1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "frames-inl.h"
31 #include "mark-compact.h"
32 #include "scopeinfo.h"
33 #include "string-stream.h"
34 #include "top.h"
35 #include "zone-inl.h"
36
37 namespace v8 {
38 namespace internal {
39
40 // Iterator that supports traversing the stack handlers of a
41 // particular frame. Needs to know the top of the handler chain.
42 class StackHandlerIterator BASE_EMBEDDED {
43 public:
StackHandlerIterator(const StackFrame * frame,StackHandler * handler)44 StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
45 : limit_(frame->fp()), handler_(handler) {
46 // Make sure the handler has already been unwound to this frame.
47 ASSERT(frame->sp() <= handler->address());
48 }
49
handler() const50 StackHandler* handler() const { return handler_; }
51
done()52 bool done() {
53 return handler_ == NULL || handler_->address() > limit_;
54 }
Advance()55 void Advance() {
56 ASSERT(!done());
57 handler_ = handler_->next();
58 }
59
60 private:
61 const Address limit_;
62 StackHandler* handler_;
63 };
64
65
66 // -------------------------------------------------------------------------
67
68
69 #define INITIALIZE_SINGLETON(type, field) field##_(this),
StackFrameIterator()70 StackFrameIterator::StackFrameIterator()
71 : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
72 frame_(NULL), handler_(NULL), thread_(Top::GetCurrentThread()),
73 fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
74 Reset();
75 }
StackFrameIterator(ThreadLocalTop * t)76 StackFrameIterator::StackFrameIterator(ThreadLocalTop* t)
77 : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
78 frame_(NULL), handler_(NULL), thread_(t),
79 fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) {
80 Reset();
81 }
StackFrameIterator(bool use_top,Address fp,Address sp)82 StackFrameIterator::StackFrameIterator(bool use_top, Address fp, Address sp)
83 : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
84 frame_(NULL), handler_(NULL),
85 thread_(use_top ? Top::GetCurrentThread() : NULL),
86 fp_(use_top ? NULL : fp), sp_(sp),
87 advance_(use_top ? &StackFrameIterator::AdvanceWithHandler :
88 &StackFrameIterator::AdvanceWithoutHandler) {
89 if (use_top || fp != NULL) {
90 Reset();
91 }
92 JavaScriptFrame_.DisableHeapAccess();
93 }
94
95 #undef INITIALIZE_SINGLETON
96
97
AdvanceWithHandler()98 void StackFrameIterator::AdvanceWithHandler() {
99 ASSERT(!done());
100 // Compute the state of the calling frame before restoring
101 // callee-saved registers and unwinding handlers. This allows the
102 // frame code that computes the caller state to access the top
103 // handler and the value of any callee-saved register if needed.
104 StackFrame::State state;
105 StackFrame::Type type = frame_->GetCallerState(&state);
106
107 // Unwind handlers corresponding to the current frame.
108 StackHandlerIterator it(frame_, handler_);
109 while (!it.done()) it.Advance();
110 handler_ = it.handler();
111
112 // Advance to the calling frame.
113 frame_ = SingletonFor(type, &state);
114
115 // When we're done iterating over the stack frames, the handler
116 // chain must have been completely unwound.
117 ASSERT(!done() || handler_ == NULL);
118 }
119
120
AdvanceWithoutHandler()121 void StackFrameIterator::AdvanceWithoutHandler() {
122 // A simpler version of Advance which doesn't care about handler.
123 ASSERT(!done());
124 StackFrame::State state;
125 StackFrame::Type type = frame_->GetCallerState(&state);
126 frame_ = SingletonFor(type, &state);
127 }
128
129
Reset()130 void StackFrameIterator::Reset() {
131 StackFrame::State state;
132 StackFrame::Type type;
133 if (thread_ != NULL) {
134 type = ExitFrame::GetStateForFramePointer(Top::c_entry_fp(thread_), &state);
135 handler_ = StackHandler::FromAddress(Top::handler(thread_));
136 } else {
137 ASSERT(fp_ != NULL);
138 state.fp = fp_;
139 state.sp = sp_;
140 state.pc_address =
141 reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp_));
142 type = StackFrame::ComputeType(&state);
143 if (SingletonFor(type) == NULL) return;
144 }
145 frame_ = SingletonFor(type, &state);
146 }
147
148
SingletonFor(StackFrame::Type type,StackFrame::State * state)149 StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type,
150 StackFrame::State* state) {
151 if (type == StackFrame::NONE) return NULL;
152 StackFrame* result = SingletonFor(type);
153 ASSERT(result != NULL);
154 result->state_ = *state;
155 return result;
156 }
157
158
SingletonFor(StackFrame::Type type)159 StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type) {
160 #define FRAME_TYPE_CASE(type, field) \
161 case StackFrame::type: result = &field##_; break;
162
163 StackFrame* result = NULL;
164 switch (type) {
165 case StackFrame::NONE: return NULL;
166 STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
167 default: break;
168 }
169 return result;
170
171 #undef FRAME_TYPE_CASE
172 }
173
174
175 // -------------------------------------------------------------------------
176
177
StackTraceFrameIterator()178 StackTraceFrameIterator::StackTraceFrameIterator() {
179 if (!done() && !IsValidFrame()) Advance();
180 }
181
182
Advance()183 void StackTraceFrameIterator::Advance() {
184 while (true) {
185 JavaScriptFrameIterator::Advance();
186 if (done()) return;
187 if (IsValidFrame()) return;
188 }
189 }
190
IsValidFrame()191 bool StackTraceFrameIterator::IsValidFrame() {
192 if (!frame()->function()->IsJSFunction()) return false;
193 Object* script = JSFunction::cast(frame()->function())->shared()->script();
194 // Don't show functions from native scripts to user.
