD_PTR dw2)
1408 #else
1409 static void host_alarm_handler(int host_signum)
1410 #endif
1411 {
1412 #if 0
1413 #define DISP_FREQ 1000
1414     {
1415         static int64_t delta_min = INT64_MAX;
1416         static int64_t delta_max, delta_cum, last_clock, delta, ti;
1417         static int count;
1418         ti = qemu_get_clock(vm_clock);
1419         if (last_clock != 0) {
1420             delta = ti - last_clock;
1421             if (delta < delta_min)
1422                 delta_min = delta;
1423             if (delta > delta_max)
1424                 delta_max = delta;
1425             delta_cum += delta;
1426             if (++count == DISP_FREQ) {
1427                 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1428                        muldiv64(delta_min, 1000000, ticks_per_sec),
1429                        muldiv64(delta_max, 1000000, ticks_per_sec),
1430                        muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1431                        (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1432                 count = 0;
1433                 delta_min = INT64_MAX;
1434                 delta_max = 0;
1435                 delta_cum = 0;
1436             }
1437         }
1438         last_clock = ti;
1439     }
1440 #endif
1441     if (alarm_has_dynticks(alarm_timer) ||
1442         (!use_icount &&
1443             qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1444                                qemu_get_clock(vm_clock))) ||
1445         qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1446                            qemu_get_clock(rt_clock))) {
1447         qemu_event_increment();
1448         if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1449 
1450 #ifndef CONFIG_IOTHREAD
1451         if (next_cpu) {
1452             /* stop the currently executing cpu because a timer occured */
1453             cpu_exit(next_cpu);
1454 #ifdef CONFIG_KQEMU
1455             if (next_cpu->kqemu_enabled) {
1456                 kqemu_cpu_interrupt(next_cpu);
1457             }
1458 #endif
1459         }
1460 #endif
1461         timer_alarm_pending = 1;
1462         qemu_notify_event();
1463     }
1464 }
1465 
qemu_next_deadline(void)1466 static int64_t qemu_next_deadline(void)
1467 {
1468     int64_t delta;
1469 
1470     if (active_timers[QEMU_TIMER_VIRTUAL]) {
1471         delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1472                      qemu_get_clock(vm_clock);
1473     } else {
1474         /* To avoid problems with overflow limit this to 2^32.  */
1475         delta = INT32_MAX;
1476     }
1477 
1478     if (delta < 0)
1479         delta = 0;
1480 
1481     return delta;
1482 }
1483 
1484 #if defined(__linux__) || defined(_WIN32)
qemu_next_deadline_dyntick(void)1485 static uint64_t qemu_next_deadline_dyntick(void)
1486 {
1487     int64_t delta;
1488     int64_t rtdelta;
1489 
1490     if (use_icount)
1491         delta = INT32_MAX;
1492     else
1493         delta = (qemu_next_deadline() + 999) / 1000;
1494 
1495     if (active_timers[QEMU_TIMER_REALTIME]) {
1496         rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1497                  qemu_get_clock(rt_clock))*1000;
1498         if (rtdelta < delta)
1499             delta = rtdelta;
1500     }
1501 
1502     if (delta < MIN_TIMER_REARM_US)
1503         delta = MIN_TIMER_REARM_US;
1504 
1505     return delta;
1506 }
1507 #endif
1508 
1509 #ifndef _WIN32
1510 
1511 /* Sets a specific flag */
fcntl_setfl(int fd,int flag)1512 static int fcntl_setfl(int fd, int flag)
1513 {
1514     int flags;
1515 
1516     flags = fcntl(fd, F_GETFL);
1517     if (flags == -1)
1518         return -errno;
1519 
1520     if (fcntl(fd, F_SETFL, flags | flag) == -1)
1521         return -errno;
1522 
1523     return 0;
1524 }
1525 
1526 #if defined(__linux__)
1527 
1528 #define RTC_FREQ 1024
1529 
enable_sigio_timer(int fd)1530 static void enable_sigio_timer(int fd)
1531 {
1532     struct sigaction act;
1533 
1534     /* timer signal */
1535     sigfillset(&act.sa_mask);
1536     act.sa_flags = 0;
1537     act.sa_handler = host_alarm_handler;
1538 
1539     sigaction(SIGIO, &act, NULL);
1540     fcntl_setfl(fd, O_ASYNC);
1541     fcntl(fd, F_SETOWN, getpid());
1542 }
1543 
hpet_start_timer(struct qemu_alarm_timer * t)1544 static int hpet_start_timer(struct qemu_alarm_timer *t)
1545 {
1546     struct hpet_info info;
1547     int r, fd;
1548 
1549     fd = open("/dev/hpet", O_RDONLY);
1550     if (fd < 0)
1551         return -1;
1552 
1553     /* Set frequency */
1554     r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1555     if (r < 0) {
1556         fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1557                 "error, but for better emulation accuracy type:\n"
1558                 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1559         goto fail;
1560     }
1561 
1562     /* Check capabilities */
1563     r = ioctl(fd, HPET_INFO, &info);
1564     if (r < 0)
1565         goto fail;
1566 
1567     /* Enable periodic mode */
1568     r = ioctl(fd, HPET_EPI, 0);
1569     if (info.hi_flags && (r < 0))
1570         goto fail;
1571 
1572     /* Enable interrupt */
1573     r = ioctl(fd, HPET_IE_ON, 0);
1574     if (r < 0)
1575         goto fail;
1576 
1577     enable_sigio_timer(fd);
1578     t->priv = (void *)(long)fd;
1579 
1580     return 0;
1581 fail:
1582     close(fd);
1583     return -1;
1584 }
1585 
hpet_stop_timer(struct qemu_alarm_timer * t)1586 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1587 {
1588     int fd = (long)t->priv;
1589 
1590     close(fd);
1591 }
1592 
rtc_start_timer(struct qemu_alarm_timer * t)1593 static int rtc_start_timer(struct qemu_alarm_timer *t)
1594 {
1595     int rtc_fd;
1596     unsigned long current_rtc_freq = 0;
1597 
1598     TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1599     if (rtc_fd < 0)
1600         return -1;
1601     ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1602     if (current_rtc_freq != RTC_FREQ &&
1603         ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1604         fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1605                 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1606                 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1607         goto fail;
1608     }
1609     if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1610     fail:
1611         close(rtc_fd);
1612         return -1;
1613     }
1614 
1615     enable_sigio_timer(rtc_fd);
1616 
1617     t->priv = (void *)(long)rtc_fd;
1618 
1619     return 0;
1620 }
1621 
rtc_stop_timer(struct qemu_alarm_timer * t)1622 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1623 {
1624     int rtc_fd = (long)t->priv;
1625 
1626     close(rtc_fd);
1627 }
1628 
dynticks_start_timer(struct qemu_alarm_timer * t)1629 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1630 {
1631     struct sigevent ev;
1632     timer_t host_timer;
1633     struct sigaction act;
1634 
1635     sigfillset(&act.sa_mask);
1636     act.sa_flags = 0;
1637     act.sa_handler = host_alarm_handler;
1638 
1639     sigaction(SIGALRM, &act, NULL);
1640 
1641     /*
1642      * Initialize ev struct to 0 to avoid valgrind complaining
1643      * about uninitialized data in timer_create call
1644      */
1645     memset(&ev, 0, sizeof(ev));
1646     ev.sigev_value.sival_int = 0;
1647     ev.sigev_notify = SIGEV_SIGNAL;
1648     ev.sigev_signo = SIGALRM;
1649 
1650     if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1651         perror("timer_create");
1652 
1653         /* disable dynticks */
1654         fprintf(stderr, "Dynamic Ticks disabled\n");
1655 
1656         return -1;
1657     }
1658 
1659     t->priv = (void *)(long)host_timer;
1660 
1661     return 0;
1662 }
1663 
dynticks_stop_timer(struct qemu_alarm_timer * t)1664 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1665 {
1666     timer_t host_timer = (timer_t)(long)t->priv;
1667 
1668     timer_delete(host_timer);
1669 }
1670 
dynticks_rearm_timer(struct qemu_alarm_timer * t)1671 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1672 {
1673     timer_t host_timer = (timer_t)(long)t->priv;
1674     struct itimerspec timeout;
1675     int64_t nearest_delta_us = INT64_MAX;
1676     int64_t current_us;
1677 
1678     if (!active_timers[QEMU_TIMER_REALTIME] &&
1679                 !active_timers[QEMU_TIMER_VIRTUAL])
1680         return;
1681 
1682     nearest_delta_us = qemu_next_deadline_dyntick();
1683 
1684     /* check whether a timer is already running */
1685     if (timer_gettime(host_timer, &timeout)) {
1686         perror("gettime");
1687         fprintf(stderr, "Internal timer error: aborting\n");
1688         exit(1);
1689     }
1690     current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1691     if (current_us && current_us <= nearest_delta_us)
1692         return;
1693 
1694     timeout.it_interval.tv_sec = 0;
1695     timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1696     timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1697     timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1698     if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1699         perror("settime");
1700         fprintf(stderr, "Internal timer error: aborting\n");
1701         exit(1);
1702     }
1703 }
1704 
1705 #endif /* defined(__linux__) */
1706 
unix_start_timer(struct qemu_alarm_timer * t)1707 static int unix_start_timer(struct qemu_alarm_timer *t)
1708 {
1709     struct sigaction act;
1710     struct itimerval itv;
1711     int err;
1712 
1713     /* timer signal */
1714     sigfillset(&act.sa_mask);
1715     act.sa_flags = 0;
1716     act.sa_handler = host_alarm_handler;
1717 
1718     sigaction(SIGALRM, &act, NULL);
1719 
1720     itv.it_interval.tv_sec = 0;
1721     /* for i386 kernel 2.6 to get 1 ms */
1722     itv.it_interval.tv_usec = 999;
1723     itv.it_value.tv_sec = 0;
1724     itv.it_value.tv_usec = 10 * 1000;
1725 
1726     err = setitimer(ITIMER_REAL, &itv, NULL);
1727     if (err)
1728         return -1;
1729 
1730     return 0;
1731 }
1732 
unix_stop_timer(struct qemu_alarm_timer * t)1733 static void unix_stop_timer(struct qemu_alarm_timer *t)
1734 {
1735     struct itimerval itv;
1736 
1737     memset(&itv, 0, sizeof(itv));
1738     setitimer(ITIMER_REAL, &itv, NULL);
1739 }
1740 
1741 #endif /* !defined(_WIN32) */
1742 
1743 
1744 #ifdef _WIN32
1745 
win32_start_timer(struct qemu_alarm_timer * t)1746 static int win32_start_timer(struct qemu_alarm_timer *t)
1747 {
1748     TIMECAPS tc;
1749     struct qemu_alarm_win32 *data = t->priv;
1750     UINT flags;
1751 
1752     memset(&tc, 0, sizeof(tc));
1753     timeGetDevCaps(&tc, sizeof(tc));
1754 
1755     if (data->period < tc.wPeriodMin)
1756         data->period = tc.wPeriodMin;
1757 
1758     timeBeginPeriod(data->period);
1759 
1760     flags = TIME_CALLBACK_FUNCTION;
1761     if (alarm_has_dynticks(t))
1762         flags |= TIME_ONESHOT;
1763     else
1764         flags |= TIME_PERIODIC;
1765 
1766     data->timerId = timeSetEvent(1,         // interval (ms)
1767                         data->period,       // resolution
1768                         host_alarm_handler, // function
1769                         (DWORD)t,           // parameter
1770                         flags);
1771 
1772     if (!data->timerId) {
1773         perror("Failed to initialize win32 alarm timer");
1774         timeEndPeriod(data->period);
1775         return -1;
1776     }
1777 
1778     return 0;
1779 }
1780 
win32_stop_timer(struct qemu_alarm_timer * t)1781 static void win32_stop_timer(struct qemu_alarm_timer *t)
1782 {
1783     struct qemu_alarm_win32 *data = t->priv;
1784 
1785     timeKillEvent(data->timerId);
1786     timeEndPeriod(data->period);
1787 }
1788 
win32_rearm_timer(struct qemu_alarm_timer * t)1789 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1790 {
1791     struct qemu_alarm_win32 *data = t->priv;
1792     uint64_t nearest_delta_us;
1793 
1794     if (!active_timers[QEMU_TIMER_REALTIME] &&
1795                 !active_timers[QEMU_TIMER_VIRTUAL])
1796         return;
1797 
1798     nearest_delta_us = qemu_next_deadline_dyntick();
1799     nearest_delta_us /= 1000;
1800 
1801     timeKillEvent(data->timerId);
1802 
1803     data->timerId = timeSetEvent(1,
1804                         data->period,
1805                         host_alarm_handler,
1806                         (DWORD)t,
1807                         TIME_ONESHOT | TIME_PERIODIC);
1808 
1809     if (!data->timerId) {
1810         perror("Failed to re-arm win32 alarm timer");
1811 
1812         timeEndPeriod(data->period);
1813         exit(1);
1814     }
1815 }
1816 
1817 #endif /* _WIN32 */
1818 
init_timer_alarm(void)1819 static int init_timer_alarm(void)
1820 {
1821     struct qemu_alarm_timer *t = NULL;
1822     int i, err = -1;
1823 
1824     for (i = 0; alarm_timers[i].name; i++) {
1825         t = &alarm_timers[i];
1826 
1827         err = t->start(t);
1828         if (!err)
1829             break;
1830     }
1831 
1832     if (err) {
1833         err = -ENOENT;
1834         goto fail;
1835     }
1836 
1837     alarm_timer = t;
1838 
1839     return 0;
1840 
1841 fail:
1842     return err;
1843 }
1844 
quit_timers(void)1845 static void quit_timers(void)
1846 {
1847     alarm_timer->stop(alarm_timer);
1848     alarm_timer = NULL;
1849 }
1850 
1851 /***********************************************************/
1852 /* host time/date access */
qemu_get_timedate(struct tm * tm,int offset)1853 void qemu_get_timedate(struct tm *tm, int offset)
1854 {
1855     time_t ti;
1856     struct tm *ret;
1857 
1858     time(&ti);
1859     ti += offset;
1860     if (rtc_date_offset == -1) {
1861         if (rtc_utc)
1862             ret = gmtime(&ti);
1863         else
1864             ret = localtime(&ti);
1865     } else {
1866         ti -= rtc_date_offset;
1867         ret = gmtime(&ti);
1868     }
1869 
1870     memcpy(tm, ret, sizeof(struct tm));
1871 }
1872 
qemu_timedate_diff(struct tm * tm)1873 int qemu_timedate_diff(struct tm *tm)
1874 {
1875     time_t seconds;
1876 
1877     if (rtc_date_offset == -1)
1878         if (rtc_utc)
1879             seconds = mktimegm(tm);
1880         else
1881             seconds = mktime(tm);
1882     else
1883         seconds = mktimegm(tm) + rtc_date_offset;
1884 
1885     return seconds - time(NULL);
1886 }
1887 
1888 
1889 #ifdef CONFIG_TRACE
1890 static int tbflush_requested;
1891 static int exit_requested;
1892 
start_tracing()1893 void start_tracing()
1894 {
1895   if (trace_filename == NULL)
1896     return;
1897   if (!tracing) {
1898     fprintf(stderr,"-- start tracing --\n");
1899     start_time = Now();
1900   }
1901   tracing = 1;
1902   tbflush_requested = 1;
1903   qemu_notify_event();
1904 }
1905 
stop_tracing()1906 void stop_tracing()
1907 {
1908   if (trace_filename == NULL)
1909     return;
1910   if (tracing) {
1911     end_time = Now();
1912     elapsed_usecs += end_time - start_time;
1913     fprintf(stderr,"-- stop tracing --\n");
1914   }
1915   tracing = 0;
1916   tbflush_requested = 1;
1917   qemu_notify_event();
1918 }
1919 
1920 #ifndef _WIN32
1921 /* This is the handler for the SIGUSR1 and SIGUSR2 signals.
1922  * SIGUSR1 turns tracing on.  SIGUSR2 turns tracing off.
1923  */
sigusr_handler(int sig)1924 void sigusr_handler(int sig)
1925 {
1926   if (sig == SIGUSR1)
1927     start_tracing();
1928   else
1929     stop_tracing();
1930 }
1931 #endif
1932 
1933 /* This is the handler to catch control-C so that we can exit cleanly.
1934  * This is needed when tracing to flush the buffers to disk.
