• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.hardware;
18 
19 import java.util.GregorianCalendar;
20 
21 /**
22  * This class is used to estimated estimate magnetic field at a given point on
23  * Earth, and in particular, to compute the magnetic declination from true
24  * north.
25  *
26  * <p>This uses the World Magnetic Model produced by the United States National
27  * Geospatial-Intelligence Agency.  More details about the model can be found at
28  * <a href="http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml">http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml</a>.
29  * This class currently uses WMM-2005 which is valid until 2010, but should
30  * produce acceptable results for several years after that.
31  */
32 public class GeomagneticField {
33     // The magnetic field at a given point, in nonoteslas in geodetic
34     // coordinates.
35     private float mX;
36     private float mY;
37     private float mZ;
38 
39     // Geocentric coordinates -- set by computeGeocentricCoordinates.
40     private float mGcLatitudeRad;
41     private float mGcLongitudeRad;
42     private float mGcRadiusKm;
43 
44     // Constants from WGS84 (the coordinate system used by GPS)
45     static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f;
46     static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523f;
47     static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f;
48 
49     // These coefficients and the formulae used below are from:
50     // NOAA Technical Report: The US/UK World Magnetic Model for 2005-2010
51     static private final float[][] G_COEFF = new float[][] {
52         { 0f },
53         { -29556.8f, -1671.7f },
54         { -2340.6f, 3046.9f, 1657.0f },
55         { 1335.4f, -2305.1f, 1246.7f, 674.0f },
56         { 919.8f, 798.1f, 211.3f, -379.4f, 100.0f },
57         { -227.4f, 354.6f, 208.7f, -136.5f, -168.3f, -14.1f },
58         { 73.2f, 69.7f, 76.7f, -151.2f, -14.9f, 14.6f, -86.3f },
59         { 80.1f, -74.5f, -1.4f, 38.5f, 12.4f, 9.5f, 5.7f, 1.8f },
60         { 24.9f, 7.7f, -11.6f, -6.9f, -18.2f, 10.0f, 9.2f, -11.6f, -5.2f },
61         { 5.6f, 9.9f, 3.5f, -7.0f, 5.1f, -10.8f, -1.3f, 8.8f, -6.7f, -9.1f },
62         { -2.3f, -6.3f, 1.6f, -2.6f, 0.0f, 3.1f, 0.4f, 2.1f, 3.9f, -0.1f, -2.3f },
63         { 2.8f, -1.6f, -1.7f, 1.7f, -0.1f, 0.1f, -0.7f, 0.7f, 1.8f, 0.0f, 1.1f, 4.1f },
64         { -2.4f, -0.4f, 0.2f, 0.8f, -0.3f, 1.1f, -0.5f, 0.4f, -0.3f, -0.3f, -0.1f,
65           -0.3f, -0.1f } };
66 
67     static private final float[][] H_COEFF = new float[][] {
68         { 0f },
69         { 0.0f, 5079.8f },
70         { 0.0f, -2594.7f, -516.7f },
71         { 0.0f, -199.9f, 269.3f, -524.2f },
72         { 0.0f, 281.5f, -226.0f, 145.8f, -304.7f },
73         { 0.0f, 42.4f, 179.8f, -123.0f, -19.5f, 103.6f },
74         { 0.0f, -20.3f, 54.7f, 63.6f, -63.4f, -0.1f, 50.4f },
75         { 0.0f, -61.5f, -22.4f, 7.2f, 25.4f, 11.0f, -26.4f, -5.1f },
76         { 0.0f, 11.2f, -21.0f, 9.6f, -19.8f, 16.1f, 7.7f, -12.9f, -0.2f },
77         { 0.0f, -20.1f, 12.9f, 12.6f, -6.7f, -8.1f, 8.0f, 2.9f, -7.9f, 6.0f },
78         { 0.0f, 2.4f, 0.2f, 4.4f, 4.8f, -6.5f, -1.1f, -3.4f, -0.8f, -2.3f, -7.9f },
79         { 0.0f, 0.3f, 1.2f, -0.8f, -2.5f, 0.9f, -0.6f, -2.7f, -0.9f, -1.3f, -2.0f, -1.2f },
80         { 0.0f, -0.4f, 0.3f, 2.4f, -2.6f, 0.6f, 0.3f, 0.0f, 0.0f, 0.3f, -0.9f, -0.4f,
81           0.8f } };
82 
83     static private final float[][] DELTA_G = new float[][] {
84         { 0f },
85         { 8.0f, 10.6f },
86         { -15.1f, -7.8f, -0.8f },
87         { 0.4f, -2.6f, -1.2f, -6.5f },
88         { -2.5f, 2.8f, -7.0f, 6.2f, -3.8f },
89         { -2.8f, 0.7f, -3.2f, -1.1f, 0.1f, -0.8f },
90         { -0.7f, 0.4f, -0.3f, 2.3f, -2.1f, -0.6f, 1.4f },
91         { 0.2f, -0.1f, -0.3f, 1.1f, 0.6f, 0.5f, -0.4f, 0.6f },
92         { 0.1f, 0.3f, -0.4f, 0.3f, -0.3f, 0.2f, 0.4f, -0.7f, 0.4f },
93         { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
94         { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
95         { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
96         { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } };
97 
98     static private final float[][] DELTA_H = new float[][] {
99         { 0f },
100         { 0.0f, -20.9f },