195 return (script->IsScript() &&
196 Script::TYPE_NATIVE != Script::cast(script)->type()->value());
197 }
198
199
200 // -------------------------------------------------------------------------
201
202
SafeStackFrameIterator(Address fp,Address sp,Address low_bound,Address high_bound)203 SafeStackFrameIterator::SafeStackFrameIterator(
204 Address fp, Address sp, Address low_bound, Address high_bound) :
205 low_bound_(low_bound), high_bound_(high_bound),
206 is_valid_top_(
207 IsWithinBounds(low_bound, high_bound,
208 Top::c_entry_fp(Top::GetCurrentThread())) &&
209 Top::handler(Top::GetCurrentThread()) != NULL),
210 is_valid_fp_(IsWithinBounds(low_bound, high_bound, fp)),
211 is_working_iterator_(is_valid_top_ || is_valid_fp_),
212 iteration_done_(!is_working_iterator_),
213 iterator_(is_valid_top_, is_valid_fp_ ? fp : NULL, sp) {
214 }
215
216
Advance()217 void SafeStackFrameIterator::Advance() {
218 ASSERT(is_working_iterator_);
219 ASSERT(!done());
220 StackFrame* last_frame = iterator_.frame();
221 Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
222 // Before advancing to the next stack frame, perform pointer validity tests
223 iteration_done_ = !IsValidFrame(last_frame) ||
224 !CanIterateHandles(last_frame, iterator_.handler()) ||
225 !IsValidCaller(last_frame);
226 if (iteration_done_) return;
227
228 iterator_.Advance();
229 if (iterator_.done()) return;
230 // Check that we have actually moved to the previous frame in the stack
231 StackFrame* prev_frame = iterator_.frame();
232 iteration_done_ = prev_frame->sp() < last_sp || prev_frame->fp() < last_fp;
233 }
234
235
CanIterateHandles(StackFrame * frame,StackHandler * handler)236 bool SafeStackFrameIterator::CanIterateHandles(StackFrame* frame,
237 StackHandler* handler) {
238 // If StackIterator iterates over StackHandles, verify that
239 // StackHandlerIterator can be instantiated (see StackHandlerIterator
240 // constructor.)
241 return !is_valid_top_ || (frame->sp() <= handler->address());
242 }
243
244
IsValidFrame(StackFrame * frame) const245 bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
246 return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
247 }
248
249
IsValidCaller(StackFrame * frame)250 bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
251 StackFrame::State state;
252 if (frame->is_entry() || frame->is_entry_construct()) {
253 // See EntryFrame::GetCallerState. It computes the caller FP address
254 // and calls ExitFrame::GetStateForFramePointer on it. We need to be
255 // sure that caller FP address is valid.
256 Address caller_fp = Memory::Address_at(
257 frame->fp() + EntryFrameConstants::kCallerFPOffset);
258 if (!IsValidStackAddress(caller_fp)) {
259 return false;
260 }
261 } else if (frame->is_arguments_adaptor()) {
262 // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
263 // the number of arguments is stored on stack as Smi. We need to check
264 // that it really an Smi.