1935  */
sigint_handler(int sig)1936 void sigint_handler(int sig)
1937 {
1938   exit_requested = 1;
1939   qemu_notify_event();
1940 }
1941 #endif /* CONFIG_TRACE */
1942 
1943 
get_param_value(char * buf,int buf_size,const char * tag,const char * str)1944 int get_param_value(char *buf, int buf_size,
1945                     const char *tag, const char *str)
1946 {
1947     const char *p;
1948     char option[128];
1949 
1950     p = str;
1951     for(;;) {
1952         p = get_opt_name(option, sizeof(option), p, '=');
1953         if (*p != '=')
1954             break;
1955         p++;
1956         if (!strcmp(tag, option)) {
1957             (void)get_opt_value(buf, buf_size, p);
1958             return strlen(buf);
1959         } else {
1960             p = get_opt_value(NULL, 0, p);
1961         }
1962         if (*p != ',')
1963             break;
1964         p++;
1965     }
1966     return 0;
1967 }
1968 
check_params(char * buf,int buf_size,const char * const * params,const char * str)1969 int check_params(char *buf, int buf_size,
1970                  const char * const *params, const char *str)
1971 {
1972     const char *p;
1973     int i;
1974 
1975     p = str;
1976     while (*p != '\0') {
1977         p = get_opt_name(buf, buf_size, p, '=');
1978         if (*p != '=') {
1979             return -1;
1980         }
1981         p++;
1982         for (i = 0; params[i] != NULL; i++) {
1983             if (!strcmp(params[i], buf)) {
1984                 break;
1985             }
1986         }
1987         if (params[i] == NULL) {
1988             return -1;
1989         }
1990         p = get_opt_value(NULL, 0, p);
1991         if (*p != ',') {
1992             break;
1993         }
1994         p++;
1995     }
1996     return 0;
1997 }
1998 
1999 /***********************************************************/
2000 /* Bluetooth support */
2001 static int nb_hcis;
2002 static int cur_hci;
2003 static struct HCIInfo *hci_table[MAX_NICS];
2004 
2005 static struct bt_vlan_s {
2006     struct bt_scatternet_s net;
2007     int id;
2008     struct bt_vlan_s *next;
2009 } *first_bt_vlan;
2010 
2011 /* find or alloc a new bluetooth "VLAN" */
qemu_find_bt_vlan(int id)2012 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
2013 {
2014     struct bt_vlan_s **pvlan, *vlan;
2015     for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
2016         if (vlan->id == id)
2017             return &vlan->net;
2018     }
2019     vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
2020     vlan->id = id;
2021     pvlan = &first_bt_vlan;
2022     while (*pvlan != NULL)
2023         pvlan = &(*pvlan)->next;
2024     *pvlan = vlan;
2025     return &vlan->net;
2026 }
2027 
null_hci_send(struct HCIInfo * hci,const uint8_t * data,int len)2028 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
2029 {
2030 }
2031 
null_hci_addr_set(struct HCIInfo * hci,const uint8_t * bd_addr)2032 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
2033 {
2034     return -ENOTSUP;
2035 }
2036 
2037 static struct HCIInfo null_hci = {
2038     .cmd_send = null_hci_send,
2039     .sco_send = null_hci_send,
2040     .acl_send = null_hci_send,
2041     .bdaddr_set = null_hci_addr_set,
2042 };
2043 
qemu_next_hci(void)2044 struct HCIInfo *qemu_next_hci(void)
2045 {
2046     if (cur_hci == nb_hcis)
2047         return &null_hci;
2048 
2049     return hci_table[cur_hci++];
2050 }
2051 
hci_init(const char * str)2052 static struct HCIInfo *hci_init(const char *str)
2053 {
2054     char *endp;
2055     struct bt_scatternet_s *vlan = 0;
2056 
2057     if (!strcmp(str, "null"))
2058         /* null */
2059         return &null_hci;
2060     else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2061         /* host[:hciN] */
2062         return bt_host_hci(str[4] ? str + 5 : "hci0");
2063     else if (!strncmp(str, "hci", 3)) {
2064         /* hci[,vlan=n] */
2065         if (str[3]) {
2066             if (!strncmp(str + 3, ",vlan=", 6)) {
2067                 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2068                 if (*endp)
2069                     vlan = 0;
2070             }
2071         } else
2072             vlan = qemu_find_bt_vlan(0);
2073         if (vlan)
2074            return bt_new_hci(vlan);
2075     }
2076 
2077     fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2078 
2079     return 0;
2080 }
2081 
bt_hci_parse(const char * str)2082 static int bt_hci_parse(const char *str)
2083 {
2084     struct HCIInfo *hci;
2085     bdaddr_t bdaddr;
2086 
2087     if (nb_hcis >= MAX_NICS) {
2088         fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2089         return -1;
2090     }
2091 
2092     hci = hci_init(str);
2093     if (!hci)
2094         return -1;
2095 
2096     bdaddr.b[0] = 0x52;
2097     bdaddr.b[1] = 0x54;
2098     bdaddr.b[2] = 0x00;
2099     bdaddr.b[3] = 0x12;
2100     bdaddr.b[4] = 0x34;
2101     bdaddr.b[5] = 0x56 + nb_hcis;
2102     hci->bdaddr_set(hci, bdaddr.b);
2103 
2104     hci_table[nb_hcis++] = hci;
2105 
2106     return 0;
2107 }
2108 
bt_vhci_add(int vlan_id)2109 static void bt_vhci_add(int vlan_id)
2110 {
2111     struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2112 
2113     if (!vlan->slave)
2114         fprintf(stderr, "qemu: warning: adding a VHCI to "
2115                         "an empty scatternet %i\n", vlan_id);
2116 
2117     bt_vhci_init(bt_new_hci(vlan));
2118 }
2119 
bt_device_add(const char * opt)2120 static struct bt_device_s *bt_device_add(const char *opt)
2121 {
2122     struct bt_scatternet_s *vlan;
2123     int vlan_id = 0;
2124     char *endp = strstr(opt, ",vlan=");
2125     int len = (endp ? endp - opt : strlen(opt)) + 1;
2126     char devname[10];
2127 
2128     pstrcpy(devname, MIN(sizeof(devname), len), opt);
2129 
2130     if (endp) {
2131         vlan_id = strtol(endp + 6, &endp, 0);
2132         if (*endp) {
2133             fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2134             return 0;
2135         }
2136     }
2137 
2138     vlan = qemu_find_bt_vlan(vlan_id);
2139 
2140     if (!vlan->slave)
2141         fprintf(stderr, "qemu: warning: adding a slave device to "
2142                         "an empty scatternet %i\n", vlan_id);
2143 
2144     if (!strcmp(devname, "keyboard"))
2145         return bt_keyboard_init(vlan);
2146 
2147     fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2148     return 0;
2149 }
2150 
bt_parse(const char * opt)2151 static int bt_parse(const char *opt)
2152 {
2153     const char *endp, *p;
2154     int vlan;
2155 
2156     if (strstart(opt, "hci", &endp)) {
2157         if (!*endp || *endp == ',') {
2158             if (*endp)
2159                 if (!strstart(endp, ",vlan=", 0))
2160                     opt = endp + 1;
2161 
2162             return bt_hci_parse(opt);
2163        }
2164     } else if (strstart(opt, "vhci", &endp)) {
2165         if (!*endp || *endp == ',') {
2166             if (*endp) {
2167                 if (strstart(endp, ",vlan=", &p)) {
2168                     vlan = strtol(p, (char **) &endp, 0);
2169                     if (*endp) {
2170                         fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2171                         return 1;
2172                     }
2173                 } else {
2174                     fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2175                     return 1;
2176                 }
2177             } else
2178                 vlan = 0;
2179 
2180             bt_vhci_add(vlan);
2181             return 0;
2182         }
2183     } else if (strstart(opt, "device:", &endp))
2184         return !bt_device_add(endp);
2185 
2186     fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2187     return 1;
2188 }
2189 
2190 /***********************************************************/
2191 /* QEMU Block devices */
2192 
2193 #define HD_ALIAS "index=%d,media=disk"
2194 #define CDROM_ALIAS "index=2,media=cdrom"
2195 #define FD_ALIAS "index=%d,if=floppy"
2196 #define PFLASH_ALIAS "if=pflash"
2197 #define MTD_ALIAS "if=mtd"
2198 #define SD_ALIAS "index=0,if=sd"
2199 
drive_opt_get_free_idx(void)2200 static int drive_opt_get_free_idx(void)
2201 {
2202     int index;
2203 
2204     for (index = 0; index < MAX_DRIVES; index++)
2205         if (!drives_opt[index].used) {
2206             drives_opt[index].used = 1;
2207             return index;
2208         }
2209 
2210     return -1;
2211 }
2212 
drive_get_free_idx(void)2213 static int drive_get_free_idx(void)
2214 {
2215     int index;
2216 
2217     for (index = 0; index < MAX_DRIVES; index++)
2218         if (!drives_table[index].used) {
2219             drives_table[index].used = 1;
2220             return index;
2221         }
2222 
2223     return -1;
2224 }
2225 
drive_add(const char * file,const char * fmt,...)2226 int drive_add(const char *file, const char *fmt, ...)
2227 {
2228     va_list ap;
2229     int index = drive_opt_get_free_idx();
2230 
2231     if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2232         fprintf(stderr, "qemu: too many drives\n");
2233         return -1;
2234     }
2235 
2236     drives_opt[index].file = file;
2237     va_start(ap, fmt);
2238     vsnprintf(drives_opt[index].opt,
2239               sizeof(drives_opt[0].opt), fmt, ap);
2240     va_end(ap);
2241 
2242     nb_drives_opt++;
2243     return index;
2244 }
2245 
drive_remove(int index)2246 void drive_remove(int index)
2247 {
2248     drives_opt[index].used = 0;
2249     nb_drives_opt--;
2250 }
2251 
drive_get_index(BlockInterfaceType type,int bus,int unit)2252 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2253 {
2254     int index;
2255 
2256     /* seek interface, bus and unit */
2257 
2258     for (index = 0; index < MAX_DRIVES; index++)
2259         if (drives_table[index].type == type &&
2260 	    drives_table[index].bus == bus &&
2261 	    drives_table[index].unit == unit &&
2262 	    drives_table[index].used)
2263         return index;
2264 
2265     return -1;
2266 }
2267 
drive_get_max_bus(BlockInterfaceType type)2268 int drive_get_max_bus(BlockInterfaceType type)
2269 {
2270     int max_bus;
2271     int index;
2272 
2273     max_bus = -1;
2274     for (index = 0; index < nb_drives; index++) {
2275         if(drives_table[index].type == type &&
2276            drives_table[index].bus > max_bus)
2277             max_bus = drives_table[index].bus;
2278     }
2279     return max_bus;
2280 }
2281 
drive_get_serial(BlockDriverState * bdrv)2282 const char *drive_get_serial(BlockDriverState *bdrv)
2283 {
2284     int index;
2285 
2286     for (index = 0; index < nb_drives; index++)
2287         if (drives_table[index].bdrv == bdrv)
2288             return drives_table[index].serial;
2289 
2290     return "\0";
2291 }
2292 
drive_get_onerror(BlockDriverState * bdrv)2293 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2294 {
2295     int index;
2296 
2297     for (index = 0; index < nb_drives; index++)
2298         if (drives_table[index].bdrv == bdrv)
2299             return drives_table[index].onerror;
2300 
2301     return BLOCK_ERR_STOP_ENOSPC;
2302 }
2303 
bdrv_format_print(void * opaque,const char * name)2304 static void bdrv_format_print(void *opaque, const char *name)
2305 {
2306     fprintf(stderr, " %s", name);
2307 }
2308 
drive_uninit(BlockDriverState * bdrv)2309 void drive_uninit(BlockDriverState *bdrv)
2310 {
2311     int i;
2312 
2313     for (i = 0; i < MAX_DRIVES; i++)
2314         if (drives_table[i].bdrv == bdrv) {
2315             drives_table[i].bdrv = NULL;
2316             drives_table[i].used = 0;
2317             drive_remove(drives_table[i].drive_opt_idx);
2318             nb_drives--;
2319             break;
2320         }
2321 }
2322 
drive_init(struct drive_opt * arg,int snapshot,void * opaque)2323 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2324 {
2325     char buf[128];
2326     char file[1024];
2327     char devname[128];
2328     char serial[21];
2329     const char *mediastr = "";
2330     BlockInterfaceType type;
2331     enum { MEDIA_DISK, MEDIA_CDROM } media;
2332     int bus_id, unit_id;
2333     int cyls, heads, secs, translation;
2334     BlockDriverState *bdrv;
2335     BlockDriver *drv = NULL;
2336     QEMUMachine *machine = opaque;
2337     int max_devs;
2338     int index;
2339     int cache;
2340     int bdrv_flags, onerror;
2341     int drives_table_idx;
2342     char *str = arg->opt;
2343     static const char * const params[] = { "bus", "unit", "if", "index",
2344                                            "cyls", "heads", "secs", "trans",
2345                                            "media", "snapshot", "file",
2346                                            "cache", "format", "serial", "werror",
2347                                            NULL };
2348 
2349     if (check_params(buf, sizeof(buf), params, str) < 0) {
2350          fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2351                          buf, str);
2352          return -1;
2353     }
2354 
2355     file[0] = 0;
2356     cyls = heads = secs = 0;
2357     bus_id = 0;
2358     unit_id = -1;
2359     translation = BIOS_ATA_TRANSLATION_AUTO;
2360     index = -1;
2361     cache = 3;
2362 
2363     if (machine->use_scsi) {
2364         type = IF_SCSI;
2365         max_devs = MAX_SCSI_DEVS;
2366         pstrcpy(devname, sizeof(devname), "scsi");
2367     } else {
2368         type = IF_IDE;
2369         max_devs = MAX_IDE_DEVS;
2370         pstrcpy(devname, sizeof(devname), "ide");
2371     }
2372     media = MEDIA_DISK;
2373 
2374     /* extract parameters */
2375 
2376     if (get_param_value(buf, sizeof(buf), "bus", str)) {
2377         bus_id = strtol(buf, NULL, 0);
2378 	if (bus_id < 0) {
2379 	    fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2380 	    return -1;
2381 	}
2382     }
2383 
2384     if (get_param_value(buf, sizeof(buf), "unit", str)) {
2385         unit_id = strtol(buf, NULL, 0);
2386 	if (unit_id < 0) {
2387 	    fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2388 	    return -1;
2389 	}
2390     }
2391 
2392     if (get_param_value(buf, sizeof(buf), "if", str)) {
2393         pstrcpy(devname, sizeof(devname), buf);
2394         if (!strcmp(buf, "ide")) {
2395 	    type = IF_IDE;
2396             max_devs = MAX_IDE_DEVS;
2397         } else if (!strcmp(buf, "scsi")) {
2398 	    type = IF_SCSI;
2399             max_devs = MAX_SCSI_DEVS;
2400         } else if (!strcmp(buf, "floppy")) {
2401 	    type = IF_FLOPPY;
2402             max_devs = 0;
2403         } else if (!strcmp(buf, "pflash")) {
2404 	    type = IF_PFLASH;
2405             max_devs = 0;
2406 	} else if (!strcmp(buf, "mtd")) {
2407 	    type = IF_MTD;
2408             max_devs = 0;
2409 	} else if (!strcmp(buf, "sd")) {
2410 	    type = IF_SD;
2411             max_devs = 0;
2412         } else if (!strcmp(buf, "virtio")) {
2413             type = IF_VIRTIO;
2414             max_devs = 0;
2415 	} else if (!strcmp(buf, "xen")) {
2416 	    type = IF_XEN;
2417             max_devs = 0;
2418 	} else {
2419             fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2420             return -1;
2421 	}
2422     }
2423 
2424     if (get_param_value(buf, sizeof(buf), "index", str)) {
2425         index = strtol(buf, NULL, 0);
2426 	if (index < 0) {
2427 	    fprintf(stderr, "qemu: '%s' invalid index\n", str);
2428 	    return -1;
2429 	}
2430     }
2431 
2432     if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2433         cyls = strtol(buf, NULL, 0);
2434     }
2435 
2436     if (get_param_value(buf, sizeof(buf), "heads", str)) {
2437         heads = strtol(buf, NULL, 0);
2438     }
2439 
2440     if (get_param_value(buf, sizeof(buf), "secs", str)) {
2441         secs = strtol(buf, NULL, 0);
2442     }
2443 
2444     if (cyls || heads || secs) {
2445         if (cyls < 1 || cyls > 16383) {
2446             fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2447 	    return -1;
2448 	}
2449         if (heads < 1 || heads > 16) {
2450             fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2451 	    return -1;
2452 	}
2453         if (secs < 1 || secs > 63) {
2454             fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2455 	    return -1;
2456 	}
2457     }
2458 
2459     if (get_param_value(buf, sizeof(buf), "trans", str)) {
2460         if (!cyls) {
2461             fprintf(stderr,
2462                     "qemu: '%s' trans must be used with cyls,heads and secs\n",
2463                     str);
2464             return -1;
2465         }
2466         if (!strcmp(buf, "none"))
2467             translation = BIOS_ATA_TRANSLATION_NONE;
2468         else if (!strcmp(buf, "lba"))
2469             translation = BIOS_ATA_TRANSLATION_LBA;
2470         else if (!strcmp(buf, "auto"))
2471             translation = BIOS_ATA_TRANSLATION_AUTO;
2472 	else {
2473             fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2474 	    return -1;
2475 	}
2476     }
2477 
2478     if (get_param_value(buf, sizeof(buf), "media", str)) {
2479         if (!strcmp(buf, "disk")) {
2480 	    media = MEDIA_DISK;
2481 	} else if (!strcmp(buf, "cdrom")) {
2482             if (cyls || secs || heads) {
2483                 fprintf(stderr,
2484                         "qemu: '%s' invalid physical CHS format\n", str);
2485 	        return -1;
2486             }
2487 	    media = MEDIA_CDROM;
2488 	} else {
2489 	    fprintf(stderr, "qemu: '%s' invalid media\n", str);
2490 	    return -1;
2491 	}
2492     }
2493 
2494     if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2495         if (!strcmp(buf, "on"))
2496 	    snapshot = 1;
2497         else if (!strcmp(buf, "off"))
2498 	    snapshot = 0;
2499 	else {
2500 	    fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2501 	    return -1;
2502 	}
2503     }
2504 
2505     if (get_param_value(buf, sizeof(buf), "cache", str)) {
2506         if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2507             cache = 0;
2508         else if (!strcmp(buf, "writethrough"))
2509             cache = 1;
2510         else if (!strcmp(buf, "writeback"))
2511             cache = 2;
2512         else {
2513            fprintf(stderr, "qemu: invalid cache option\n");
2514            return -1;
2515         }
2516     }
2517 
2518     if (get_param_value(buf, sizeof(buf), "format", str)) {
2519        if (strcmp(buf, "?") == 0) {
2520             fprintf(stderr, "qemu: Supported formats:");
2521             bdrv_iterate_format(bdrv_format_print, NULL);
2522             fprintf(stderr, "\n");
2523 	    return -1;
2524         }
2525         drv = bdrv_find_format(buf);
2526         if (!drv) {
2527             fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2528             return -1;
2529         }
2530     }
2531 
2532     if (arg->file == NULL)
2533         get_param_value(file, sizeof(file), "file", str);
2534     else
2535         pstrcpy(file, sizeof(file), arg->file);
2536 
2537     if (!get_param_value(serial, sizeof(serial), "serial", str))
2538 	    memset(serial, 0,  sizeof(serial));
2539 
2540     onerror = BLOCK_ERR_STOP_ENOSPC;
2541     if (get_param_value(buf, sizeof(serial), "werror", str)) {
2542         if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2543             fprintf(stderr, "werror is no supported by this format\n");
2544             return -1;
2545         }
2546         if (!strcmp(buf, "ignore"))
2547             onerror = BLOCK_ERR_IGNORE;
2548         else if (!strcmp(buf, "enospc"))
2549             onerror = BLOCK_ERR_STOP_ENOSPC;
2550         else if (!strcmp(buf, "stop"))
2551             onerror = BLOCK_ERR_STOP_ANY;
2552         else if (!strcmp(buf, "report"))
2553             onerror = BLOCK_ERR_REPORT;
2554         else {
2555             fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2556             return -1;
2557         }
2558     }
2559 
2560     /* compute bus and unit according index */
2561 
2562     if (index != -1) {
2563         if (bus_id != 0 || unit_id != -1) {
2564             fprintf(stderr,
2565                     "qemu: '%s' index cannot be used with bus and unit\n", str);
2566             return -1;
2567         }
2568         if (max_devs == 0)
2569         {
2570             unit_id = index;
2571             bus_id = 0;
2572         } else {
2573             unit_id = index % max_devs;
2574             bus_id = index / max_devs;
2575         }
2576     }
2577 
2578     /* if user doesn't specify a unit_id,
2579      * try to find the first free
2580      */
2581 
2582     if (unit_id == -1) {
2583        unit_id = 0;
2584        while (drive_get_index(type, bus_id, unit_id) != -1) {
2585            unit_id++;
2586            if (max_devs && unit_id >= max_devs) {
2587                unit_id -= max_devs;
2588                bus_id++;
2589            }
2590        }
2591     }
2592 
2593     /* check unit id */
2594 
2595     if (max_devs && unit_id >= max_devs) {
2596         fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2597                         str, unit_id, max_devs - 1);
2598         return -1;
2599     }
2600 
2601     /*
2602      * ignore multiple definitions
2603      */
2604 
2605     if (drive_get_index(type, bus_id, unit_id) != -1)
2606         return -2;
2607 
2608     /* init */
2609 
2610     if (type == IF_IDE || type == IF_SCSI)