101         { 0.0f, -23.2f, -14.6f },
102         { 0.0f, 5.0f, -7.0f, -0.6f },
103         { 0.0f, 2.2f, 1.6f, 5.8f, 0.1f },
104         { 0.0f, 0.0f, 1.7f, 2.1f, 4.8f, -1.1f },
105         { 0.0f, -0.6f, -1.9f, -0.4f, -0.5f, -0.3f, 0.7f },
106         { 0.0f, 0.6f, 0.4f, 0.2f, 0.3f, -0.8f, -0.2f, 0.1f },
107         { 0.0f, -0.2f, 0.1f, 0.3f, 0.4f, 0.1f, -0.2f, 0.4f, 0.4f },
108         { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
109         { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
110         { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f },
111         { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } };
112 
113     static private final long BASE_TIME =
114         new GregorianCalendar(2005, 1, 1).getTimeInMillis();
115 
116     // The ratio between the Gauss-normalized associated Legendre functions and
117     // the Schmid quasi-normalized ones. Compute these once staticly since they
118     // don't depend on input variables at all.
119     static private final float[][] SCHMIDT_QUASI_NORM_FACTORS =
120         computeSchmidtQuasiNormFactors(G_COEFF.length);
121 
122     /**
123      * Estimate the magnetic field at a given point and time.
124      *
125      * @param gdLatitudeDeg
126      *            Latitude in WGS84 geodetic coordinates -- positive is east.
127      * @param gdLongitudeDeg
128      *            Longitude in WGS84 geodetic coordinates -- positive is north.
129      * @param altitudeMeters
130      *            Altitude in WGS84 geodetic coordinates, in meters.
131      * @param timeMillis
132      *            Time at which to evaluate the declination, in milliseconds
133      *            since January 1, 1970. (approximate is fine -- the declination
134      *            changes very slowly).
135      */
GeomagneticField(float gdLatitudeDeg, float gdLongitudeDeg, float altitudeMeters, long timeMillis)136     public GeomagneticField(float gdLatitudeDeg,
137                             float gdLongitudeDeg,
138                             float altitudeMeters,
139                             long timeMillis) {
140         final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients.
141 
142         // We don't handle the north and south poles correctly -- pretend that
143         // we're not quite at them to avoid crashing.
144         gdLatitudeDeg = Math.min(90.0f - 1e-5f,
145                                  Math.max(-90.0f + 1e-5f, gdLatitudeDeg));
146         computeGeocentricCoordinates(gdLatitudeDeg,
147                                      gdLongitudeDeg,
148                                      altitudeMeters);
149 
150         assert G_COEFF.length == H_COEFF.length;
151 
152         // Note: LegendreTable computes associated Legendre functions for
153         // cos(theta).  We want the associated Legendre functions for
154         // sin(latitude), which is the same as cos(PI/2 - latitude), except the
155         // derivate will be negated.
156         LegendreTable legendre =
157             new LegendreTable(MAX_N - 1,
158                               (float) (Math.PI / 2.0 - mGcLatitudeRad));
159 
160         // Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in
161         // 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times).
162         float[] relativeRadiusPower = new float[MAX_N + 2];
163         relativeRadiusPower[0] = 1.0f;
164         relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm;
165         for (int i = 2; i < relativeRadiusPower.length; ++i) {
166             relativeRadiusPower[i] = relativeRadiusPower[i - 1] *
167                 relativeRadiusPower[1];
168         }
169 
170         // Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N --
171         // this is much faster than calling Math.sin and Math.com MAX_N+1 times.
172         float[] sinMLon = new float[MAX_N];
173         float[] cosMLon = new float[MAX_N];
174         sinMLon[0] = 0.0f;
175         cosMLon[0] = 1.0f;
176         sinMLon[1] = (float) Math.sin(mGcLongitudeRad);
177         cosMLon[1] = (float) Math.cos(mGcLongitudeRad);
178 
179         for (int m = 2; m < MAX_N; ++m) {
180             // Standard expansions for sin((m-x)*theta + x*theta) and
181             // cos((m-x)*theta + x*theta).