265 Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
266 GetExpression(0);
267 if (!number_of_args->IsSmi()) {
268 return false;
269 }
270 }
271 frame->ComputeCallerState(&state);
272 return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
273 iterator_.SingletonFor(frame->GetCallerState(&state)) != NULL;
274 }
275
276
Reset()277 void SafeStackFrameIterator::Reset() {
278 if (is_working_iterator_) {
279 iterator_.Reset();
280 iteration_done_ = false;
281 }
282 }
283
284
285 // -------------------------------------------------------------------------
286
287
288 #ifdef ENABLE_LOGGING_AND_PROFILING
SafeStackTraceFrameIterator(Address fp,Address sp,Address low_bound,Address high_bound)289 SafeStackTraceFrameIterator::SafeStackTraceFrameIterator(
290 Address fp, Address sp, Address low_bound, Address high_bound) :
291 SafeJavaScriptFrameIterator(fp, sp, low_bound, high_bound) {
292 if (!done() && !frame()->is_java_script()) Advance();
293 }
294
295
Advance()296 void SafeStackTraceFrameIterator::Advance() {
297 while (true) {
298 SafeJavaScriptFrameIterator::Advance();
299 if (done()) return;
300 if (frame()->is_java_script()) return;
301 }
302 }
303 #endif
304
305
306 // -------------------------------------------------------------------------
307
308
Cook(Code * code)309 void StackHandler::Cook(Code* code) {
310 ASSERT(MarkCompactCollector::IsCompacting());
311 ASSERT(code->contains(pc()));
312 set_pc(AddressFrom<Address>(pc() - code->instruction_start()));
313 }
314
315
Uncook(Code * code)316 void StackHandler::Uncook(Code* code) {
317 ASSERT(MarkCompactCollector::HasCompacted());
318 set_pc(code->instruction_start() + OffsetFrom(pc()));
319 ASSERT(code->contains(pc()));
320 }
321
322
323 // -------------------------------------------------------------------------
324
325
HasHandler() const326 bool StackFrame::HasHandler() const {
327 StackHandlerIterator it(this, top_handler());
328 return !it.done();
329 }
330
331
CookFramesForThread(ThreadLocalTop * thread)332 void StackFrame::CookFramesForThread(ThreadLocalTop* thread) {
333 // Only cooking frames when the collector is compacting and thus moving code
334 // around.
335 ASSERT(MarkCompactCollector::IsCompacting());
336 ASSERT(!thread->stack_is_cooked());
337 for (StackFrameIterator it(thread); !it.done(); it.Advance()) {
338 it.frame()->Cook();
339 }
340 thread->set_stack_is_cooked(true);
341 }
342
343
UncookFramesForThread(ThreadLocalTop * thread)344 void StackFrame::UncookFramesForThread(ThreadLocalTop* thread) {
345 // Only uncooking frames when the collector is compacting and thus moving code
346 // around.
347 ASSERT(MarkCompactCollector::HasCompacted());
348 ASSERT(thread->stack_is_cooked());
349 for (StackFrameIterator it(thread); !it.done(); it.Advance()) {
350 it.frame()->Uncook();
351 }
352 thread->set_stack_is_cooked(false);
353 }
354
355
Cook()356 void StackFrame::Cook() {
357 Code* code = this->code();
358 ASSERT(code->IsCode());
359 for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
360 it.handler()->Cook(code);
361 }
362 ASSERT(code->contains(pc()));
363 set_pc(AddressFrom<Address>(pc() - code->instruction_start()));
364 }
365
366
Uncook()367 void StackFrame::Uncook() {
368 Code* code = this->code();
369 ASSERT(code->IsCode());
370 for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
371 it.handler()->Uncook(code);
372 }
373 set_pc(code->instruction_start() + OffsetFrom(pc()));
374 ASSERT(code->contains(pc()));
375 }
376
377
GetCallerState(State * state) const378 StackFrame::Type StackFrame::GetCallerState(State* state) const {
379 ComputeCallerState(state);
380 return ComputeType(state);
381 }
382
383
code() const384 Code* EntryFrame::code() const {
385 return Heap::js_entry_code();
386 }
387
388
ComputeCallerState(State * state) const389 void EntryFrame::ComputeCallerState(State* state) const {
390 GetCallerState(state);
391 }
392
393
GetCallerState(State * state) const394 StackFrame::Type EntryFrame::GetCallerState(State* state) const {
395 const int offset = EntryFrameConstants::kCallerFPOffset;
396 Address fp = Memory::Address_at(this->fp() + offset);
397 return ExitFrame::GetStateForFramePointer(fp, state);
398 }
399
400
code() const401 Code* EntryConstructFrame::code() const {
402 return Heap::js_construct_entry_code();
403 }
404
405
code_slot() const406 Object*& ExitFrame::code_slot() const {
407 const int offset = ExitFrameConstants::kCodeOffset;
408 return Memory::Object_at(fp() + offset);
409 }
410
411
code() const412 Code* ExitFrame::code() const {
413 return Code::cast(code_slot());
414 }
415
416
ComputeCallerState(State * state) const417 void ExitFrame::ComputeCallerState(State* state) const {
418 // Setup the caller state.