2611         mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2612     if (max_devs)
2613         snprintf(buf, sizeof(buf), "%s%i%s%i",
2614                  devname, bus_id, mediastr, unit_id);
2615     else
2616         snprintf(buf, sizeof(buf), "%s%s%i",
2617                  devname, mediastr, unit_id);
2618     bdrv = bdrv_new(buf);
2619     drives_table_idx = drive_get_free_idx();
2620     drives_table[drives_table_idx].bdrv = bdrv;
2621     drives_table[drives_table_idx].type = type;
2622     drives_table[drives_table_idx].bus = bus_id;
2623     drives_table[drives_table_idx].unit = unit_id;
2624     drives_table[drives_table_idx].onerror = onerror;
2625     drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2626     strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2627     nb_drives++;
2628 
2629     switch(type) {
2630     case IF_IDE:
2631     case IF_SCSI:
2632     case IF_XEN:
2633         switch(media) {
2634 	case MEDIA_DISK:
2635             if (cyls != 0) {
2636                 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2637                 bdrv_set_translation_hint(bdrv, translation);
2638             }
2639 	    break;
2640 	case MEDIA_CDROM:
2641             bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2642 	    break;
2643 	}
2644         break;
2645     case IF_SD:
2646         /* FIXME: This isn't really a floppy, but it's a reasonable
2647            approximation.  */
2648     case IF_FLOPPY:
2649         bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2650         break;
2651     case IF_PFLASH:
2652     case IF_MTD:
2653     case IF_VIRTIO:
2654         break;
2655     case IF_COUNT:
2656         abort();
2657     }
2658     if (!file[0])
2659         return -2;
2660     bdrv_flags = 0;
2661     if (snapshot) {
2662         bdrv_flags |= BDRV_O_SNAPSHOT;
2663         cache = 2; /* always use write-back with snapshot */
2664     }
2665     if (cache == 0) /* no caching */
2666         bdrv_flags |= BDRV_O_NOCACHE;
2667     else if (cache == 2) /* write-back */
2668         bdrv_flags |= BDRV_O_CACHE_WB;
2669     else if (cache == 3) /* not specified */
2670         bdrv_flags |= BDRV_O_CACHE_DEF;
2671     if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2672         fprintf(stderr, "qemu: could not open disk image %s\n",
2673                         file);
2674         return -1;
2675     }
2676     if (bdrv_key_required(bdrv))
2677         autostart = 0;
2678     return drives_table_idx;
2679 }
2680 
numa_add(const char * optarg)2681 static void numa_add(const char *optarg)
2682 {
2683     char option[128];
2684     char *endptr;
2685     unsigned long long value, endvalue;
2686     int nodenr;
2687 
2688     optarg = get_opt_name(option, 128, optarg, ',') + 1;
2689     if (!strcmp(option, "node")) {
2690         if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2691             nodenr = nb_numa_nodes;
2692         } else {
2693             nodenr = strtoull(option, NULL, 10);
2694         }
2695 
2696         if (get_param_value(option, 128, "mem", optarg) == 0) {
2697             node_mem[nodenr] = 0;
2698         } else {
2699             value = strtoull(option, &endptr, 0);
2700             switch (*endptr) {
2701             case 0: case 'M': case 'm':
2702                 value <<= 20;
2703                 break;
2704             case 'G': case 'g':
2705                 value <<= 30;
2706                 break;
2707             }
2708             node_mem[nodenr] = value;
2709         }
2710         if (get_param_value(option, 128, "cpus", optarg) == 0) {
2711             node_cpumask[nodenr] = 0;
2712         } else {
2713             value = strtoull(option, &endptr, 10);
2714             if (value >= 64) {
2715                 value = 63;
2716                 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2717             } else {
2718                 if (*endptr == '-') {
2719                     endvalue = strtoull(endptr+1, &endptr, 10);
2720                     if (endvalue >= 63) {
2721                         endvalue = 62;
2722                         fprintf(stderr,
2723                             "only 63 CPUs in NUMA mode supported.\n");
2724                     }
2725                     value = (1 << (endvalue + 1)) - (1 << value);
2726                 } else {
2727                     value = 1 << value;
2728                 }
2729             }
2730             node_cpumask[nodenr] = value;
2731         }
2732         nb_numa_nodes++;
2733     }
2734     return;
2735 }
2736 
2737 /***********************************************************/
2738 /* USB devices */
2739 
2740 static USBPort *used_usb_ports;
2741 static USBPort *free_usb_ports;
2742 
2743 /* ??? Maybe change this to register a hub to keep track of the topology.  */
qemu_register_usb_port(USBPort * port,void * opaque,int index,usb_attachfn attach)2744 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2745                             usb_attachfn attach)
2746 {
2747     port->opaque = opaque;
2748     port->index = index;
2749     port->attach = attach;
2750     port->next = free_usb_ports;
2751     free_usb_ports = port;
2752 }
2753 
usb_device_add_dev(USBDevice * dev)2754 int usb_device_add_dev(USBDevice *dev)
2755 {
2756     USBPort *port;
2757 
2758     /* Find a USB port to add the device to.  */
2759     port = free_usb_ports;
2760     if (!port->next) {
2761         USBDevice *hub;
2762 
2763         /* Create a new hub and chain it on.  */
2764         free_usb_ports = NULL;
2765         port->next = used_usb_ports;
2766         used_usb_ports = port;
2767 
2768         hub = usb_hub_init(VM_USB_HUB_SIZE);
2769         usb_attach(port, hub);
2770         port = free_usb_ports;
2771     }
2772 
2773     free_usb_ports = port->next;
2774     port->next = used_usb_ports;
2775     used_usb_ports = port;
2776     usb_attach(port, dev);
2777     return 0;
2778 }
2779 
usb_msd_password_cb(void * opaque,int err)2780 static void usb_msd_password_cb(void *opaque, int err)
2781 {
2782     USBDevice *dev = opaque;
2783 
2784     if (!err)
2785         usb_device_add_dev(dev);
2786     else
2787         dev->handle_destroy(dev);
2788 }
2789 
usb_device_add(const char * devname,int is_hotplug)2790 static int usb_device_add(const char *devname, int is_hotplug)
2791 {
2792     const char *p;
2793     USBDevice *dev;
2794 
2795     if (!free_usb_ports)
2796         return -1;
2797 
2798     if (strstart(devname, "host:", &p)) {
2799         dev = usb_host_device_open(p);
2800     } else if (!strcmp(devname, "mouse")) {
2801         dev = usb_mouse_init();
2802     } else if (!strcmp(devname, "tablet")) {
2803         dev = usb_tablet_init();
2804     } else if (!strcmp(devname, "keyboard")) {
2805         dev = usb_keyboard_init();
2806     } else if (strstart(devname, "disk:", &p)) {
2807 #if 0
2808         BlockDriverState *bs;
2809 #endif
2810         dev = usb_msd_init(p);
2811         if (!dev)
2812             return -1;
2813 #if 0
2814         bs = usb_msd_get_bdrv(dev);
2815         if (bdrv_key_required(bs)) {
2816             autostart = 0;
2817             if (is_hotplug) {
2818                 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2819                                             dev);
2820                 return 0;
2821             }
2822         }
2823     } else if (!strcmp(devname, "wacom-tablet")) {
2824         dev = usb_wacom_init();
2825     } else if (strstart(devname, "serial:", &p)) {
2826         dev = usb_serial_init(p);
2827 #ifdef CONFIG_BRLAPI
2828     } else if (!strcmp(devname, "braille")) {
2829         dev = usb_baum_init();
2830 #endif
2831     } else if (strstart(devname, "net:", &p)) {
2832         int nic = nb_nics;
2833 
2834         if (net_client_init("nic", p) < 0)
2835             return -1;
2836         nd_table[nic].model = "usb";
2837         dev = usb_net_init(&nd_table[nic]);
2838     } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2839         dev = usb_bt_init(devname[2] ? hci_init(p) :
2840                         bt_new_hci(qemu_find_bt_vlan(0)));
2841 #endif
2842     } else {
2843         return -1;
2844     }
2845     if (!dev)
2846         return -1;
2847 
2848     return usb_device_add_dev(dev);
2849 }
2850 
usb_device_del_addr(int bus_num,int addr)2851 int usb_device_del_addr(int bus_num, int addr)
2852 {
2853     USBPort *port;
2854     USBPort **lastp;
2855     USBDevice *dev;
2856 
2857     if (!used_usb_ports)
2858         return -1;
2859 
2860     if (bus_num != 0)
2861         return -1;
2862 
2863     lastp = &used_usb_ports;
2864     port = used_usb_ports;
2865     while (port && port->dev->addr != addr) {
2866         lastp = &port->next;
2867         port = port->next;
2868     }
2869 
2870     if (!port)
2871         return -1;
2872 
2873     dev = port->dev;
2874     *lastp = port->next;
2875     usb_attach(port, NULL);
2876     dev->handle_destroy(dev);
2877     port->next = free_usb_ports;
2878     free_usb_ports = port;
2879     return 0;
2880 }
2881 
usb_device_del(const char * devname)2882 static int usb_device_del(const char *devname)
2883 {
2884     int bus_num, addr;
2885     const char *p;
2886 
2887     if (strstart(devname, "host:", &p))
2888         return usb_host_device_close(p);
2889 
2890     if (!used_usb_ports)
2891         return -1;
2892 
2893     p = strchr(devname, '.');
2894     if (!p)
2895         return -1;
2896     bus_num = strtoul(devname, NULL, 0);
2897     addr = strtoul(p + 1, NULL, 0);
2898 
2899     return usb_device_del_addr(bus_num, addr);
2900 }
2901 
do_usb_add(Monitor * mon,const char * devname)2902 void do_usb_add(Monitor *mon, const char *devname)
2903 {
2904     usb_device_add(devname, 1);
2905 }
2906 
do_usb_del(Monitor * mon,const char * devname)2907 void do_usb_del(Monitor *mon, const char *devname)
2908 {
2909     usb_device_del(devname);
2910 }
2911 
usb_info(Monitor * mon)2912 void usb_info(Monitor *mon)
2913 {
2914     USBDevice *dev;
2915     USBPort *port;
2916     const char *speed_str;
2917 
2918     if (!usb_enabled) {
2919         monitor_printf(mon, "USB support not enabled\n");
2920         return;
2921     }
2922 
2923     for (port = used_usb_ports; port; port = port->next) {
2924         dev = port->dev;
2925         if (!dev)
2926             continue;
2927         switch(dev->speed) {
2928         case USB_SPEED_LOW:
2929             speed_str = "1.5";
2930             break;
2931         case USB_SPEED_FULL:
2932             speed_str = "12";
2933             break;
2934         case USB_SPEED_HIGH:
2935             speed_str = "480";
2936             break;
2937         default:
2938             speed_str = "?";
2939             break;
2940         }
2941         monitor_printf(mon, "  Device %d.%d, Speed %s Mb/s, Product %s\n",
2942                        0, dev->addr, speed_str, dev->devname);
2943     }
2944 }
2945 
2946 /***********************************************************/
2947 /* PCMCIA/Cardbus */
2948 
2949 static struct pcmcia_socket_entry_s {
2950     PCMCIASocket *socket;
2951     struct pcmcia_socket_entry_s *next;
2952 } *pcmcia_sockets = 0;
2953 
pcmcia_socket_register(PCMCIASocket * socket)2954 void pcmcia_socket_register(PCMCIASocket *socket)
2955 {
2956     struct pcmcia_socket_entry_s *entry;
2957 
2958     entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2959     entry->socket = socket;
2960     entry->next = pcmcia_sockets;
2961     pcmcia_sockets = entry;
2962 }
2963 
pcmcia_socket_unregister(PCMCIASocket * socket)2964 void pcmcia_socket_unregister(PCMCIASocket *socket)
2965 {
2966     struct pcmcia_socket_entry_s *entry, **ptr;
2967 
2968     ptr = &pcmcia_sockets;
2969     for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2970         if (entry->socket == socket) {
2971             *ptr = entry->next;
2972             qemu_free(entry);
2973         }
2974 }
2975 
pcmcia_info(Monitor * mon)2976 void pcmcia_info(Monitor *mon)
2977 {
2978     struct pcmcia_socket_entry_s *iter;
2979 
2980     if (!pcmcia_sockets)
2981         monitor_printf(mon, "No PCMCIA sockets\n");
2982 
2983     for (iter = pcmcia_sockets; iter; iter = iter->next)
2984         monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2985                        iter->socket->attached ? iter->socket->card_string :
2986                        "Empty");
2987 }
2988 
2989 /***********************************************************/
2990 /* register display */
2991 
2992 struct DisplayAllocator default_allocator = {
2993     defaultallocator_create_displaysurface,
2994     defaultallocator_resize_displaysurface,
2995     defaultallocator_free_displaysurface
2996 };
2997 
register_displaystate(DisplayState * ds)2998 void register_displaystate(DisplayState *ds)
2999 {
3000     DisplayState **s;
3001     s = &display_state;
3002     while (*s != NULL)
3003         s = &(*s)->next;
3004     ds->next = NULL;
3005     *s = ds;
3006 }
3007 
get_displaystate(void)3008 DisplayState *get_displaystate(void)
3009 {
3010     return display_state;
3011 }
3012 
register_displayallocator(DisplayState * ds,DisplayAllocator * da)3013 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
3014 {
3015     if(ds->allocator ==  &default_allocator) ds->allocator = da;
3016     return ds->allocator;
3017 }
3018 
3019 /* dumb display */
3020 
dumb_display_init(void)3021 static void dumb_display_init(void)
3022 {
3023     DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
3024     ds->allocator = &default_allocator;
3025     ds->surface = qemu_create_displaysurface(ds, 640, 480);
3026     register_displaystate(ds);
3027 }
3028 
3029 /***********************************************************/
3030 /* I/O handling */
3031 
3032 typedef struct IOHandlerRecord {
3033     int fd;
3034     IOCanRWHandler *fd_read_poll;
3035     IOHandler *fd_read;
3036     IOHandler *fd_write;
3037     int deleted;
3038     void *opaque;
3039     /* temporary data */
3040     struct pollfd *ufd;
3041     struct IOHandlerRecord *next;
3042 } IOHandlerRecord;
3043 
3044 static IOHandlerRecord *first_io_handler;
3045 
3046 /* XXX: fd_read_poll should be suppressed, but an API change is
3047    necessary in the character devices to suppress fd_can_read(). */
qemu_set_fd_handler2(int fd,IOCanRWHandler * fd_read_poll,IOHandler * fd_read,IOHandler * fd_write,void * opaque)3048 int qemu_set_fd_handler2(int fd,
3049                          IOCanRWHandler *fd_read_poll,
3050                          IOHandler *fd_read,
3051                          IOHandler *fd_write,
3052                          void *opaque)
3053 {
3054     IOHandlerRecord **pioh, *ioh;
3055 
3056     if (!fd_read && !fd_write) {
3057         pioh = &first_io_handler;
3058         for(;;) {
3059             ioh = *pioh;
3060             if (ioh == NULL)
3061                 break;
3062             if (ioh->fd == fd) {
3063                 ioh->deleted = 1;
3064                 break;
3065             }
3066             pioh = &ioh->next;
3067         }
3068     } else {
3069         for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3070             if (ioh->fd == fd)
3071                 goto found;
3072         }
3073         ioh = qemu_mallocz(sizeof(IOHandlerRecord));
3074         ioh->next = first_io_handler;
3075         first_io_handler = ioh;
3076     found:
3077         ioh->fd = fd;
3078         ioh->fd_read_poll = fd_read_poll;
3079         ioh->fd_read = fd_read;
3080         ioh->fd_write = fd_write;
3081         ioh->opaque = opaque;
3082         ioh->deleted = 0;
3083     }
3084     return 0;
3085 }
3086 
qemu_set_fd_handler(int fd,IOHandler * fd_read,IOHandler * fd_write,void * opaque)3087 int qemu_set_fd_handler(int fd,
3088                         IOHandler *fd_read,
3089                         IOHandler *fd_write,
3090                         void *opaque)
3091 {
3092     return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3093 }
3094 
3095 #ifdef _WIN32
3096 /***********************************************************/
3097 /* Polling handling */
3098 
3099 typedef struct PollingEntry {
3100     PollingFunc *func;
3101     void *opaque;
3102     struct PollingEntry *next;
3103 } PollingEntry;
3104 
3105 static PollingEntry *first_polling_entry;
3106 
qemu_add_polling_cb(PollingFunc * func,void * opaque)3107 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3108 {
3109     PollingEntry **ppe, *pe;
3110     pe = qemu_mallocz(sizeof(PollingEntry));
3111     pe->func = func;
3112     pe->opaque = opaque;
3113     for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3114     *ppe = pe;
3115     return 0;
3116 }
3117 
qemu_del_polling_cb(PollingFunc * func,void * opaque)3118 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3119 {
3120     PollingEntry **ppe, *pe;
3121     for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3122         pe = *ppe;
3123         if (pe->func == func && pe->opaque == opaque) {
3124             *ppe = pe->next;
3125             qemu_free(pe);
3126             break;
3127         }
3128     }
3129 }
3130 
3131 /***********************************************************/
3132 /* Wait objects support */
3133 typedef struct WaitObjects {
3134     int num;
3135     HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3136     WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3137     void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3138 } WaitObjects;
3139 
3140 static WaitObjects wait_objects = {0};
3141 
qemu_add_wait_object(HANDLE handle,WaitObjectFunc * func,void * opaque)3142 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3143 {
3144     WaitObjects *w = &wait_objects;
3145 
3146     if (w->num >= MAXIMUM_WAIT_OBJECTS)
3147         return -1;
3148     w->events[w->num] = handle;
3149     w->func[w->num] = func;
3150     w->opaque[w->num] = opaque;
3151     w->num++;
3152     return 0;
3153 }
3154 
qemu_del_wait_object(HANDLE handle,WaitObjectFunc * func,void * opaque)3155 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3156 {
3157     int i, found;
3158     WaitObjects *w = &wait_objects;
3159 
3160     found = 0;
3161     for (i = 0; i < w->num; i++) {
3162         if (w->events[i] == handle)
3163             found = 1;
3164         if (found) {
3165             w->events[i] = w->events[i + 1];
3166             w->func[i] = w->func[i + 1];
3167             w->opaque[i] = w->opaque[i + 1];
3168         }
3169     }
3170     if (found)
3171         w->num--;
3172 }
3173 #endif
3174 
3175 /***********************************************************/
3176 /* ram save/restore */
3177 
ram_get_page(QEMUFile * f,uint8_t * buf,int len)3178 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3179 {
3180     int v;
3181 
3182     v = qemu_get_byte(f);
3183     switch(v) {
3184     case 0:
3185         if (qemu_get_buffer(f, buf, len) != len)
3186             return -EIO;
3187         break;
3188     case 1:
3189         v = qemu_get_byte(f);
3190         memset(buf, v, len);
3191         break;
3192     default:
3193         return -EINVAL;
3194     }
3195 
3196     if (qemu_file_has_error(f))
3197         return -EIO;
3198 
3199     return 0;
3200 }
3201 
ram_load_v1(QEMUFile * f,void * opaque)3202 static int ram_load_v1(QEMUFile *f, void *opaque)
3203 {
3204     int ret;
3205     ram_addr_t i;
3206 
3207     if (qemu_get_be32(f) != last_ram_offset)
3208         return -EINVAL;
3209     for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3210         ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3211         if (ret)
3212             return ret;
3213     }
3214     return 0;
3215 }
3216 
3217 #define BDRV_HASH_BLOCK_SIZE 1024
3218 #define IOBUF_SIZE 4096
3219 #define RAM_CBLOCK_MAGIC 0xfabe
3220 
3221 typedef struct RamDecompressState {
3222     z_stream zstream;
3223     QEMUFile *f;
3224     uint8_t buf[IOBUF_SIZE];
3225 } RamDecompressState;
3226 
ram_decompress_open(RamDecompressState * s,QEMUFile * f)3227 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3228 {
3229     int ret;
3230     memset(s, 0, sizeof(*s));
3231     s->f = f;
3232     ret = inflateInit(&s->zstream);
3233     if (ret != Z_OK)
3234         return -1;
3235     return 0;
3236 }
3237 
ram_decompress_buf(RamDecompressState * s,uint8_t * buf,int len)3238 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3239 {
3240     int ret, clen;
3241 
3242     s->zstream.avail_out = len;
3243     s->zstream.next_out = buf;
3244     while (s->zstream.avail_out > 0) {
3245         if (s->zstream.avail_in == 0) {
3246             if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3247                 return -1;
3248             clen = qemu_get_be16(s->f);
3249             if (clen > IOBUF_SIZE)
3250                 return -1;
3251             qemu_get_buffer(s->f, s->buf, clen);
3252             s->zstream.avail_in = clen;
3253             s->zstream.next_in = s->buf;
3254         }
3255         ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3256         if (ret != Z_OK && ret != Z_STREAM_END) {
3257             return -1;
3258         }
3259     }
3260     return 0;
3261 }
3262 
ram_decompress_close(RamDecompressState * s)3263 static void ram_decompress_close(RamDecompressState *s)
3264 {
3265     inflateEnd(&s->zstream);
3266 }
3267 
3268 #define RAM_SAVE_FLAG_FULL	0x01