182             int x = m >> 1;
183             sinMLon[m] = sinMLon[m-x] * cosMLon[x] + cosMLon[m-x] * sinMLon[x];
184             cosMLon[m] = cosMLon[m-x] * cosMLon[x] - sinMLon[m-x] * sinMLon[x];
185         }
186 
187         float inverseCosLatitude = 1.0f / (float) Math.cos(mGcLatitudeRad);
188         float yearsSinceBase =
189             (timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f);
190 
191         // We now compute the magnetic field strength given the geocentric
192         // location. The magnetic field is the derivative of the potential
193         // function defined by the model. See NOAA Technical Report: The US/UK
194         // World Magnetic Model for 2005-2010 for the derivation.
195         float gcX = 0.0f;  // Geocentric northwards component.
196         float gcY = 0.0f;  // Geocentric eastwards component.
197         float gcZ = 0.0f;  // Geocentric downwards component.
198 
199         for (int n = 1; n < MAX_N; n++) {
200             for (int m = 0; m <= n; m++) {
201                 // Adjust the coefficients for the current date.
202                 float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m];
203                 float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m];
204 
205                 // Negative derivative with respect to latitude, divided by
206                 // radius.  This looks like the negation of the version in the
207                 // NOAA Techincal report because that report used
208                 // P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the
209                 // derivative with respect to theta is negated.
210                 gcX += relativeRadiusPower[n+2]
211                     * (g * cosMLon[m] + h * sinMLon[m])
212                     * legendre.mPDeriv[n][m]
213                     * SCHMIDT_QUASI_NORM_FACTORS[n][m];
214 
215                 // Negative derivative with respect to longitude, divided by
216                 // radius.
217                 gcY += relativeRadiusPower[n+2] * m
218                     * (g * sinMLon[m] - h * cosMLon[m])
219                     * legendre.mP[n][m]
220                     * SCHMIDT_QUASI_NORM_FACTORS[n][m]
221                     * inverseCosLatitude;
222 
223                 // Negative derivative with respect to radius.
224                 gcZ -= (n + 1) * relativeRadiusPower[n+2]
225                     * (g * cosMLon[m] + h * sinMLon[m])
226                     * legendre.mP[n][m]
227                     * SCHMIDT_QUASI_NORM_FACTORS[n][m];
228             }
229         }
230 
231         // Convert back to geodetic coordinates.  This is basically just a
232         // rotation around the Y-axis by the difference in latitudes between the
233         // geocentric frame and the geodetic frame.
234         double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad;
235         mX = (float) (gcX * Math.cos(latDiffRad)
236                       + gcZ * Math.sin(latDiffRad));
237         mY = gcY;
238         mZ = (float) (- gcX * Math.sin(latDiffRad)
239                       + gcZ * Math.cos(latDiffRad));
240     }
241 
242     /**
243      * @return The X (northward) component of the magnetic field in nanoteslas.
244      */
getX()245     public float getX() {
246         return mX;
247     }
248 
249     /**
250      * @return The Y (eastward) component of the magnetic field in nanoteslas.
251      */
getY()252     public float getY() {
253         return mY;
254     }
255 
256     /**
257      * @return The Z (downward) component of the magnetic field in nanoteslas.
258      */
getZ()259     public float getZ() {
260         return mZ;
261     }
262 
263     /**
264      * @return The declination of the horizontal component of the magnetic
265      *         field from true north, in degrees (i.e. positive means the
266      *         magnetic field is rotated east that much from true north).
267      */
getDeclination()268     public float getDeclination() {
269         return (float) Math.toDegrees(Math.atan2(mY, mX));
270     }
271 
272     /**
273      * @return The inclination of the magnetic field in degrees -- positive
274      *         means the magnetic field is rotated downwards.
275      */
getInclination()276     public float getInclination() {
277         return (float) Math.toDegrees(Math.atan2(mZ,
278                                                  getHorizontalStrength()));
279     }
280 
281     /**
282      * @return  Horizontal component of the field strength in nonoteslas.
283      */
getHorizontalStrength()284     public float getHorizontalStrength() {
285         return (float) Math.sqrt(mX * mX + mY * mY);
286     }
287 
288     /**
289      * @return  Total field strength in nanoteslas.
290      */
getFieldStrength()291     public float getFieldStrength() {
292         return (float) Math.sqrt(mX * mX + mY * mY + mZ * mZ);
293     }
294 
295     /**
296      * @param gdLatitudeDeg
297      *            Latitude in WGS84 geodetic coordinates.
298      * @param gdLongitudeDeg
299      *            Longitude in WGS84 geodetic coordinates.
300      * @param altitudeMeters
301      *            Altitude above sea level in WGS84 geodetic coordinates.