3269 #define RAM_SAVE_FLAG_COMPRESS	0x02
3270 #define RAM_SAVE_FLAG_MEM_SIZE	0x04
3271 #define RAM_SAVE_FLAG_PAGE	0x08
3272 #define RAM_SAVE_FLAG_EOS	0x10
3273 
is_dup_page(uint8_t * page,uint8_t ch)3274 static int is_dup_page(uint8_t *page, uint8_t ch)
3275 {
3276     uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3277     uint32_t *array = (uint32_t *)page;
3278     int i;
3279 
3280     for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3281         if (array[i] != val)
3282             return 0;
3283     }
3284 
3285     return 1;
3286 }
3287 
ram_save_block(QEMUFile * f)3288 static int ram_save_block(QEMUFile *f)
3289 {
3290     static ram_addr_t current_addr = 0;
3291     ram_addr_t saved_addr = current_addr;
3292     ram_addr_t addr = 0;
3293     int found = 0;
3294 
3295     while (addr < last_ram_offset) {
3296         if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3297             uint8_t *p;
3298 
3299             cpu_physical_memory_reset_dirty(current_addr,
3300                                             current_addr + TARGET_PAGE_SIZE,
3301                                             MIGRATION_DIRTY_FLAG);
3302 
3303             p = qemu_get_ram_ptr(current_addr);
3304 
3305             if (is_dup_page(p, *p)) {
3306                 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3307                 qemu_put_byte(f, *p);
3308             } else {
3309                 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3310                 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3311             }
3312 
3313             found = 1;
3314             break;
3315         }
3316         addr += TARGET_PAGE_SIZE;
3317         current_addr = (saved_addr + addr) % last_ram_offset;
3318     }
3319 
3320     return found;
3321 }
3322 
3323 static uint64_t bytes_transferred = 0;
3324 
ram_save_remaining(void)3325 static ram_addr_t ram_save_remaining(void)
3326 {
3327     ram_addr_t addr;
3328     ram_addr_t count = 0;
3329 
3330     for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3331         if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3332             count++;
3333     }
3334 
3335     return count;
3336 }
3337 
ram_bytes_remaining(void)3338 uint64_t ram_bytes_remaining(void)
3339 {
3340     return ram_save_remaining() * TARGET_PAGE_SIZE;
3341 }
3342 
ram_bytes_transferred(void)3343 uint64_t ram_bytes_transferred(void)
3344 {
3345     return bytes_transferred;
3346 }
3347 
ram_bytes_total(void)3348 uint64_t ram_bytes_total(void)
3349 {
3350     return last_ram_offset;
3351 }
3352 
ram_save_live(QEMUFile * f,int stage,void * opaque)3353 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3354 {
3355     ram_addr_t addr;
3356     uint64_t bytes_transferred_last;
3357     double bwidth = 0;
3358     uint64_t expected_time = 0;
3359 
3360     cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX);
3361 
3362     if (stage == 1) {
3363         /* Make sure all dirty bits are set */
3364         for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3365             if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3366                 cpu_physical_memory_set_dirty(addr);
3367         }
3368 
3369         /* Enable dirty memory tracking */
3370         cpu_physical_memory_set_dirty_tracking(1);
3371 
3372         qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3373     }
3374 
3375     bytes_transferred_last = bytes_transferred;
3376     bwidth = get_clock();
3377 
3378     while (!qemu_file_rate_limit(f)) {
3379         int ret;
3380 
3381         ret = ram_save_block(f);
3382         bytes_transferred += ret * TARGET_PAGE_SIZE;
3383         if (ret == 0) /* no more blocks */
3384             break;
3385     }
3386 
3387     bwidth = get_clock() - bwidth;
3388     bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3389 
3390     /* if we haven't transferred anything this round, force expected_time to a
3391      * a very high value, but without crashing */
3392     if (bwidth == 0)
3393         bwidth = 0.000001;
3394 
3395     /* try transferring iterative blocks of memory */
3396 
3397     if (stage == 3) {
3398 
3399         /* flush all remaining blocks regardless of rate limiting */
3400         while (ram_save_block(f) != 0) {
3401             bytes_transferred += TARGET_PAGE_SIZE;
3402         }
3403         cpu_physical_memory_set_dirty_tracking(0);
3404     }
3405 
3406     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3407 
3408     expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3409 
3410     return (stage == 2) && (expected_time <= migrate_max_downtime());
3411 }
3412 
ram_load_dead(QEMUFile * f,void * opaque)3413 static int ram_load_dead(QEMUFile *f, void *opaque)
3414 {
3415     RamDecompressState s1, *s = &s1;
3416     uint8_t buf[10];
3417     ram_addr_t i;
3418 
3419     if (ram_decompress_open(s, f) < 0)
3420         return -EINVAL;
3421     for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3422         if (ram_decompress_buf(s, buf, 1) < 0) {
3423             fprintf(stderr, "Error while reading ram block header\n");
3424             goto error;
3425         }
3426         if (buf[0] == 0) {
3427             if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3428                                    BDRV_HASH_BLOCK_SIZE) < 0) {
3429                 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3430                 goto error;
3431             }
3432         } else {
3433         error:
3434             printf("Error block header\n");
3435             return -EINVAL;
3436         }
3437     }
3438     ram_decompress_close(s);
3439 
3440     return 0;
3441 }
3442 
ram_load(QEMUFile * f,void * opaque,int version_id)3443 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3444 {
3445     ram_addr_t addr;
3446     int flags;
3447 
3448     if (version_id == 1)
3449         return ram_load_v1(f, opaque);
3450 
3451     if (version_id == 2) {
3452         if (qemu_get_be32(f) != last_ram_offset)
3453             return -EINVAL;
3454         return ram_load_dead(f, opaque);
3455     }
3456 
3457     if (version_id != 3)
3458         return -EINVAL;
3459 
3460     do {
3461         addr = qemu_get_be64(f);
3462 
3463         flags = addr & ~TARGET_PAGE_MASK;
3464         addr &= TARGET_PAGE_MASK;
3465 
3466         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3467             if (addr != last_ram_offset)
3468                 return -EINVAL;
3469         }
3470 
3471         if (flags & RAM_SAVE_FLAG_FULL) {
3472             if (ram_load_dead(f, opaque) < 0)
3473                 return -EINVAL;
3474         }
3475 
3476         if (flags & RAM_SAVE_FLAG_COMPRESS) {
3477             uint8_t ch = qemu_get_byte(f);
3478             memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3479         } else if (flags & RAM_SAVE_FLAG_PAGE)
3480             qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3481     } while (!(flags & RAM_SAVE_FLAG_EOS));
3482 
3483     return 0;
3484 }
3485 
qemu_service_io(void)3486 void qemu_service_io(void)
3487 {
3488     qemu_notify_event();
3489 }
3490 
3491 /***********************************************************/
3492 /* bottom halves (can be seen as timers which expire ASAP) */
3493 
3494 struct QEMUBH {
3495     QEMUBHFunc *cb;
3496     void *opaque;
3497     int scheduled;
3498     int idle;
3499     int deleted;
3500     QEMUBH *next;
3501 };
3502 
3503 static QEMUBH *first_bh = NULL;
3504 
qemu_bh_new(QEMUBHFunc * cb,void * opaque)3505 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3506 {
3507     QEMUBH *bh;
3508     bh = qemu_mallocz(sizeof(QEMUBH));
3509     bh->cb = cb;
3510     bh->opaque = opaque;
3511     bh->next = first_bh;
3512     first_bh = bh;
3513     return bh;
3514 }
3515 
qemu_bh_poll(void)3516 int qemu_bh_poll(void)
3517 {
3518     QEMUBH *bh, **bhp;
3519     int ret;
3520 
3521     ret = 0;
3522     for (bh = first_bh; bh; bh = bh->next) {
3523         if (!bh->deleted && bh->scheduled) {
3524             bh->scheduled = 0;
3525             if (!bh->idle)
3526                 ret = 1;
3527             bh->idle = 0;
3528             bh->cb(bh->opaque);
3529         }
3530     }
3531 
3532     /* remove deleted bhs */
3533     bhp = &first_bh;
3534     while (*bhp) {
3535         bh = *bhp;
3536         if (bh->deleted) {
3537             *bhp = bh->next;
3538             qemu_free(bh);
3539         } else
3540             bhp = &bh->next;
3541     }
3542 
3543     return ret;
3544 }
3545 
qemu_bh_schedule_idle(QEMUBH * bh)3546 void qemu_bh_schedule_idle(QEMUBH *bh)
3547 {
3548     if (bh->scheduled)
3549         return;
3550     bh->scheduled = 1;
3551     bh->idle = 1;
3552 }
3553 
qemu_bh_schedule(QEMUBH * bh)3554 void qemu_bh_schedule(QEMUBH *bh)
3555 {
3556     if (bh->scheduled)
3557         return;
3558     bh->scheduled = 1;
3559     bh->idle = 0;
3560     /* stop the currently executing CPU to execute the BH ASAP */
3561     qemu_notify_event();
3562 }
3563 
qemu_bh_cancel(QEMUBH * bh)3564 void qemu_bh_cancel(QEMUBH *bh)
3565 {
3566     bh->scheduled = 0;
3567 }
3568 
qemu_bh_delete(QEMUBH * bh)3569 void qemu_bh_delete(QEMUBH *bh)
3570 {
3571     bh->scheduled = 0;
3572     bh->deleted = 1;
3573 }
3574 
qemu_bh_update_timeout(int * timeout)3575 static void qemu_bh_update_timeout(int *timeout)
3576 {
3577     QEMUBH *bh;
3578 
3579     for (bh = first_bh; bh; bh = bh->next) {
3580         if (!bh->deleted && bh->scheduled) {
3581             if (bh->idle) {
3582                 /* idle bottom halves will be polled at least
3583                  * every 10ms */
3584                 *timeout = MIN(10, *timeout);
3585             } else {
3586                 /* non-idle bottom halves will be executed
3587                  * immediately */
3588                 *timeout = 0;
3589                 break;
3590             }
3591         }
3592     }
3593 }
3594 
3595 /***********************************************************/
3596 /* machine registration */
3597 
3598 static QEMUMachine *first_machine = NULL;
3599 QEMUMachine *current_machine = NULL;
3600 
qemu_register_machine(QEMUMachine * m)3601 int qemu_register_machine(QEMUMachine *m)
3602 {
3603     QEMUMachine **pm;
3604     pm = &first_machine;
3605     while (*pm != NULL)
3606         pm = &(*pm)->next;
3607     m->next = NULL;
3608     *pm = m;
3609     return 0;
3610 }
3611 
find_machine(const char * name)3612 static QEMUMachine *find_machine(const char *name)
3613 {
3614     QEMUMachine *m;
3615 
3616     for(m = first_machine; m != NULL; m = m->next) {
3617         if (!strcmp(m->name, name))
3618             return m;
3619     }
3620     return NULL;
3621 }
3622 
find_default_machine(void)3623 static QEMUMachine *find_default_machine(void)
3624 {
3625     QEMUMachine *m;
3626 
3627     for(m = first_machine; m != NULL; m = m->next) {
3628         if (m->is_default) {
3629             return m;
3630         }
3631     }
3632     return NULL;
3633 }
3634 
3635 /***********************************************************/
3636 /* main execution loop */
3637 
gui_update(void * opaque)3638 static void gui_update(void *opaque)
3639 {
3640     uint64_t interval = GUI_REFRESH_INTERVAL;
3641     DisplayState *ds = opaque;
3642     DisplayChangeListener *dcl = ds->listeners;
3643 
3644     dpy_refresh(ds);
3645 
3646     while (dcl != NULL) {
3647         if (dcl->gui_timer_interval &&
3648             dcl->gui_timer_interval < interval)
3649             interval = dcl->gui_timer_interval;
3650         dcl = dcl->next;
3651     }
3652     qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3653 }
3654 
nographic_update(void * opaque)3655 static void nographic_update(void *opaque)
3656 {
3657     uint64_t interval = GUI_REFRESH_INTERVAL;
3658 
3659     qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3660 }
3661 
3662 struct vm_change_state_entry {
3663     VMChangeStateHandler *cb;
3664     void *opaque;
3665     LIST_ENTRY (vm_change_state_entry) entries;
3666 };
3667 
3668 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3669 
qemu_add_vm_change_state_handler(VMChangeStateHandler * cb,void * opaque)3670 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3671                                                      void *opaque)
3672 {
3673     VMChangeStateEntry *e;
3674 
3675     e = qemu_mallocz(sizeof (*e));
3676 
3677     e->cb = cb;
3678     e->opaque = opaque;
3679     LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3680     return e;
3681 }
3682 
qemu_del_vm_change_state_handler(VMChangeStateEntry * e)3683 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3684 {
3685     LIST_REMOVE (e, entries);
3686     qemu_free (e);
3687 }
3688 
vm_state_notify(int running,int reason)3689 static void vm_state_notify(int running, int reason)
3690 {
3691     VMChangeStateEntry *e;
3692 
3693     for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3694         e->cb(e->opaque, running, reason);
3695     }
3696 }
3697 
3698 static void resume_all_vcpus(void);
3699 static void pause_all_vcpus(void);
3700 
vm_start(void)3701 void vm_start(void)
3702 {
3703     if (!vm_running) {
3704         cpu_enable_ticks();
3705         vm_running = 1;
3706         vm_state_notify(1, 0);
3707         qemu_rearm_alarm_timer(alarm_timer);
3708         resume_all_vcpus();
3709     }
3710 }
3711 
3712 /* reset/shutdown handler */
3713 
3714 typedef struct QEMUResetEntry {
3715     QEMUResetHandler *func;
3716     void *opaque;
3717     int order;
3718     struct QEMUResetEntry *next;
3719 } QEMUResetEntry;
3720 
3721 static QEMUResetEntry *first_reset_entry;
3722 static int reset_requested;
3723 static int shutdown_requested;
3724 static int powerdown_requested;
3725 static int debug_requested;
3726 static int vmstop_requested;
3727 
qemu_shutdown_requested(void)3728 int qemu_shutdown_requested(void)
3729 {
3730     int r = shutdown_requested;
3731     shutdown_requested = 0;
3732     return r;
3733 }
3734 
qemu_reset_requested(void)3735 int qemu_reset_requested(void)
3736 {
3737     int r = reset_requested;
3738     reset_requested = 0;
3739     return r;
3740 }
3741 
qemu_powerdown_requested(void)3742 int qemu_powerdown_requested(void)
3743 {
3744     int r = powerdown_requested;
3745     powerdown_requested = 0;
3746     return r;
3747 }
3748 
qemu_debug_requested(void)3749 static int qemu_debug_requested(void)
3750 {
3751     int r = debug_requested;
3752     debug_requested = 0;
3753     return r;
3754 }
3755 
qemu_vmstop_requested(void)3756 static int qemu_vmstop_requested(void)
3757 {
3758     int r = vmstop_requested;
3759     vmstop_requested = 0;
3760     return r;
3761 }
3762 
do_vm_stop(int reason)3763 static void do_vm_stop(int reason)
3764 {
3765     if (vm_running) {
3766         cpu_disable_ticks();
3767         vm_running = 0;
3768         pause_all_vcpus();
3769         vm_state_notify(0, reason);
3770     }
3771 }
3772 
qemu_register_reset(QEMUResetHandler * func,int order,void * opaque)3773 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3774 {
3775     QEMUResetEntry **pre, *re;
3776 
3777     pre = &first_reset_entry;
3778     while (*pre != NULL && (*pre)->order >= order) {
3779         pre = &(*pre)->next;
3780     }
3781     re = qemu_mallocz(sizeof(QEMUResetEntry));
3782     re->func = func;
3783     re->opaque = opaque;
3784     re->order = order;
3785     re->next = NULL;
3786     *pre = re;
3787 }
3788 
qemu_system_reset(void)3789 void qemu_system_reset(void)
3790 {
3791     QEMUResetEntry *re;
3792 
3793     /* reset all devices */
3794     for(re = first_reset_entry; re != NULL; re = re->next) {
3795         re->func(re->opaque);
3796     }
3797 }
3798 
qemu_system_reset_request(void)3799 void qemu_system_reset_request(void)
3800 {
3801     if (no_reboot) {
3802         shutdown_requested = 1;
3803     } else {
3804         reset_requested = 1;
3805     }
3806     qemu_notify_event();
3807 }
3808 
qemu_system_shutdown_request(void)3809 void qemu_system_shutdown_request(void)
3810 {
3811     shutdown_requested = 1;
3812     qemu_notify_event();
3813 }
3814 
qemu_system_powerdown_request(void)3815 void qemu_system_powerdown_request(void)
3816 {
3817     powerdown_requested = 1;
3818     qemu_notify_event();
3819 }
3820 
3821 #ifdef CONFIG_IOTHREAD
qemu_system_vmstop_request(int reason)3822 static void qemu_system_vmstop_request(int reason)
3823 {
3824     vmstop_requested = reason;
3825     qemu_notify_event();
3826 }
3827 #endif
3828 
3829 #ifndef _WIN32
3830 static int io_thread_fd = -1;
3831 
qemu_event_increment(void)3832 static void qemu_event_increment(void)
3833 {
3834     static const char byte = 0;
3835 
3836     if (io_thread_fd == -1)
3837         return;
3838 
3839     write(io_thread_fd, &byte, sizeof(byte));
3840 }
3841 
qemu_event_read(void * opaque)3842 static void qemu_event_read(void *opaque)
3843 {
3844     int fd = (unsigned long)opaque;
3845     ssize_t len;
3846 
3847     /* Drain the notify pipe */
3848     do {
3849         char buffer[512];
3850         len = read(fd, buffer, sizeof(buffer));
3851     } while ((len == -1 && errno == EINTR) || len > 0);
3852 }
3853 
qemu_event_init(void)3854 static int qemu_event_init(void)
3855 {
3856     int err;
3857     int fds[2];
3858 
3859     err = pipe(fds);
3860     if (err == -1)
3861         return -errno;
3862 
3863     err = fcntl_setfl(fds[0], O_NONBLOCK);
3864     if (err < 0)
3865         goto fail;
3866 
3867     err = fcntl_setfl(fds[1], O_NONBLOCK);
3868     if (err < 0)
3869         goto fail;
3870 
3871     qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3872                          (void *)(unsigned long)fds[0]);
3873 
3874     io_thread_fd = fds[1];
3875     return 0;
3876 
3877 fail:
3878     close(fds[0]);
3879     close(fds[1]);
3880     return err;
3881 }
3882 #else
3883 HANDLE qemu_event_handle;
3884 
dummy_event_handler(void * opaque)3885 static void dummy_event_handler(void *opaque)
3886 {
3887 }
3888 
qemu_event_init(void)3889 static int qemu_event_init(void)
3890 {
3891     qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3892     if (!qemu_event_handle) {
3893         perror("Failed CreateEvent");
3894         return -1;
3895     }
3896     qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3897     return 0;
3898 }
3899 
qemu_event_increment(void)3900 static void qemu_event_increment(void)
3901 {
3902     SetEvent(qemu_event_handle);
3903 }
3904 #endif
3905 
cpu_can_run(CPUState * env)3906 static int cpu_can_run(CPUState *env)
3907 {
3908     if (env->stop)
3909         return 0;
3910     if (env->stopped)
3911         return 0;
3912     return 1;
3913 }
3914 
3915 #ifndef CONFIG_IOTHREAD
qemu_init_main_loop(void)3916 static int qemu_init_main_loop(void)
3917 {
3918     return qemu_event_init();
3919 }
3920 
qemu_init_vcpu(void * _env)3921 void qemu_init_vcpu(void *_env)
3922 {
3923     CPUState *env = _env;
3924 
3925     if (kvm_enabled())
3926         kvm_init_vcpu(env);
3927     return;
3928 }
3929 
qemu_cpu_self(void * env)3930 int qemu_cpu_self(void *env)
3931 {
3932     return 1;
3933 }
3934 
resume_all_vcpus(void)3935 static void resume_all_vcpus(void)
3936 {
3937 }
3938 
pause_all_vcpus(void)3939 static void pause_all_vcpus(void)
3940 {
3941 }
3942 
qemu_cpu_kick(void * env)3943 void qemu_cpu_kick(void *env)
3944 {
3945     return;
3946 }
3947 
qemu_notify_event(void)3948 void qemu_notify_event(void)
3949 {
3950     CPUState *env = cpu_single_env;
3951 
3952     if (env) {
3953         cpu_exit(env);
3954 #ifdef USE_KQEMU
3955         if (env->kqemu_enabled)
3956             kqemu_cpu_interrupt(env);
3957 #endif
3958      }
3959 }
3960 
3961 #define qemu_mutex_lock_iothread() do { } while (0)
3962 #define qemu_mutex_unlock_iothread() do { } while (0)
3963 
vm_stop(int reason)3964 void vm_stop(int reason)
3965 {
3966     do_vm_stop(reason);
3967 }
3968 
3969 #else /* CONFIG_IOTHREAD */
3970 
3971 #include "qemu-thread.h"
3972 
3973 QemuMutex qemu_global_mutex;
3974 static QemuMutex qemu_fair_mutex;
3975 
3976 static QemuThread io_thread;
3977 
3978 static QemuThread *tcg_cpu_thread;
3979 static QemuCond *tcg_halt_cond;
3980 
3981 static int qemu_system_ready;
3982 /* cpu creation */
3983 static QemuCond qemu_cpu_cond;
3984 /* system init */
3985 static QemuCond qemu_system_cond;
3986 static QemuCond qemu_pause_cond;
3987 
3988 static void block_io_signals(void);
3989 static void unblock_io_signals(void);
3990 static int tcg_has_work(void);
3991 
qemu_init_main_loop(void)3992 static int qemu_init_main_loop(void)
3993 {
3994     int ret;
3995 
3996     ret = qemu_event_init();
3997     if (ret)
3998         return ret;
3999 
4000     qemu_cond_init(&qemu_pause_cond);
4001     qemu_mutex_init(&qemu_fair_mutex);
4002     qemu_mutex_init(&qemu_global_mutex);
4003     qemu_mutex_lock(&qemu_global_mutex);
4004 
4005     unblock_io_signals();
4006     qemu_thread_self(&io_thread);
4007 
4008     return 0;
4009 }
4010 
qemu_wait_io_event(CPUState * env)4011 static void qemu_wait_io_event(CPUState *env)
4012 {
4013     while (!tcg_has_work())
4014         qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
4015 
4016     qemu_mutex_unlock(&qemu_global_mutex);
4017 
4018     /*
4019      * Users of qemu_global_mutex can be starved, having no chance
4020      * to acquire it since this path will get to it first.
4021      * So use another lock to provide fairness.
4022      */
4023     qemu_mutex_lock(&qemu_fair_mutex);
4024     qemu_mutex_unlock(&qemu_fair_mutex);
4025 
4026     qemu_mutex_lock(&qemu_global_mutex);
4027     if (env->stop) {
4028         env->stop = 0;
4029         env->stopped = 1;
4030         qemu_cond_signal(&qemu_pause_cond);
4031     }
4032 }
4033 
4034 static int qemu_cpu_exec(CPUState *env);
4035 
kvm_cpu_thread_fn(void * arg)4036 static void *kvm_cpu_thread_fn(void *arg)
4037 {
4038     CPUState *env = arg;
4039 
4040     block_io_signals();
4041     qemu_thread_self(env->thread);
4042 
4043     /* signal CPU creation */
4044     qemu_mutex_lock(&qemu_global_mutex);
4045     env->created = 1;
4046     qemu_cond_signal(&qemu_cpu_cond);
4047 
4048     /* and wait for machine initialization */
4049     while (!qemu_system_ready)
4050         qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
4051 
4052     while (1) {
4053         if (cpu_can_run(env))
4054             qemu_cpu_exec(env);
4055         qemu_wait_io_event(env);
4056     }
4057 
4058     return NULL;
4059 }
4060 
4061 static void tcg_cpu_exec(void);
4062 
tcg_cpu_thread_fn(void * arg)4063 static void *tcg_cpu_thread_fn(void *arg)
4064 {
4065     CPUState *env = arg;
4066 
4067     block_io_signals();
4068     qemu_thread_self(env->thread);
4069 
4070     /* signal CPU creation */
4071     qemu_mutex_lock(&qemu_global_mutex);
4072     for (env = first_cpu; env != NULL; env = env->next_cpu)
4073         env->created = 1;
4074     qemu_cond_signal(&qemu_cpu_cond);
4075 
4076     /* and wait for machine initialization */
4077     while (!qemu_system_ready)
4078         qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
4079 
4080     while (1) {
4081         tcg_cpu_exec();
4082         qemu_wait_io_event(cur_cpu);
4083     }
4084 
4085     return NULL;
4086 }
4087 
qemu_cpu_kick(void * _env)4088 void qemu_cpu_kick(void *_env)
4089 {
4090     CPUState *env = _env;
4091     qemu_cond_broadcast(env->halt_cond);
4092     if (kvm_enabled())
4093         qemu_thread_signal(env->thread, SIGUSR1);
4094 }
4095 
qemu_cpu_self(void * env)4096 int qemu_cpu_self(void *env)
4097 {
4098     return (cpu_single_env != NULL);
4099 }
4100 
cpu_signal(int sig)4101 static void cpu_signal(int sig)
4102 {
4103     if (cpu_single_env)
4104         cpu_exit(cpu_single_env);
4105 }
4106 
block_io_signals(void)4107 static void block_io_signals(void)
4108 {
4109     sigset_t set;
4110     struct sigaction sigact;
4111 
4112     sigemptyset(&set);
4113     sigaddset(&set, SIGUSR2);
4114     sigaddset(&set, SIGIO);
4115     sigaddset(&set, SIGALRM);
4116     pthread_sigmask(SIG_BLOCK, &set, NULL);
4117 
4118     sigemptyset(&set);
4119     sigaddset(&set, SIGUSR1);
4120     pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4121 
4122     memset(&sigact, 0, sizeof(sigact));
4123     sigact.sa_handler = cpu_signal;
4124     sigaction(SIGUSR1, &sigact, NULL);
4125 }
4126 
unblock_io_signals(void)4127 static void unblock_io_signals(void)
4128 {
4129     sigset_t set;
4130 
4131     sigemptyset(&set);
4132     sigaddset(&set, SIGUSR2);
4133     sigaddset(&set, SIGIO);
4134     sigaddset(&set, SIGALRM);
4135     pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4136 
4137     sigemptyset(&set);
4138     sigaddset(&set, SIGUSR1);
4139     pthread_sigmask(SIG_BLOCK, &set, NULL);
4140 }
4141 
qemu_signal_lock(unsigned int msecs)4142 static void qemu_signal_lock(unsigned int msecs)
4143 {
4144     qemu_mutex_lock(&qemu_fair_mutex);
4145 
4146     while (qemu_mutex_trylock(&qemu_global_mutex)) {
4147         qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4148         if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4149             break;
4150     }
4151     qemu_mutex_unlock(&qemu_fair_mutex);
4152 }
4153 
qemu_mutex_lock_iothread(void)4154 static void qemu_mutex_lock_iothread(void)
4155 {
4156     if (kvm_enabled()) {
4157         qemu_mutex_lock(&qemu_fair_mutex);
4158         qemu_mutex_lock(&qemu_global_mutex);
4159         qemu_mutex_unlock(&qemu_fair_mutex);
4160     } else
4161         qemu_signal_lock(100);
4162 }
4163 
qemu_mutex_unlock_iothread(void)4164 static void qemu_mutex_unlock_iothread(void)
4165 {
4166     qemu_mutex_unlock(&qemu_global_mutex);
4167 }
4168 
all_vcpus_paused(void)4169 static int all_vcpus_paused(void)
4170 {
4171     CPUState *penv = first_cpu;
4172 
4173     while (penv) {
4174         if (!penv->stopped)
4175             return 0;
4176         penv = (CPUState *)penv->next_cpu;
4177     }
4178 
4179     return 1;
4180 }
4181 
pause_all_vcpus(void)4182 static void pause_all_vcpus(void)
4183 {
4184     CPUState *penv = first_cpu;
4185 
4186     while (penv) {
4187         penv->stop = 1;
4188         qemu_thread_signal(penv->thread, SIGUSR1);
4189         qemu_cpu_kick(penv);
4190         penv = (CPUState *)penv->next_cpu;
4191     }
4192 
4193     while (!all_vcpus_paused()) {
4194         qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4195         penv = first_cpu;
4196         while (penv) {
4197             qemu_thread_signal(penv->thread, SIGUSR1);
4198             penv = (CPUState *)penv->next_cpu;
4199         }
4200     }
4201 }
4202 
resume_all_vcpus(void)4203 static void resume_all_vcpus(void)
4204 {
4205     CPUState *penv = first_cpu;
4206 
4207     while (penv) {
4208         penv->stop = 0;
4209         penv->stopped = 0;
4210         qemu_thread_signal(penv->thread, SIGUSR1);
4211         qemu_cpu_kick(penv);
4212         penv = (CPUState *)penv->next_cpu;
4213     }
4214 }
4215 
tcg_init_vcpu(void * _env)4216 static void tcg_init_vcpu(void *_env)
4217 {
4218     CPUState *env = _env;
4219     /* share a single thread for all cpus with TCG */
4220     if (!tcg_cpu_thread) {
4221         env->thread = qemu_mallocz(sizeof(QemuThread));
4222         env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4223         qemu_cond_init(env->halt_cond);
4224         qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4225         while (env->created == 0)
4226             qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4227         tcg_cpu_thread = env->thread;
4228         tcg_halt_cond = env->halt_cond;
4229     } else {
4230         env->thread = tcg_cpu_thread;
4231         env->halt_cond = tcg_halt_cond;
4232     }
4233 }
4234 
kvm_start_vcpu(CPUState * env)4235 static void kvm_start_vcpu(CPUState *env)
4236 {
4237 #if 0
4238     kvm_init_vcpu(env);
4239     env->thread = qemu_mallocz(sizeof(QemuThread));
4240     env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4241     qemu_cond_init(env->halt_cond);
4242     qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4243     while (env->created == 0)
4244         qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4245 #endif
4246 }
4247 
qemu_init_vcpu(void * _env)4248 void qemu_init_vcpu(void *_env)
4249 {
4250     CPUState *env = _env;
4251 
4252     if (kvm_enabled())
4253         kvm_start_vcpu(env);
4254     else
4255         tcg_init_vcpu(env);
4256 }
4257 
qemu_notify_event(void)4258 void qemu_notify_event(void)
4259 {
4260     qemu_event_increment();
4261 }
4262 
vm_stop(int reason)4263 void vm_stop(int reason)
4264 {
4265     QemuThread me;
4266     qemu_thread_self(&me);
4267 
4268     if (!qemu_thread_equal(&me, &io_thread)) {
4269         qemu_system_vmstop_request(reason);
4270         /*
4271          * FIXME: should not return to device code in case
4272          * vm_stop() has been requested.
4273          */
4274         if (cpu_single_env) {
4275             cpu_exit(cpu_single_env);
4276             cpu_single_env->stop = 1;
4277         }
4278         return;
4279     }
4280     do_vm_stop(reason);
4281 }
4282 
4283 #endif
4284 
4285 
4286 #ifdef _WIN32
host_main_loop_wait(int * timeout)4287 static void host_main_loop_wait(int *timeout)
4288 {
4289     int ret, ret2, i;
4290     PollingEntry *pe;
4291 
4292 
4293     /* XXX: need to suppress polling by better using win32 events */
4294     ret = 0;
4295     for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4296         ret |= pe->func(pe->opaque);
4297     }
4298     if (ret == 0) {
4299         int err;
4300         WaitObjects *w = &wait_objects;
4301 
4302         ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4303         if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4304             if (w->func[ret - WAIT_OBJECT_0])
4305                 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4306 
4307             /* Check for additional signaled events */
4308             for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4309 
4310                 /* Check if event is signaled */
4311                 ret2 = WaitForSingleObject(w->events[i], 0);
4312                 if(ret2 == WAIT_OBJECT_0) {
4313                     if (w->func[i])
4314                         w->func[i](w->opaque[i]);
4315                 } else if (ret2 == WAIT_TIMEOUT) {
4316                 } else {
4317                     err = GetLastError();
4318                     fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4319                 }
4320             }
4321         } else if (ret == WAIT_TIMEOUT) {
4322         } else {
4323             err = GetLastError();
4324             fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4325         }
4326     }
4327 
4328     *timeout = 0;
4329 }
4330 #else
host_main_loop_wait(int * timeout)4331 static void host_main_loop_wait(int *timeout)
4332 {
4333 }
4334 #endif
4335 
main_loop_wait(int timeout)4336 void main_loop_wait(int timeout)
4337 {
4338     IOHandlerRecord *ioh;
4339     fd_set rfds, wfds, xfds;
4340     int ret, nfds;
4341     struct timeval tv;
4342 
4343     qemu_bh_update_timeout(&timeout);
4344 
4345     host_main_loop_wait(&timeout);
4346 
4347     /* poll any events */
4348     /* XXX: separate device handlers from system ones */
4349     nfds = -1;
4350     FD_ZERO(&rfds);
4351     FD_ZERO(&wfds);
4352     FD_ZERO(&xfds);
4353     for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4354         if (ioh->deleted)
4355             continue;
4356         if (ioh->fd_read &&
4357             (!ioh->fd_read_poll ||
4358              ioh->fd_read_poll(ioh->opaque) != 0)) {
4359             FD_SET(ioh->fd, &rfds);
4360             if (ioh->fd > nfds)
4361                 nfds = ioh->fd;
4362         }
4363         if (ioh->fd_write) {
4364             FD_SET(ioh->fd, &wfds);
4365             if (ioh->fd > nfds)
4366                 nfds = ioh->fd;
4367         }
4368     }
4369 
4370     tv.tv_sec = timeout / 1000;
4371     tv.tv_usec = (timeout % 1000) * 1000;
4372 
4373 #if defined(CONFIG_SLIRP)
4374     if (slirp_is_inited()) {
4375         slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4376     }
4377 #endif
4378     qemu_mutex_unlock_iothread();
4379     ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4380     qemu_mutex_lock_iothread();
4381     if (ret > 0) {
4382         IOHandlerRecord **pioh;
4383 
4384         for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4385             if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4386                 ioh->fd_read(ioh->opaque);
4387             }
4388             if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4389                 ioh->fd_write(ioh->opaque);
4390             }
4391         }
4392 
4393 	/* remove deleted IO handlers */
4394 	pioh = &first_io_handler;
4395 	while (*pioh) {
4396             ioh = *pioh;
4397             if (ioh->deleted) {
4398                 *pioh = ioh->next;
4399                 qemu_free(ioh);
4400             } else
4401                 pioh = &ioh->next;
4402         }
4403     }
4404 #if defined(CONFIG_SLIRP)
4405     if (slirp_is_inited()) {
4406         if (ret < 0) {
4407             FD_ZERO(&rfds);
4408             FD_ZERO(&wfds);
4409             FD_ZERO(&xfds);
4410         }
4411         slirp_select_poll(&rfds, &wfds, &xfds);
4412     }
4413 #endif
4414     charpipe_poll();
4415 
4416     /* rearm timer, if not periodic */
4417     if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4418         alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4419         qemu_rearm_alarm_timer(alarm_timer);
4420     }
4421 
4422     /* vm time timers */
4423     if (vm_running) {
4424         if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4425             qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4426                 qemu_get_clock(vm_clock));
4427     }
4428 
4429     /* real time timers */
4430     qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4431                     qemu_get_clock(rt_clock));
4432 
4433     /* Check bottom-halves last in case any of the earlier events triggered
4434        them.  */
4435     qemu_bh_poll();
4436 
4437 }
4438 
qemu_cpu_exec(CPUState * env)4439 static int qemu_cpu_exec(CPUState *env)
4440 {
4441     int ret;
4442 #ifdef CONFIG_PROFILER
4443     int64_t ti;
4444 #endif
4445 
4446 #ifdef CONFIG_PROFILER
4447     ti = profile_getclock();
4448 #endif
4449     if (use_icount) {
4450         int64_t count;
4451         int decr;
4452         qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4453         env->icount_decr.u16.low = 0;
4454         env->icount_extra = 0;
4455         count = qemu_next_deadline();
4456         count = (count + (1 << icount_time_shift) - 1)
4457                 >> icount_time_shift;
4458         qemu_icount += count;
4459         decr = (count > 0xffff) ? 0xffff : count;
4460         count -= decr;
4461         env->icount_decr.u16.low = decr;
4462         env->icount_extra = count;
4463     }
4464 #ifdef CONFIG_TRACE
4465     if (tbflush_requested) {
4466         tbflush_requested = 0;
4467         tb_flush(env);
4468         return EXCP_INTERRUPT;
4469     }
4470 #endif
4471 
4472 
4473     ret = cpu_exec(env);
4474 #ifdef CONFIG_PROFILER
4475     qemu_time += profile_getclock() - ti;
4476 #endif
4477     if (use_icount) {
4478         /* Fold pending instructions back into the
4479            instruction counter, and clear the interrupt flag.  */
4480         qemu_icount -= (env->icount_decr.u16.low
4481                         + env->icount_extra);
4482         env->icount_decr.u32 = 0;
4483         env->icount_extra = 0;
4484     }
4485     return ret;
4486 }
4487 
tcg_cpu_exec(void)4488 static void tcg_cpu_exec(void)
4489 {
4490     int ret = 0;
4491 
4492     if (next_cpu == NULL)
4493         next_cpu = first_cpu;
4494     for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4495         CPUState *env = cur_cpu = next_cpu;
4496 
4497         if (!vm_running)
4498             break;
4499         if (timer_alarm_pending) {
4500             timer_alarm_pending = 0;
4501             break;
4502         }
4503         if (cpu_can_run(env))
4504             ret = qemu_cpu_exec(env);
4505         if (ret == EXCP_DEBUG) {
4506             gdb_set_stop_cpu(env);
4507             debug_requested = 1;
4508             break;
4509         }
4510     }
4511 }
4512 
cpu_has_work(CPUState * env)4513 static int cpu_has_work(CPUState *env)
4514 {
4515     if (env->stop)
4516         return 1;
4517     if (env->stopped)
4518         return 0;
4519     if (!env->halted)
4520         return 1;
4521     if (qemu_cpu_has_work(env))
4522         return 1;
4523     return 0;
4524 }
4525 
tcg_has_work(void)4526 static int tcg_has_work(void)
4527 {
4528     CPUState *env;
4529 
4530     for (env = first_cpu; env != NULL; env = env->next_cpu)
4531         if (cpu_has_work(env))
4532             return 1;
4533     return 0;
4534 }
4535 
qemu_calculate_timeout(void)4536 static int qemu_calculate_timeout(void)
4537 {
4538 #ifndef CONFIG_IOTHREAD
4539     int timeout;
4540 
4541     if (!vm_running)
4542         timeout = 5000;
4543     else if (tcg_has_work())
4544         timeout = 0;
4545     else if (!use_icount)
4546         timeout = 5000;
4547     else {
4548      /* XXX: use timeout computed from timers */
4549         int64_t add;
4550         int64_t delta;
4551         /* Advance virtual time to the next event.  */
4552         if (use_icount == 1) {
4553             /* When not using an adaptive execution frequency
4554                we tend to get badly out of sync with real time,
4555                so just delay for a reasonable amount of time.  */
4556             delta = 0;
4557         } else {
4558             delta = cpu_get_icount() - cpu_get_clock();
4559         }
4560         if (delta > 0) {
4561             /* If virtual time is ahead of real time then just
4562                wait for IO.  */
4563             timeout = (delta / 1000000) + 1;
4564         } else {
4565             /* Wait for either IO to occur or the next
4566                timer event.  */
4567             add = qemu_next_deadline();
4568             /* We advance the timer before checking for IO.