302      * @return Geocentric latitude (i.e. angle between closest point on the
303      *         equator and this point, at the center of the earth.
304      */
computeGeocentricCoordinates(float gdLatitudeDeg, float gdLongitudeDeg, float altitudeMeters)305     private void computeGeocentricCoordinates(float gdLatitudeDeg,
306                                               float gdLongitudeDeg,
307                                               float altitudeMeters) {
308         float altitudeKm = altitudeMeters / 1000.0f;
309         float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM;
310         float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM;
311         double gdLatRad = Math.toRadians(gdLatitudeDeg);
312         float clat = (float) Math.cos(gdLatRad);
313         float slat = (float) Math.sin(gdLatRad);
314         float tlat = slat / clat;
315         float latRad =
316             (float) Math.sqrt(a2 * clat * clat + b2 * slat * slat);
317 
318         mGcLatitudeRad = (float) Math.atan(tlat * (latRad * altitudeKm + b2)
319                                            / (latRad * altitudeKm + a2));
320 
321         mGcLongitudeRad = (float) Math.toRadians(gdLongitudeDeg);
322 
323         float radSq = altitudeKm * altitudeKm
324             + 2 * altitudeKm * (float) Math.sqrt(a2 * clat * clat +
325                                                  b2 * slat * slat)
326             + (a2 * a2 * clat * clat + b2 * b2 * slat * slat)
327             / (a2 * clat * clat + b2 * slat * slat);
328         mGcRadiusKm = (float) Math.sqrt(radSq);
329     }
330 
331 
332     /**
333      * Utility class to compute a table of Gauss-normalized associated Legendre
334      * functions P_n^m(cos(theta))
335      */
336     static private class LegendreTable {
337         // These are the Gauss-normalized associated Legendre functions -- that
338         // is, they are normal Legendre functions multiplied by
339         // (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1)
340         public final float[][] mP;
341 
342         // Derivative of mP, with respect to theta.
343         public final float[][] mPDeriv;
344 
345         /**
346          * @param maxN
347          *            The maximum n- and m-values to support
348          * @param thetaRad
349          *            Returned functions will be Gauss-normalized
350          *            P_n^m(cos(thetaRad)), with thetaRad in radians.
351          */
LegendreTable(int maxN, float thetaRad)352         public LegendreTable(int maxN, float thetaRad) {
353             // Compute the table of Gauss-normalized associated Legendre
354             // functions using standard recursion relations. Also compute the
355             // table of derivatives using the derivative of the recursion
356             // relations.
357             float cos = (float) Math.cos(thetaRad);
358             float sin = (float) Math.sin(thetaRad);
359 
360             mP = new float[maxN + 1][];
361             mPDeriv = new float[maxN + 1][];
362             mP[0] = new float[] { 1.0f };
363             mPDeriv[0] = new float[] { 0.0f };
364             for (int n = 1; n <= maxN; n++) {
365             	mP[n] = new float[n + 1];
366                 mPDeriv[n] = new float[n + 1];
367                 for (int m = 0; m <= n; m++) {
368                     if (n == m) {
369                         mP[n][m] = sin * mP[n - 1][m - 1];
370                         mPDeriv[n][m] = cos * mP[n - 1][m - 1]
371                             + sin * mPDeriv[n - 1][m - 1];
372                     } else if (n == 1 || m == n - 1) {
373                         mP[n][m] = cos * mP[n - 1][m];
374                         mPDeriv[n][m] = -sin * mP[n - 1][m]
375                             + cos * mPDeriv[n - 1][m];
376                     } else {
377                         assert n > 1 && m < n - 1;
378                         float k = ((n - 1) * (n - 1) - m * m)
379                             / (float) ((2 * n - 1) * (2 * n - 3));
380                         mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m];
381                         mPDeriv[n][m] = -sin * mP[n - 1][m]
382                             + cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m];
383                     }
384                 }
385             }
386         }
387     }
388 
389     /**
390      * Compute the ration between the Gauss-normalized associated Legendre
391      * functions and the Schmidt quasi-normalized version. This is equivalent to
392      * sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)!
393      */
394     private static float[][] computeSchmidtQuasiNormFactors(int maxN) {
395         float[][] schmidtQuasiNorm = new float[maxN + 1][];
396         schmidtQuasiNorm[0] = new float[] { 1.0f };
397         for (int n = 1; n <= maxN; n++) {
398             schmidtQuasiNorm[n] = new float[n + 1];
399             schmidtQuasiNorm[n][0] =
400                 schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float) n;
401             for (int m = 1; m <= n; m++) {
402                 schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1]
403                     * (float) Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1)
404                                 / (float) (n + m));
405             }
406         }
407         return schmidtQuasiNorm;
408     }
409 }