4569                Limit the amount we advance so that early IO
4570                activity won't get the guest too far ahead.  */
4571             if (add > 10000000)
4572                 add = 10000000;
4573             delta += add;
4574             add = (add + (1 << icount_time_shift) - 1)
4575                   >> icount_time_shift;
4576             qemu_icount += add;
4577             timeout = delta / 1000000;
4578             if (timeout < 0)
4579                 timeout = 0;
4580         }
4581     }
4582 
4583     return timeout;
4584 #else /* CONFIG_IOTHREAD */
4585     return 1000;
4586 #endif
4587 }
4588 
vm_can_run(void)4589 static int vm_can_run(void)
4590 {
4591     if (powerdown_requested)
4592         return 0;
4593     if (reset_requested)
4594         return 0;
4595     if (shutdown_requested)
4596         return 0;
4597     if (debug_requested)
4598         return 0;
4599     return 1;
4600 }
4601 
main_loop(void)4602 static void main_loop(void)
4603 {
4604     int r;
4605 
4606 #ifdef CONFIG_IOTHREAD
4607     qemu_system_ready = 1;
4608     qemu_cond_broadcast(&qemu_system_cond);
4609 #endif
4610 
4611     for (;;) {
4612         do {
4613 #ifdef CONFIG_PROFILER
4614             int64_t ti;
4615 #endif
4616 #ifndef CONFIG_IOTHREAD
4617             tcg_cpu_exec();
4618 #endif
4619 #ifdef CONFIG_PROFILER
4620             ti = profile_getclock();
4621 #endif
4622             main_loop_wait(qemu_calculate_timeout());
4623 #ifdef CONFIG_PROFILER
4624             dev_time += profile_getclock() - ti;
4625 #endif
4626         } while (vm_can_run());
4627 
4628         if (qemu_debug_requested())
4629             vm_stop(EXCP_DEBUG);
4630         if (qemu_shutdown_requested()) {
4631             if (no_shutdown) {
4632                 vm_stop(0);
4633                 no_shutdown = 0;
4634             } else
4635                 break;
4636         }
4637         if (qemu_reset_requested()) {
4638             pause_all_vcpus();
4639             qemu_system_reset();
4640             resume_all_vcpus();
4641         }
4642         if (qemu_powerdown_requested())
4643             qemu_system_powerdown();
4644         if ((r = qemu_vmstop_requested()))
4645             vm_stop(r);
4646     }
4647     pause_all_vcpus();
4648 }
4649 
version(void)4650 static void version(void)
4651 {
4652     printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4653 }
4654 
qemu_help(int exitcode)4655 void qemu_help(int exitcode)
4656 {
4657     version();
4658     printf("usage: %s [options] [disk_image]\n"
4659            "\n"
4660            "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4661            "\n"
4662 #define DEF(option, opt_arg, opt_enum, opt_help)        \
4663            opt_help
4664 #define DEFHEADING(text) stringify(text) "\n"
4665 #include "qemu-options.h"
4666 #undef DEF
4667 #undef DEFHEADING
4668 #undef GEN_DOCS
4669            "\n"
4670            "During emulation, the following keys are useful:\n"
4671            "ctrl-alt-f      toggle full screen\n"
4672            "ctrl-alt-n      switch to virtual console 'n'\n"
4673            "ctrl-alt        toggle mouse and keyboard grab\n"
4674            "\n"
4675            "When using -nographic, press 'ctrl-a h' to get some help.\n"
4676            ,
4677            "qemu",
4678            DEFAULT_RAM_SIZE,
4679 #ifndef _WIN32
4680            DEFAULT_NETWORK_SCRIPT,
4681            DEFAULT_NETWORK_DOWN_SCRIPT,
4682 #endif
4683            DEFAULT_GDBSTUB_PORT,
4684            "/tmp/qemu.log");
4685     exit(exitcode);
4686 }
4687 
4688 #define HAS_ARG 0x0001
4689 
4690 enum {
4691 #define DEF(option, opt_arg, opt_enum, opt_help)        \
4692     opt_enum,
4693 #define DEFHEADING(text)
4694 #include "qemu-options.h"
4695 #undef DEF
4696 #undef DEFHEADING
4697 #undef GEN_DOCS
4698 };
4699 
4700 typedef struct QEMUOption {
4701     const char *name;
4702     int flags;
4703     int index;
4704 } QEMUOption;
4705 
4706 static const QEMUOption qemu_options[] = {
4707     { "h", 0, QEMU_OPTION_h },
4708 #define DEF(option, opt_arg, opt_enum, opt_help)        \
4709     { option, opt_arg, opt_enum },
4710 #define DEFHEADING(text)
4711 #include "qemu-options.h"
4712 #undef DEF
4713 #undef DEFHEADING
4714 #undef GEN_DOCS
4715     { NULL, 0, 0 },
4716 };
4717 
4718 #ifdef HAS_AUDIO
4719 struct soundhw soundhw[] = {
4720 #ifdef HAS_AUDIO_CHOICE
4721 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4722     {
4723         "pcspk",
4724         "PC speaker",
4725         0,
4726         1,
4727         { .init_isa = pcspk_audio_init }
4728     },
4729 #endif
4730 
4731 #ifdef CONFIG_SB16
4732     {
4733         "sb16",
4734         "Creative Sound Blaster 16",
4735         0,
4736         1,
4737         { .init_isa = SB16_init }
4738     },
4739 #endif
4740 
4741 #ifdef CONFIG_CS4231A
4742     {
4743         "cs4231a",
4744         "CS4231A",
4745         0,
4746         1,
4747         { .init_isa = cs4231a_init }
4748     },
4749 #endif
4750 
4751 #ifdef CONFIG_ADLIB
4752     {
4753         "adlib",
4754 #ifdef HAS_YMF262
4755         "Yamaha YMF262 (OPL3)",
4756 #else
4757         "Yamaha YM3812 (OPL2)",
4758 #endif
4759         0,
4760         1,
4761         { .init_isa = Adlib_init }
4762     },
4763 #endif
4764 
4765 #ifdef CONFIG_GUS
4766     {
4767         "gus",
4768         "Gravis Ultrasound GF1",
4769         0,
4770         1,
4771         { .init_isa = GUS_init }
4772     },
4773 #endif
4774 
4775 #ifdef CONFIG_AC97
4776     {
4777         "ac97",
4778         "Intel 82801AA AC97 Audio",
4779         0,
4780         0,
4781         { .init_pci = ac97_init }
4782     },
4783 #endif
4784 
4785 #ifdef CONFIG_ES1370
4786     {
4787         "es1370",
4788         "ENSONIQ AudioPCI ES1370",
4789         0,
4790         0,
4791         { .init_pci = es1370_init }
4792     },
4793 #endif
4794 
4795 #endif /* HAS_AUDIO_CHOICE */
4796 
4797     { NULL, NULL, 0, 0, { NULL } }
4798 };
4799 
select_soundhw(const char * optarg)4800 static void select_soundhw (const char *optarg)
4801 {
4802     struct soundhw *c;
4803 
4804     if (*optarg == '?') {
4805     show_valid_cards:
4806 
4807         printf ("Valid sound card names (comma separated):\n");
4808         for (c = soundhw; c->name; ++c) {
4809             printf ("%-11s %s\n", c->name, c->descr);
4810         }
4811         printf ("\n-soundhw all will enable all of the above\n");
4812         exit (*optarg != '?');
4813     }
4814     else {
4815         size_t l;
4816         const char *p;
4817         char *e;
4818         int bad_card = 0;
4819 
4820         if (!strcmp (optarg, "all")) {
4821             for (c = soundhw; c->name; ++c) {
4822                 c->enabled = 1;
4823             }
4824             return;
4825         }
4826 
4827         p = optarg;
4828         while (*p) {
4829             e = strchr (p, ',');
4830             l = !e ? strlen (p) : (size_t) (e - p);
4831 
4832             for (c = soundhw; c->name; ++c) {
4833                 if (!strncmp (c->name, p, l)) {
4834                     c->enabled = 1;
4835                     break;
4836                 }
4837             }
4838 
4839             if (!c->name) {
4840                 if (l > 80) {
4841                     fprintf (stderr,
4842                              "Unknown sound card name (too big to show)\n");
4843                 }
4844                 else {
4845                     fprintf (stderr, "Unknown sound card name `%.*s'\n",
4846                              (int) l, p);
4847                 }
4848                 bad_card = 1;
4849             }
4850             p += l + (e != NULL);
4851         }
4852 
4853         if (bad_card)
4854             goto show_valid_cards;
4855     }
4856 }
4857 #endif
4858 
select_vgahw(const char * p)4859 static void select_vgahw (const char *p)
4860 {
4861     const char *opts;
4862 
4863     cirrus_vga_enabled = 0;
4864     std_vga_enabled = 0;
4865     vmsvga_enabled = 0;
4866     xenfb_enabled = 0;
4867     if (strstart(p, "std", &opts)) {
4868         std_vga_enabled = 1;
4869     } else if (strstart(p, "cirrus", &opts)) {
4870         cirrus_vga_enabled = 1;
4871     } else if (strstart(p, "vmware", &opts)) {
4872         vmsvga_enabled = 1;
4873     } else if (strstart(p, "xenfb", &opts)) {
4874         xenfb_enabled = 1;
4875     } else if (!strstart(p, "none", &opts)) {
4876     invalid_vga:
4877         fprintf(stderr, "Unknown vga type: %s\n", p);
4878         exit(1);
4879     }
4880     while (*opts) {
4881         const char *nextopt;
4882 
4883         if (strstart(opts, ",retrace=", &nextopt)) {
4884             opts = nextopt;
4885             if (strstart(opts, "dumb", &nextopt))
4886                 vga_retrace_method = VGA_RETRACE_DUMB;
4887             else if (strstart(opts, "precise", &nextopt))
4888                 vga_retrace_method = VGA_RETRACE_PRECISE;
4889             else goto invalid_vga;
4890         } else goto invalid_vga;
4891         opts = nextopt;
4892     }
4893 }
4894 
4895 #ifdef _WIN32
qemu_ctrl_handler(DWORD type)4896 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4897 {
4898     exit(STATUS_CONTROL_C_EXIT);
4899     return TRUE;
4900 }
4901 #endif
4902 
qemu_uuid_parse(const char * str,uint8_t * uuid)4903 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4904 {
4905     int ret;
4906 
4907     if(strlen(str) != 36)
4908         return -1;
4909 
4910     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4911             &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4912             &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4913 
4914     if(ret != 16)
4915         return -1;
4916 
4917 #ifdef TARGET_I386
4918     smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4919 #endif
4920 
4921     return 0;
4922 }
4923 
4924 #define MAX_NET_CLIENTS 32
4925 
4926 #ifndef _WIN32
4927 
termsig_handler(int signal)4928 static void termsig_handler(int signal)
4929 {
4930     qemu_system_shutdown_request();
4931 }
4932 
sigchld_handler(int signal)4933 static void sigchld_handler(int signal)
4934 {
4935     waitpid(-1, NULL, WNOHANG);
4936 }
4937 
sighandler_setup(void)4938 static void sighandler_setup(void)
4939 {
4940     struct sigaction act;
4941 
4942     memset(&act, 0, sizeof(act));
4943     act.sa_handler = termsig_handler;
4944     sigaction(SIGINT,  &act, NULL);
4945     sigaction(SIGHUP,  &act, NULL);
4946     sigaction(SIGTERM, &act, NULL);
4947 
4948     act.sa_handler = sigchld_handler;
4949     act.sa_flags = SA_NOCLDSTOP;
4950     sigaction(SIGCHLD, &act, NULL);
4951 }
4952 
4953 #endif
4954 
4955 #ifdef _WIN32
4956 /* Look for support files in the same directory as the executable.  */
find_datadir(const char * argv0)4957 static char *find_datadir(const char *argv0)
4958 {
4959     char *p;
4960     char buf[MAX_PATH];
4961     DWORD len;
4962 
4963     len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4964     if (len == 0) {
4965         return NULL;
4966     }
4967 
4968     buf[len] = 0;
4969     p = buf + len - 1;
4970     while (p != buf && *p != '\\')
4971         p--;
4972     *p = 0;
4973     if (access(buf, R_OK) == 0) {
4974         return qemu_strdup(buf);
4975     }
4976     return NULL;
4977 }
4978 #else /* !_WIN32 */
4979 
4980 /* Find a likely location for support files using the location of the binary.
4981    For installed binaries this will be "$bindir/../share/qemu".  When
4982    running from the build tree this will be "$bindir/../pc-bios".  */
4983 #define SHARE_SUFFIX "/share/qemu"
4984 #define BUILD_SUFFIX "/pc-bios"
find_datadir(const char * argv0)4985 static char *find_datadir(const char *argv0)
4986 {
4987     char *dir;
4988     char *p = NULL;
4989     char *res;
4990 #ifdef PATH_MAX
4991     char buf[PATH_MAX];
4992 #endif
4993     size_t max_len;
4994 
4995 #if defined(__linux__)
4996     {
4997         int len;
4998         len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4999         if (len > 0) {
5000             buf[len] = 0;
5001             p = buf;
5002         }
5003     }
5004 #elif defined(__FreeBSD__)
5005     {
5006         int len;
5007         len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
5008         if (len > 0) {
5009             buf[len] = 0;
5010             p = buf;
5011         }
5012     }
5013 #endif
5014     /* If we don't have any way of figuring out the actual executable
5015        location then try argv[0].  */
5016     if (!p) {
5017 #ifdef PATH_MAX
5018         p = buf;
5019 #endif
5020         p = realpath(argv0, p);
5021         if (!p) {
5022             return NULL;
5023         }
5024     }
5025     dir = dirname(p);
5026     dir = dirname(dir);
5027 
5028     max_len = strlen(dir) +
5029         MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
5030     res = qemu_mallocz(max_len);
5031     snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
5032     if (access(res, R_OK)) {
5033         snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
5034         if (access(res, R_OK)) {
5035             qemu_free(res);
5036             res = NULL;
5037         }
5038     }
5039 #ifndef PATH_MAX
5040     free(p);
5041 #endif
5042     return res;
5043 }
5044 #undef SHARE_SUFFIX
5045 #undef BUILD_SUFFIX
5046 #endif
5047 
qemu_find_file(int type,const char * name)5048 char *qemu_find_file(int type, const char *name)
5049 {
5050     int len;
5051     const char *subdir;
5052     char *buf;
5053 
5054     /* If name contains path separators then try it as a straight path.  */
5055     if ((strchr(name, '/') || strchr(name, '\\'))
5056         && access(name, R_OK) == 0) {
5057         return strdup(name);
5058     }
5059     switch (type) {
5060     case QEMU_FILE_TYPE_BIOS:
5061         subdir = "";
5062         break;
5063     case QEMU_FILE_TYPE_KEYMAP:
5064         subdir = "keymaps/";
5065         break;
5066     default:
5067         abort();
5068     }
5069     len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
5070     buf = qemu_mallocz(len);
5071     snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
5072     if (access(buf, R_OK)) {
5073         qemu_free(buf);
5074         return NULL;
5075     }
5076     return buf;
5077 }
5078 
main(int argc,char ** argv,char ** envp)5079 int main(int argc, char **argv, char **envp)
5080 {
5081     const char *gdbstub_dev = NULL;
5082     uint32_t boot_devices_bitmap = 0;
5083     int i;
5084     int snapshot, linux_boot, net_boot;
5085     const char *initrd_filename;
5086     const char *kernel_filename, *kernel_cmdline;
5087     const char *boot_devices = "";
5088     DisplayState *ds;
5089     DisplayChangeListener *dcl;
5090     int cyls, heads, secs, translation;
5091     const char *net_clients[MAX_NET_CLIENTS];
5092     int nb_net_clients;
5093     const char *bt_opts[MAX_BT_CMDLINE];
5094     int nb_bt_opts;
5095     int hda_index;
5096     int optind;
5097     const char *r, *optarg;
5098     CharDriverState *monitor_hd = NULL;
5099     const char *monitor_device;
5100     const char *serial_devices[MAX_SERIAL_PORTS];
5101     int serial_device_index;
5102     const char *parallel_devices[MAX_PARALLEL_PORTS];
5103     int parallel_device_index;
5104     const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
5105     int virtio_console_index;
5106     const char *loadvm = NULL;
5107     QEMUMachine *machine;
5108     const char *cpu_model;
5109     const char *usb_devices[MAX_USB_CMDLINE];
5110     int usb_devices_index;
5111 #ifndef _WIN32
5112     int fds[2];
5113 #endif
5114     int tb_size;
5115     const char *pid_file = NULL;
5116     const char *incoming = NULL;
5117 #ifndef _WIN32
5118     int fd = 0;
5119     struct passwd *pwd = NULL;
5120     const char *chroot_dir = NULL;
5121     const char *run_as = NULL;
5122 #endif
5123     CPUState *env;
5124     int show_vnc_port = 0;
5125 
5126     qemu_cache_utils_init(envp);
5127 
5128     LIST_INIT (&vm_change_state_head);
5129 #ifndef _WIN32
5130     {
5131         struct sigaction act;
5132         sigfillset(&act.sa_mask);
5133         act.sa_flags = 0;
5134         act.sa_handler = SIG_IGN;
5135         sigaction(SIGPIPE, &act, NULL);
5136     }
5137 #else
5138     SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
5139     /* Note: cpu_interrupt() is currently not SMP safe, so we force
5140        QEMU to run on a single CPU */
5141     {
5142         HANDLE h;
5143         DWORD mask, smask;
5144         int i;
5145         h = GetCurrentProcess();
5146         if (GetProcessAffinityMask(h, &mask, &smask)) {
5147             for(i = 0; i < 32; i++) {
5148                 if (mask & (1 << i))
5149                     break;
5150             }
5151             if (i != 32) {
5152                 mask = 1 << i;
5153                 SetProcessAffinityMask(h, mask);
5154             }
5155         }
5156     }
5157 #endif
5158 
5159     module_call_init(MODULE_INIT_MACHINE);
5160     machine = find_default_machine();
5161     cpu_model = NULL;
5162     initrd_filename = NULL;
5163     ram_size = 0;
5164     snapshot = 0;
5165     kernel_filename = NULL;
5166     kernel_cmdline = "";
5167     cyls = heads = secs = 0;
5168     translation = BIOS_ATA_TRANSLATION_AUTO;
5169     monitor_device = "vc:80Cx24C";
5170 
5171     serial_devices[0] = "vc:80Cx24C";
5172     for(i = 1; i < MAX_SERIAL_PORTS; i++)
5173         serial_devices[i] = NULL;
5174     serial_device_index = 0;
5175 
5176     parallel_devices[0] = "vc:80Cx24C";
5177     for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5178         parallel_devices[i] = NULL;
5179     parallel_device_index = 0;
5180 
5181     for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5182         virtio_consoles[i] = NULL;
5183     virtio_console_index = 0;
5184 
5185     for (i = 0; i < MAX_NODES; i++) {
5186         node_mem[i] = 0;
5187         node_cpumask[i] = 0;
5188     }
5189 
5190     usb_devices_index = 0;
5191 
5192     nb_net_clients = 0;
5193     nb_bt_opts = 0;
5194     nb_drives = 0;
5195     nb_drives_opt = 0;
5196     nb_numa_nodes = 0;
5197     hda_index = -1;
5198 
5199     nb_nics = 0;
5200 
5201     tb_size = 0;
5202     autostart= 1;
5203 
5204     register_watchdogs();
5205 
5206     optind = 1;
5207     for(;;) {
5208         if (optind >= argc)
5209             break;
5210         r = argv[optind];
5211         if (r[0] != '-') {
5212 	    hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5213         } else {
5214             const QEMUOption *popt;
5215 
5216             optind++;
5217             /* Treat --foo the same as -foo.  */
5218             if (r[1] == '-')
5219                 r++;
5220             popt = qemu_options;
5221             for(;;) {
5222                 if (!popt->name) {
5223                     fprintf(stderr, "%s: invalid option -- '%s'\n",
5224                             argv[0], r);
5225                     exit(1);
5226                 }
5227                 if (!strcmp(popt->name, r + 1))
5228                     break;
5229                 popt++;
5230             }
5231             if (popt->flags & HAS_ARG) {
5232                 if (optind >= argc) {
5233                     fprintf(stderr, "%s: option '%s' requires an argument\n",
5234                             argv[0], r);
5235                     exit(1);
5236                 }
5237                 optarg = argv[optind++];
5238             } else {
5239                 optarg = NULL;
5240             }
5241 
5242             switch(popt->index) {
5243             case QEMU_OPTION_M:
5244                 machine = find_machine(optarg);
5245                 if (!machine) {
5246                     QEMUMachine *m;
5247                     printf("Supported machines are:\n");
5248                     for(m = first_machine; m != NULL; m = m->next) {
5249                         printf("%-10s %s%s\n",
5250                                m->name, m->desc,
5251                                m->is_default ? " (default)" : "");
5252                     }
5253                     exit(*optarg != '?');
5254                 }
5255                 break;
5256             case QEMU_OPTION_cpu:
5257                 /* hw initialization will check this */
5258                 if (*optarg == '?') {
5259 /* XXX: implement xxx_cpu_list for targets that still miss it */
5260 #if defined(cpu_list)
5261                     cpu_list(stdout, &fprintf);
5262 #endif
5263                     exit(0);
5264                 } else {
5265                     cpu_model = optarg;
5266                 }
5267                 break;
5268             case QEMU_OPTION_initrd:
5269                 initrd_filename = optarg;
5270                 break;
5271             case QEMU_OPTION_hda:
5272                 if (cyls == 0)
5273                     hda_index = drive_add(optarg, HD_ALIAS, 0);
5274                 else
5275                     hda_index = drive_add(optarg, HD_ALIAS
5276 			     ",cyls=%d,heads=%d,secs=%d%s",
5277                              0, cyls, heads, secs,
5278                              translation == BIOS_ATA_TRANSLATION_LBA ?
5279                                  ",trans=lba" :
5280                              translation == BIOS_ATA_TRANSLATION_NONE ?
5281                                  ",trans=none" : "");
5282                  break;
5283             case QEMU_OPTION_hdb:
5284             case QEMU_OPTION_hdc:
5285             case QEMU_OPTION_hdd:
5286                 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5287                 break;
5288             case QEMU_OPTION_drive:
5289                 drive_add(NULL, "%s", optarg);
5290 	        break;
5291             case QEMU_OPTION_mtdblock:
5292                 drive_add(optarg, MTD_ALIAS);
5293                 break;
5294             case QEMU_OPTION_sd:
5295                 drive_add(optarg, SD_ALIAS);
5296                 break;
5297             case QEMU_OPTION_pflash:
5298                 drive_add(optarg, PFLASH_ALIAS);
5299                 break;
5300             case QEMU_OPTION_snapshot:
5301                 snapshot = 1;
5302                 break;
5303             case QEMU_OPTION_hdachs:
5304                 {
5305                     const char *p;
5306                     p = optarg;
5307                     cyls = strtol(p, (char **)&p, 0);
5308                     if (cyls < 1 || cyls > 16383)
5309                         goto chs_fail;
5310                     if (*p != ',')
5311                         goto chs_fail;
5312                     p++;
5313                     heads = strtol(p, (char **)&p, 0);
5314                     if (heads < 1 || heads > 16)
5315                         goto chs_fail;
5316                     if (*p != ',')
5317                         goto chs_fail;
5318                     p++;
5319                     secs = strtol(p, (char **)&p, 0);
5320                     if (secs < 1 || secs > 63)
5321                         goto chs_fail;
5322                     if (*p == ',') {
5323                         p++;
5324                         if (!strcmp(p, "none"))
5325                             translation = BIOS_ATA_TRANSLATION_NONE;
5326                         else if (!strcmp(p, "lba"))
5327                             translation = BIOS_ATA_TRANSLATION_LBA;
5328                         else if (!strcmp(p, "auto"))
5329                             translation = BIOS_ATA_TRANSLATION_AUTO;
5330                         else
5331                             goto chs_fail;
5332                     } else if (*p != '\0') {
5333                     chs_fail:
5334                         fprintf(stderr, "qemu: invalid physical CHS format\n");
5335                         exit(1);
5336                     }
5337 		    if (hda_index != -1)
5338                         snprintf(drives_opt[hda_index].opt,
5339                                  sizeof(drives_opt[hda_index].opt),
5340                                  HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5341                                  0, cyls, heads, secs,
5342 			         translation == BIOS_ATA_TRANSLATION_LBA ?
5343 			     	    ",trans=lba" :
5344 			         translation == BIOS_ATA_TRANSLATION_NONE ?
5345 			             ",trans=none" : "");
5346                 }
5347                 break;
5348             case QEMU_OPTION_numa:
5349                 if (nb_numa_nodes >= MAX_NODES) {
5350                     fprintf(stderr, "qemu: too many NUMA nodes\n");
5351                     exit(1);
5352                 }
5353                 numa_add(optarg);
5354                 break;
5355             case QEMU_OPTION_nographic:
5356                 display_type = DT_NOGRAPHIC;
5357                 break;
5358 #ifdef CONFIG_CURSES
5359             case QEMU_OPTION_curses:
5360                 display_type = DT_CURSES;
5361                 break;
5362 #endif
5363             case QEMU_OPTION_portrait:
5364                 graphic_rotate = 1;
5365                 break;
5366             case QEMU_OPTION_kernel:
5367                 kernel_filename = optarg;
5368                 break;
5369             case QEMU_OPTION_append:
5370                 kernel_cmdline = optarg;
5371                 break;
5372             case QEMU_OPTION_cdrom:
5373                 drive_add(optarg, CDROM_ALIAS);
5374                 break;
5375             case QEMU_OPTION_boot:
5376                 boot_devices = optarg;
5377                 /* We just do some generic consistency checks */
5378                 {
5379                     /* Could easily be extended to 64 devices if needed */
5380                     const char *p;
5381 
5382                     boot_devices_bitmap = 0;
5383                     for (p = boot_devices; *p != '\0'; p++) {
5384                         /* Allowed boot devices are:
5385                          * a b     : floppy disk drives
5386                          * c ... f : IDE disk drives
5387                          * g ... m : machine implementation dependant drives
5388                          * n ... p : network devices
5389                          * It's up to each machine implementation to check
5390                          * if the given boot devices match the actual hardware
5391                          * implementation and firmware features.
5392                          */
5393                         if (*p < 'a' || *p > 'q') {
5394                             fprintf(stderr, "Invalid boot device '%c'\n", *p);
5395                             exit(1);
5396                         }
5397                         if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5398                             fprintf(stderr,
5399                                     "Boot device '%c' was given twice\n",*p);
5400                             exit(1);
5401                         }
5402                         boot_devices_bitmap |= 1 << (*p - 'a');
5403                     }
5404                 }
5405                 break;
5406             case QEMU_OPTION_fda:
5407             case QEMU_OPTION_fdb:
5408                 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5409                 break;
5410 #ifdef TARGET_I386
5411             case QEMU_OPTION_no_fd_bootchk:
5412                 fd_bootchk = 0;
5413                 break;
5414 #endif
5415             case QEMU_OPTION_net:
5416                 if (nb_net_clients >= MAX_NET_CLIENTS) {
5417                     fprintf(stderr, "qemu: too many network clients\n");
5418                     exit(1);
5419                 }
5420                 net_clients[nb_net_clients] = optarg;
5421                 nb_net_clients++;
5422                 break;
5423 #ifdef CONFIG_SLIRP
5424             case QEMU_OPTION_tftp:
5425 		tftp_prefix = optarg;
5426                 break;
5427             case QEMU_OPTION_bootp:
5428                 bootp_filename = optarg;
5429                 break;
5430 #if 0  /* ANDROID disabled */
5431 #ifndef _WIN32
5432             case QEMU_OPTION_smb:
5433 		net_slirp_smb(optarg);
5434                 break;
5435 #endif
5436 #endif /* ANDROID */
5437             case QEMU_OPTION_redir:
5438                 net_slirp_redir(NULL, optarg, NULL);
5439                 break;
5440 #endif
5441             case QEMU_OPTION_bt:
5442                 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5443                     fprintf(stderr, "qemu: too many bluetooth options\n");
5444                     exit(1);
5445                 }
5446                 bt_opts[nb_bt_opts++] = optarg;
5447                 break;
5448 #ifdef HAS_AUDIO
5449             case QEMU_OPTION_audio_help:
5450                 AUD_help ();
5451                 exit (0);
5452                 break;
5453             case QEMU_OPTION_soundhw:
5454                 select_soundhw (optarg);
5455                 break;
5456 #endif
5457             case QEMU_OPTION_h:
5458                 qemu_help(0);
5459                 break;
5460             case QEMU_OPTION_version:
5461                 version();
5462                 exit(0);
5463                 break;
5464             case QEMU_OPTION_m: {
5465                 uint64_t value;
5466                 char *ptr;
5467 
5468                 value = strtoul(optarg, &ptr, 10);
5469                 switch (*ptr) {
5470                 case 0: case 'M': case 'm':
5471                     value <<= 20;
5472                     break;
5473                 case 'G': case 'g':
5474                     value <<= 30;
5475                     break;
5476                 default:
5477                     fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5478                     exit(1);
5479                 }
5480 
5481                 /* On 32-bit hosts, QEMU is limited by virtual address space */
5482                 if (value > (2047 << 20)
5483 #ifndef CONFIG_KQEMU
5484                     && HOST_LONG_BITS == 32
5485 #endif
5486                     ) {
5487                     fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5488                     exit(1);
5489                 }
5490                 if (value != (uint64_t)(ram_addr_t)value) {
5491                     fprintf(stderr, "qemu: ram size too large\n");
5492                     exit(1);
5493                 }
5494                 ram_size = value;
5495                 break;
5496             }
5497             case QEMU_OPTION_d:
5498                 {
5499                     int mask;
5500                     const CPULogItem *item;
5501 
5502                     mask = cpu_str_to_log_mask(optarg);
5503                     if (!mask) {
5504                         printf("Log items (comma separated):\n");
5505                     for(item = cpu_log_items; item->mask != 0; item++) {
5506                         printf("%-10s %s\n", item->name, item->help);
5507                     }
5508                     exit(1);
5509                     }
5510                     cpu_set_log(mask);
5511                 }
5512                 break;
5513             case QEMU_OPTION_s:
5514                 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5515                 break;
5516             case QEMU_OPTION_gdb:
5517                 gdbstub_dev = optarg;
5518                 break;
5519             case QEMU_OPTION_L:
5520                 data_dir = optarg;
5521                 break;
5522             case QEMU_OPTION_bios:
5523                 bios_name = optarg;
5524                 break;
5525             case QEMU_OPTION_singlestep:
5526                 singlestep = 1;
5527                 break;
5528             case QEMU_OPTION_S:
5529 #if 0  /* ANDROID */
5530                 fprintf(stderr, "Sorry, stopped launch is not supported in the Android emulator\n" );
5531                 exit(1);
5532 #endif
5533                 autostart = 0;
5534                 break;
5535 #ifndef _WIN32
5536 	    case QEMU_OPTION_k:
5537 		keyboard_layout = optarg;
5538 		break;
5539 #endif
5540             case QEMU_OPTION_localtime:
5541                 rtc_utc = 0;
5542                 break;
5543             case QEMU_OPTION_vga:
5544                 select_vgahw (optarg);
5545                 break;
5546 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5547             case QEMU_OPTION_g:
5548                 {
5549                     const char *p;
5550                     int w, h, depth;
5551                     p = optarg;
5552                     w = strtol(p, (char **)&p, 10);
5553                     if (w <= 0) {
5554                     graphic_error:
5555                         fprintf(stderr, "qemu: invalid resolution or depth\n");
5556                         exit(1);
5557                     }
5558                     if (*p != 'x')
5559                         goto graphic_error;
5560                     p++;
5561                     h = strtol(p, (char **)&p, 10);
5562                     if (h <= 0)
5563                         goto graphic_error;
5564                     if (*p == 'x') {
5565                         p++;
5566                         depth = strtol(p, (char **)&p, 10);
5567                         if (depth != 8 && depth != 15 && depth != 16 &&
5568                             depth != 24 && depth != 32)
5569                             goto graphic_error;
5570                     } else if (*p == '\0') {
5571                         depth = graphic_depth;
5572                     } else {
5573                         goto graphic_error;
5574                     }
5575 
5576                     graphic_width = w;
5577                     graphic_height = h;
5578                     graphic_depth = depth;
5579                 }
5580                 break;
5581 #endif
5582             case QEMU_OPTION_echr:
5583                 {
5584                     char *r;
5585                     term_escape_char = strtol(optarg, &r, 0);
5586                     if (r == optarg)
5587                         printf("Bad argument to echr\n");
5588                     break;
5589                 }
5590             case QEMU_OPTION_monitor:
5591                 monitor_device = optarg;
5592                 break;
5593             case QEMU_OPTION_serial:
5594                 if (serial_device_index >= MAX_SERIAL_PORTS) {
5595                     fprintf(stderr, "qemu: too many serial ports\n");
5596                     exit(1);
5597                 }
5598                 serial_devices[serial_device_index] = optarg;
5599                 serial_device_index++;
5600                 break;
5601             case QEMU_OPTION_watchdog:
5602                 i = select_watchdog(optarg);
5603                 if (i > 0)
5604                     exit (i == 1 ? 1 : 0);
5605                 break;
5606             case QEMU_OPTION_watchdog_action:
5607                 if (select_watchdog_action(optarg) == -1) {
5608                     fprintf(stderr, "Unknown -watchdog-action parameter\n");
5609                     exit(1);
5610                 }
5611                 break;
5612             case QEMU_OPTION_virtiocon:
5613                 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5614                     fprintf(stderr, "qemu: too many virtio consoles\n");
5615                     exit(1);
5616                 }
5617                 virtio_consoles[virtio_console_index] = optarg;
5618                 virtio_console_index++;
5619                 break;
5620             case QEMU_OPTION_parallel:
5621                 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5622                     fprintf(stderr, "qemu: too many parallel ports\n");
5623                     exit(1);
5624                 }
5625                 parallel_devices[parallel_device_index] = optarg;
5626                 parallel_device_index++;
5627                 break;
5628 	    case QEMU_OPTION_loadvm:
5629 		loadvm = optarg;
5630 		break;
5631             case QEMU_OPTION_full_screen:
5632                 full_screen = 1;
5633                 break;
5634 #ifdef CONFIG_SDL
5635             case QEMU_OPTION_no_frame:
5636                 no_frame = 1;
5637                 break;
5638             case QEMU_OPTION_alt_grab:
5639                 alt_grab = 1;
5640                 break;
5641             case QEMU_OPTION_no_quit:
5642                 no_quit = 1;
5643                 break;
5644             case QEMU_OPTION_sdl:
5645                 display_type = DT_SDL;
5646                 break;
5647 #endif
5648             case QEMU_OPTION_pidfile:
5649                 pid_file = optarg;
5650                 break;
5651 #ifdef TARGET_I386
5652             case QEMU_OPTION_win2k_hack:
5653                 win2k_install_hack = 1;
5654                 break;
5655             case QEMU_OPTION_rtc_td_hack:
5656                 rtc_td_hack = 1;
5657                 break;
5658             case QEMU_OPTION_acpitable:
5659                 if(acpi_table_add(optarg) < 0) {
5660                     fprintf(stderr, "Wrong acpi table provided\n");
5661                     exit(1);
5662                 }
5663                 break;
5664             case QEMU_OPTION_smbios:
5665                 if(smbios_entry_add(optarg) < 0) {
5666                     fprintf(stderr, "Wrong smbios provided\n");
5667                     exit(1);
5668                 }
5669                 break;
5670 #endif
5671 #ifdef CONFIG_KQEMU
5672             case QEMU_OPTION_no_kqemu:
5673                 kqemu_allowed = 0;
5674                 break;
5675             case QEMU_OPTION_kernel_kqemu:
5676                 kqemu_allowed = 2;
5677                 break;
5678 #endif
5679 #ifdef CONFIG_KVM
5680             case QEMU_OPTION_enable_kvm:
5681                 kvm_allowed = 1;
5682 #ifdef CONFIG_KQEMU
5683                 kqemu_allowed = 0;
5684 #endif
5685                 break;
5686 #endif
5687             case QEMU_OPTION_usb:
5688                 usb_enabled = 1;
5689                 break;
5690             case QEMU_OPTION_usbdevice:
5691                 usb_enabled = 1;
5692                 if (usb_devices_index >= MAX_USB_CMDLINE) {
5693                     fprintf(stderr, "Too many USB devices\n");
5694                     exit(1);
5695                 }
5696                 usb_devices[usb_devices_index] = optarg;
5697                 usb_devices_index++;
5698                 break;
5699             case QEMU_OPTION_smp:
5700                 smp_cpus = atoi(optarg);
5701                 if (smp_cpus < 1) {
5702                     fprintf(stderr, "Invalid number of CPUs\n");
5703                     exit(1);
5704                 }
5705                 break;
5706 	    case QEMU_OPTION_vnc:
5707                 display_type = DT_VNC;
5708 		vnc_display = optarg;
5709 		break;
5710 #ifdef TARGET_I386
5711             case QEMU_OPTION_no_acpi:
5712                 acpi_enabled = 0;
5713                 break;
5714             case QEMU_OPTION_no_hpet:
5715                 no_hpet = 1;
5716                 break;
5717             case QEMU_OPTION_no_virtio_balloon:
5718                 no_virtio_balloon = 1;
5719                 break;
5720 #endif
5721             case QEMU_OPTION_no_reboot:
5722                 no_reboot = 1;
5723                 break;
5724             case QEMU_OPTION_no_shutdown:
5725                 no_shutdown = 1;
5726                 break;
5727             case QEMU_OPTION_show_cursor:
5728                 cursor_hide = 0;
5729                 break;
5730             case QEMU_OPTION_uuid:
5731                 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5732                     fprintf(stderr, "Fail to parse UUID string."
5733                             " Wrong format.\n");
5734                     exit(1);
5735                 }
5736                 break;
5737 #ifndef _WIN32
5738 	    case QEMU_OPTION_daemonize:
5739 		daemonize = 1;
5740 		break;
5741 #endif
5742 	    case QEMU_OPTION_option_rom:
5743 		if (nb_option_roms >= MAX_OPTION_ROMS) {
5744 		    fprintf(stderr, "Too many option ROMs\n");
5745 		    exit(1);
5746 		}
5747 		option_rom[nb_option_roms] = optarg;
5748 		nb_option_roms++;
5749 		break;
5750 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5751             case QEMU_OPTION_semihosting:
5752                 semihosting_enabled = 1;
5753                 break;
5754 #endif
5755             case QEMU_OPTION_name:
5756                 qemu_name = optarg;
5757                 break;
5758 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5759             case QEMU_OPTION_prom_env:
5760                 if (nb_prom_envs >= MAX_PROM_ENVS) {
5761                     fprintf(stderr, "Too many prom variables\n");
5762                     exit(1);
5763                 }
5764                 prom_envs[nb_prom_envs] = optarg;
5765                 nb_prom_envs++;
5766                 break;
5767 #endif
5768 #ifdef TARGET_ARM
5769             case QEMU_OPTION_old_param:
5770                 old_param = 1;
5771                 break;
5772 #endif
5773             case QEMU_OPTION_clock:
5774                 configure_alarms(optarg);
5775                 break;
5776             case QEMU_OPTION_startdate:
5777                 {
5778                     struct tm tm;
5779                     time_t rtc_start_date;
5780                     if (!strcmp(optarg, "now")) {
5781                         rtc_date_offset = -1;
5782                     } else {
5783                         if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5784                                &tm.tm_year,
5785                                &tm.tm_mon,
5786                                &tm.tm_mday,
5787                                &tm.tm_hour,
5788                                &tm.tm_min,
5789                                &tm.tm_sec) == 6) {
5790                             /* OK */
5791                         } else if (sscanf(optarg, "%d-%d-%d",
5792                                           &tm.tm_year,
5793                                           &tm.tm_mon,
5794                                           &tm.tm_mday) == 3) {
5795                             tm.tm_hour = 0;
5796                             tm.tm_min = 0;
5797                             tm.tm_sec = 0;
5798                         } else {
5799                             goto date_fail;
5800                         }
5801                         tm.tm_year -= 1900;
5802                         tm.tm_mon--;
5803                         rtc_start_date = mktimegm(&tm);
5804                         if (rtc_start_date == -1) {
5805                         date_fail:
5806                             fprintf(stderr, "Invalid date format. Valid format are:\n"
5807                                     "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5808                             exit(1);
5809                         }
5810                         rtc_date_offset = time(NULL) - rtc_start_date;
5811                     }
5812                 }
5813                 break;
5814             case QEMU_OPTION_tb_size:
5815                 tb_size = strtol(optarg, NULL, 0);
5816                 if (tb_size < 0)
5817                     tb_size = 0;
5818                 break;
5819             case QEMU_OPTION_icount:
5820                 use_icount = 1;
5821                 if (strcmp(optarg, "auto") == 0) {
5822                     icount_time_shift = -1;
5823                 } else {
5824                     icount_time_shift = strtol(optarg, NULL, 0);
5825                 }
5826                 break;
5827             case QEMU_OPTION_incoming:
5828                 incoming = optarg;
5829                 break;
5830 #ifndef _WIN32
5831             case QEMU_OPTION_chroot:
5832                 chroot_dir = optarg;
5833                 break;
5834             case QEMU_OPTION_runas:
5835                 run_as = optarg;
5836                 break;
5837 #endif
5838 #ifdef CONFIG_XEN
5839             case QEMU_OPTION_xen_domid:
5840                 xen_domid = atoi(optarg);
5841                 break;
5842             case QEMU_OPTION_xen_create:
5843                 xen_mode = XEN_CREATE;
5844                 break;
5845             case QEMU_OPTION_xen_attach:
5846                 xen_mode = XEN_ATTACH;
5847                 break;
5848 #endif
5849 
5850 
5851             case QEMU_OPTION_mic:
5852                 audio_input_source = (char*)optarg;
5853                 break;
5854 #ifdef CONFIG_TRACE
5855             case QEMU_OPTION_trace:
5856                 trace_filename = optarg;
5857                 tracing = 1;
5858                 break;
5859 #if 0
5860             case QEMU_OPTION_trace_miss:
5861                 trace_cache_miss = 1;
5862                 break;
5863             case QEMU_OPTION_trace_addr:
5864                 trace_all_addr = 1;
5865                 break;
5866 #endif
5867             case QEMU_OPTION_tracing:
5868                 if (strcmp(optarg, "off") == 0)
5869                     tracing = 0;
5870                 else if (strcmp(optarg, "on") == 0 && trace_filename)
5871                     tracing = 1;
5872                 else {
5873                     fprintf(stderr, "Unexpected option to -tracing ('%s')\n",
5874                             optarg);
5875                     exit(1);
5876                 }
5877                 break;
5878 #if 0
5879             case QEMU_OPTION_dcache_load_miss:
5880                 dcache_load_miss_penalty = atoi(optarg);
5881                 break;
5882             case QEMU_OPTION_dcache_store_miss:
5883                 dcache_store_miss_penalty = atoi(optarg);
5884                 break;
5885 #endif
5886 #endif
5887 #ifdef CONFIG_NAND
5888             case QEMU_OPTION_nand:
5889                 nand_add_dev(optarg);
5890                 break;
5891 #endif
5892             }
5893         }
5894     }
5895 
5896     /* If no data_dir is specified then try to find it relative to the
5897        executable path.  */
5898     if (!data_dir) {
5899         data_dir = find_datadir(argv[0]);
5900     }
5901     /* If all else fails use the install patch specified when building.  */
5902     if (!data_dir) {
5903         data_dir = CONFIG_QEMU_SHAREDIR;
5904     }
5905 
5906 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5907     if (kvm_allowed && kqemu_allowed) {
5908         fprintf(stderr,
5909                 "You can not enable both KVM and kqemu at the same time\n");
5910         exit(1);
5911     }
5912 #endif
5913 
5914     machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5915     if (smp_cpus > machine->max_cpus) {
5916         fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5917                 "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5918                 machine->max_cpus);
5919         exit(1);
5920     }
5921 
5922     if (display_type == DT_NOGRAPHIC) {
5923        if (serial_device_index == 0)
5924            serial_devices[0] = "stdio";
5925        if (parallel_device_index == 0)
5926            parallel_devices[0] = "null";
5927        if (strncmp(monitor_device, "vc", 2) == 0)
5928            monitor_device = "stdio";
5929     }
5930 
5931 #ifndef _WIN32
5932     if (daemonize) {
5933 	pid_t pid;
5934 
5935 	if (pipe(fds) == -1)
5936 	    exit(1);
5937 
5938 	pid = fork();
5939 	if (pid > 0) {
5940 	    uint8_t status;
5941 	    ssize_t len;
5942 
5943 	    close(fds[1]);
5944 
5945 	again:
5946             len = read(fds[0], &status, 1);
5947             if (len == -1 && (errno == EINTR))
5948                 goto again;
5949 
5950             if (len != 1)
5951                 exit(1);
5952             else if (status == 1) {
5953                 fprintf(stderr, "Could not acquire pidfile\n");
5954                 exit(1);
5955             } else
5956                 exit(0);
5957 	} else if (pid < 0)
5958             exit(1);
5959 
5960 	setsid();
5961 
5962 	pid = fork();
5963 	if (pid > 0)
5964 	    exit(0);
5965 	else if (pid < 0)
5966 	    exit(1);
5967 
5968 	umask(027);
5969 
5970         signal(SIGTSTP, SIG_IGN);
5971         signal(SIGTTOU, SIG_IGN);
5972         signal(SIGTTIN, SIG_IGN);
5973     }
5974 
5975     if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5976         if (daemonize) {
5977             uint8_t status = 1;
5978             write(fds[1], &status, 1);
5979         } else
5980             fprintf(stderr, "Could not acquire pid file\n");
5981         exit(1);
5982     }
5983 #endif
5984 
5985 #ifdef CONFIG_KQEMU
5986     if (smp_cpus > 1)
5987         kqemu_allowed = 0;
5988 #endif
5989     if (qemu_init_main_loop()) {
5990         fprintf(stderr, "qemu_init_main_loop failed\n");
5991         exit(1);
5992     }
5993     linux_boot = (kernel_filename != NULL);
5994     net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5995 
5996     if (!linux_boot && *kernel_cmdline != '\0') {
5997         fprintf(stderr, "-append only allowed with -kernel option\n");
5998         exit(1);
5999     }
6000 
6001     if (!linux_boot && initrd_filename != NULL) {
6002         fprintf(stderr, "-initrd only allowed with -kernel option\n");
6003         exit(1);
6004     }
6005 
6006     /* boot to floppy or the default cd if no hard disk defined yet */
6007     if (!boot_devices[0]) {
6008         boot_devices = "cad";
6009     }
6010     setvbuf(stdout, NULL, _IOLBF, 0);
6011 
6012     init_timers();
6013     if (init_timer_alarm() < 0) {
6014         fprintf(stderr, "could not initialize alarm timer\n");
6015         exit(1);
6016     }
6017     if (use_icount && icount_time_shift < 0) {
6018         use_icount = 2;
6019         /* 125MIPS seems a reasonable initial guess at the guest speed.
6020            It will be corrected fairly quickly anyway.  */
6021         icount_time_shift = 3;
6022         init_icount_adjust();
6023     }
6024 
6025 #ifdef _WIN32
6026     socket_init();
6027 #endif
6028 
6029     /* init network clients */
6030     if (nb_net_clients == 0) {
6031         /* if no clients, we use a default config */
6032         net_clients[nb_net_clients++] = "nic";
6033 #ifdef CONFIG_SLIRP
6034         net_clients[nb_net_clients++] = "user";
6035 #endif
6036     }
6037 
6038     for(i = 0;i < nb_net_clients; i++) {
6039         if (net_client_parse(net_clients[i]) < 0)
6040             exit(1);
6041     }
6042     net_client_check();
6043 
6044 #ifdef TARGET_I386
6045     /* XXX: this should be moved in the PC machine instantiation code */
6046     if (net_boot != 0) {
6047         int netroms = 0;
6048 	for (i = 0; i < nb_nics && i < 4; i++) {
6049 	    const char *model = nd_table[i].model;
6050 	    char buf[1024];
6051             char *filename;
6052             if (net_boot & (1 << i)) {
6053                 if (model == NULL)
6054                     model = "ne2k_pci";
6055                 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
6056                 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
6057                 if (filename && get_image_size(filename) > 0) {
6058                     if (nb_option_roms >= MAX_OPTION_ROMS) {
6059                         fprintf(stderr, "Too many option ROMs\n");
6060                         exit(1);
6061                     }
6062                     option_rom[nb_option_roms] = qemu_strdup(buf);
6063                     nb_option_roms++;
6064                     netroms++;
6065                 }
6066                 if (filename) {
6067                     qemu_free(filename);
6068                 }
6069             }
6070 	}
6071 	if (netroms == 0) {
6072 	    fprintf(stderr, "No valid PXE rom found for network device\n");
6073 	    exit(1);
6074 	}
6075     }
6076 #endif
6077 
6078     /* init the bluetooth world */
6079     for (i = 0; i < nb_bt_opts; i++)
6080         if (bt_parse(bt_opts[i]))
6081             exit(1);
6082 
6083     /* init the memory */
6084     if (ram_size == 0)
6085         ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
6086 
6087 #ifdef CONFIG_KQEMU
6088     /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
6089        guest ram allocation.  It needs to go away.  */
6090     if (kqemu_allowed) {
6091         kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
6092         kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
6093         if (!kqemu_phys_ram_base) {
6094             fprintf(stderr, "Could not allocate physical memory\n");
6095             exit(1);
6096         }
6097     }
6098 #endif
6099 
6100     /* init the dynamic translator */
6101     cpu_exec_init_all(tb_size * 1024 * 1024);
6102 
6103     bdrv_init();
6104 
6105     /* we always create the cdrom drive, even if no disk is there */
6106 
6107     if (nb_drives_opt < MAX_DRIVES)
6108         drive_add(NULL, CDROM_ALIAS);
6109 
6110     /* we always create at least one floppy */
6111 
6112     if (nb_drives_opt < MAX_DRIVES)
6113         drive_add(NULL, FD_ALIAS, 0);
6114 
6115     /* we always create one sd slot, even if no card is in it */
6116 
6117     if (nb_drives_opt < MAX_DRIVES)
6118         drive_add(NULL, SD_ALIAS);
6119 
6120     /* open the virtual block devices */
6121 
6122     for(i = 0; i < nb_drives_opt; i++)
6123         if (drive_init(&drives_opt[i], snapshot, machine) == -1)
6124 	    exit(1);
6125 
6126     register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
6127     register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
6128 
6129 #ifndef _WIN32
6130     /* must be after terminal init, SDL library changes signal handlers */
6131     sighandler_setup();
6132 #endif
6133 
6134     /* Maintain compatibility with multiple stdio monitors */
6135     if (!strcmp(monitor_device,"stdio")) {
6136         for (i = 0; i < MAX_SERIAL_PORTS; i++) {
6137             const char *devname = serial_devices[i];
6138             if (devname && !strcmp(devname,"mon:stdio")) {
6139                 monitor_device = NULL;
6140                 break;
6141             } else if (devname && !strcmp(devname,"stdio")) {
6142                 monitor_device = NULL;
6143                 serial_devices[i] = "mon:stdio";
6144                 break;
6145             }
6146         }
6147     }
6148 
6149     if (nb_numa_nodes > 0) {
6150         int i;
6151 
6152         if (nb_numa_nodes > smp_cpus) {
6153             nb_numa_nodes = smp_cpus;
6154         }
6155 
6156         /* If no memory size if given for any node, assume the default case
6157          * and distribute the available memory equally across all nodes
6158          */
6159         for (i = 0; i < nb_numa_nodes; i++) {
6160             if (node_mem[i] != 0)
6161                 break;
6162         }
6163         if (i == nb_numa_nodes) {
6164             uint64_t usedmem = 0;
6165 
6166             /* On Linux, the each node's border has to be 8MB aligned,
6167              * the final node gets the rest.
6168              */
6169             for (i = 0; i < nb_numa_nodes - 1; i++) {
6170                 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
6171                 usedmem += node_mem[i];
6172             }
6173             node_mem[i] = ram_size - usedmem;
6174         }
6175 
6176         for (i = 0; i < nb_numa_nodes; i++) {
6177             if (node_cpumask[i] != 0)
6178                 break;
6179         }
6180         /* assigning the VCPUs round-robin is easier to implement, guest OSes
6181          * must cope with this anyway, because there are BIOSes out there in
6182          * real machines which also use this scheme.
6183          */
6184         if (i == nb_numa_nodes) {
6185             for (i = 0; i < smp_cpus; i++) {
6186                 node_cpumask[i % nb_numa_nodes] |= 1 << i;
6187             }
6188         }
6189     }
6190 
6191     if (kvm_enabled()) {
6192         int ret;
6193 
6194         ret = kvm_init(smp_cpus);
6195         if (ret < 0) {
6196             fprintf(stderr, "failed to initialize KVM\n");
6197             exit(1);
6198         }
6199     }
6200 
6201     if (monitor_device) {
6202         monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
6203         if (!monitor_hd) {
6204             fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6205             exit(1);
6206         }
6207     }
6208 
6209     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6210         const char *devname = serial_devices[i];
6211         if (devname && strcmp(devname, "none")) {
6212             char label[32];
6213             snprintf(label, sizeof(label), "serial%d", i);
6214             serial_hds[i] = qemu_chr_open(label, devname, NULL);
6215             if (!serial_hds[i]) {
6216                 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6217                         devname);
6218                 exit(1);
6219             }
6220         }
6221     }
6222 
6223     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6224         const char *devname = parallel_devices[i];
6225         if (devname && strcmp(devname, "none")) {
6226             char label[32];
6227             snprintf(label, sizeof(label), "parallel%d", i);
6228             parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6229             if (!parallel_hds[i]) {
6230                 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6231                         devname);
6232                 exit(1);
6233             }
6234         }
6235     }
6236 
6237     for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6238         const char *devname = virtio_consoles[i];
6239         if (devname && strcmp(devname, "none")) {
6240             char label[32];
6241             snprintf(label, sizeof(label), "virtcon%d", i);
6242             virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6243             if (!virtcon_hds[i]) {
6244                 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6245                         devname);
6246                 exit(1);
6247             }
6248         }
6249     }
6250 
6251     module_call_init(MODULE_INIT_DEVICE);
6252 
6253 
6254 #ifdef CONFIG_TRACE
6255     if (trace_filename) {
6256         trace_init(trace_filename);
6257 #if 0
6258         // We don't need the dcache code until we can get load and store tracing
6259         // working again.
6260         dcache_init(dcache_size, dcache_ways, dcache_line_size,
6261                     dcache_replace_policy, dcache_load_miss_penalty,
6262                     dcache_store_miss_penalty);
6263 #endif
6264         fprintf(stderr, "-- When done tracing, exit the emulator. --\n");
6265     }
6266 #endif
6267 
6268     machine->init(ram_size, boot_devices,
6269                   kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6270 
6271 
6272     for (env = first_cpu; env != NULL; env = env->next_cpu) {
6273         for (i = 0; i < nb_numa_nodes; i++) {
6274             if (node_cpumask[i] & (1 << env->cpu_index)) {
6275                 env->numa_node = i;
6276             }
6277         }
6278     }
6279 
6280     current_machine = machine;
6281 
6282     /* Set KVM's vcpu state to qemu's initial CPUState. */
6283     if (kvm_enabled()) {
6284         int ret;
6285 
6286         ret = kvm_sync_vcpus();
6287         if (ret < 0) {
6288             fprintf(stderr, "failed to initialize vcpus\n");
6289             exit(1);
6290         }
6291     }
6292 
6293     /* init USB devices */
6294     if (usb_enabled) {
6295         for(i = 0; i < usb_devices_index; i++) {
6296             if (usb_device_add(usb_devices[i], 0) < 0) {
6297                 fprintf(stderr, "Warning: could not add USB device %s\n",
6298                         usb_devices[i]);
6299             }
6300         }
6301     }
6302 
6303     if (!display_state)
6304         dumb_display_init();
6305     /* just use the first displaystate for the moment */
6306     ds = display_state;
6307 
6308     if (display_type == DT_DEFAULT) {
6309 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6310         display_type = DT_SDL;
6311 #else
6312         display_type = DT_VNC;
6313         vnc_display = "localhost:0,to=99";
6314         show_vnc_port = 1;
6315 #endif
6316     }
6317 
6318 
6319     switch (display_type) {
6320     case DT_NOGRAPHIC:
6321         break;
6322 #if defined(CONFIG_CURSES)
6323     case DT_CURSES:
6324         curses_display_init(ds, full_screen);
6325         break;
6326 #endif
6327 #if defined(CONFIG_SDL)
6328     case DT_SDL:
6329         sdl_display_init(ds, full_screen, no_frame);
6330         break;
6331 #elif defined(CONFIG_COCOA)
6332     case DT_SDL:
6333         cocoa_display_init(ds, full_screen);
6334         break;
6335 #endif
6336     case DT_VNC:
6337         vnc_display_init(ds);
6338         if (vnc_display_open(ds, vnc_display) < 0)
6339             exit(1);
6340 
6341         if (show_vnc_port) {
6342             printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6343         }
6344         break;
6345     default:
6346         break;
6347     }
6348     dpy_resize(ds);
6349 
6350     dcl = ds->listeners;
6351     while (dcl != NULL) {
6352         if (dcl->dpy_refresh != NULL) {
6353             ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6354             qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6355         }
6356         dcl = dcl->next;
6357     }
6358 
6359     if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6360         nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6361         qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6362     }
6363 
6364     text_consoles_set_display(display_state);
6365     qemu_chr_initial_reset();
6366 
6367     if (monitor_device && monitor_hd)
6368         monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6369 
6370     for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6371         const char *devname = serial_devices[i];
6372         if (devname && strcmp(devname, "none")) {
6373             if (strstart(devname, "vc", 0))
6374                 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6375         }
6376     }
6377 
6378     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6379         const char *devname = parallel_devices[i];
6380         if (devname && strcmp(devname, "none")) {
6381             if (strstart(devname, "vc", 0))
6382                 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6383         }
6384     }
6385 
6386     for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6387         const char *devname = virtio_consoles[i];
6388         if (virtcon_hds[i] && devname) {
6389             if (strstart(devname, "vc", 0))
6390                 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6391         }
6392     }
6393 
6394     if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6395         fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6396                 gdbstub_dev);
6397         exit(1);
6398     }
6399 
6400     if (loadvm)
6401         do_loadvm(cur_mon, loadvm);
6402 
6403     /* call android-specific setup function */
6404     android_emulation_setup();
6405 
6406     if (incoming) {
6407         autostart = 0; /* fixme how to deal with -daemonize */
6408         qemu_start_incoming_migration(incoming);
6409     }
6410 
6411     if (autostart)
6412         vm_start();
6413 
6414 #ifndef _WIN32
6415     if (daemonize) {
6416 	uint8_t status = 0;
6417 	ssize_t len;
6418 
6419     again1:
6420 	len = write(fds[1], &status, 1);
6421 	if (len == -1 && (errno == EINTR))
6422 	    goto again1;
6423 
6424 	if (len != 1)
6425 	    exit(1);
6426 
6427 	chdir("/");
6428 	TFR(fd = open("/dev/null", O_RDWR));
6429 	if (fd == -1)
6430 	    exit(1);
6431     }
6432 
6433     if (run_as) {
6434         pwd = getpwnam(run_as);
6435         if (!pwd) {
6436             fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6437             exit(1);
6438         }
6439     }
6440 
6441     if (chroot_dir) {
6442         if (chroot(chroot_dir) < 0) {
6443             fprintf(stderr, "chroot failed\n");
6444             exit(1);
6445         }
6446         chdir("/");
6447     }
6448 
6449     if (run_as) {
6450         if (setgid(pwd->pw_gid) < 0) {
6451             fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6452             exit(1);
6453         }
6454         if (setuid(pwd->pw_uid) < 0) {
6455             fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6456             exit(1);
6457         }
6458         if (setuid(0) != -1) {
6459             fprintf(stderr, "Dropping privileges failed\n");
6460             exit(1);
6461         }
6462     }
6463 
6464     if (daemonize) {
6465         dup2(fd, 0);
6466         dup2(fd, 1);
6467         dup2(fd, 2);
6468 
6469         close(fd);
6470     }
6471 #endif
6472 
6473     main_loop();
6474     quit_timers();
6475     net_cleanup();
6476     android_emulation_teardown();
6477     return 0;
6478 }
6479