419 state->sp = caller_sp();
420 state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
421 state->pc_address
422 = reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset);
423 }
424
425
GetCallerStackPointer() const426 Address ExitFrame::GetCallerStackPointer() const {
427 return fp() + ExitFrameConstants::kCallerSPDisplacement;
428 }
429
430
GetExpressionAddress(int n) const431 Address StandardFrame::GetExpressionAddress(int n) const {
432 const int offset = StandardFrameConstants::kExpressionsOffset;
433 return fp() + offset - n * kPointerSize;
434 }
435
436
ComputeExpressionsCount() const437 int StandardFrame::ComputeExpressionsCount() const {
438 const int offset =
439 StandardFrameConstants::kExpressionsOffset + kPointerSize;
440 Address base = fp() + offset;
441 Address limit = sp();
442 ASSERT(base >= limit); // stack grows downwards
443 // Include register-allocated locals in number of expressions.
444 return static_cast<int>((base - limit) / kPointerSize);
445 }
446
447
ComputeCallerState(State * state) const448 void StandardFrame::ComputeCallerState(State* state) const {
449 state->sp = caller_sp();
450 state->fp = caller_fp();
451 state->pc_address = reinterpret_cast<Address*>(ComputePCAddress(fp()));
452 }
453
454
IsExpressionInsideHandler(int n) const455 bool StandardFrame::IsExpressionInsideHandler(int n) const {
456 Address address = GetExpressionAddress(n);
457 for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
458 if (it.handler()->includes(address)) return true;
459 }
460 return false;
461 }
462
463
GetParameter(int index) const464 Object* JavaScriptFrame::GetParameter(int index) const {
465 ASSERT(index >= 0 && index < ComputeParametersCount());
466 const int offset = JavaScriptFrameConstants::kParam0Offset;
467 return Memory::Object_at(caller_sp() + offset - (index * kPointerSize));
468 }
469
470
ComputeParametersCount() const471 int JavaScriptFrame::ComputeParametersCount() const {
472 Address base = caller_sp() + JavaScriptFrameConstants::kReceiverOffset;
473 Address limit = fp() + JavaScriptFrameConstants::kSavedRegistersOffset;
474 return static_cast<int>((base - limit) / kPointerSize);
475 }
476
477
IsConstructor() const478 bool JavaScriptFrame::IsConstructor() const {
479 Address fp = caller_fp();
480 if (has_adapted_arguments()) {
481 // Skip the arguments adaptor frame and look at the real caller.
482 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
483 }
484 return IsConstructFrame(fp);
485 }
486
487
code() const488 Code* JavaScriptFrame::code() const {
489 JSFunction* function = JSFunction::cast(this->function());
490 return function->shared()->code();
491 }
492
493
code() const494 Code* ArgumentsAdaptorFrame::code() const {
495 return Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline);
496 }
497
498
code() const499 Code* InternalFrame::code() const {
500 const int offset = InternalFrameConstants::kCodeOffset;
501 Object* code = Memory::Object_at(fp() + offset);
502 ASSERT(code != NULL);
503 return Code::cast(code);
504 }
505
506
PrintIndex(StringStream * accumulator,PrintMode mode,int index)507 void StackFrame::PrintIndex(StringStream* accumulator,
508 PrintMode mode,
509 int index) {
510 accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
511 }
512
513
Print(StringStream * accumulator,PrintMode mode,int index) const514 void JavaScriptFrame::Print(StringStream* accumulator,
515 PrintMode mode,
516 int index) const {
517 HandleScope scope;
518 Object* receiver = this->receiver();
519 Object* function = this->function();
520
521 accumulator->PrintSecurityTokenIfChanged(function);
522 PrintIndex(accumulator, mode, index);
523 Code* code = NULL;
524 if (IsConstructor()) accumulator->Add("new ");
525 accumulator->PrintFunction(function, receiver, &code);
526 accumulator->Add("(this=%o", receiver);
527
528 // Get scope information for nicer output, if possible. If code is
529 // NULL, or doesn't contain scope info, info will return 0 for the
530 // number of parameters, stack slots, or context slots.
531 ScopeInfo<PreallocatedStorage> info(code);
532
533 // Print the parameters.
534 int parameters_count = ComputeParametersCount();
535 for (int i = 0; i < parameters_count; i++) {
536 accumulator->Add(",");
537 // If we have a name for the parameter we print it. Nameless
538 // parameters are either because we have more actual parameters
539 // than formal parameters or because we have no scope information.
540 if (i < info.number_of_parameters()) {
541 accumulator->PrintName(*info.parameter_name(i));
542 accumulator->Add("=");
543 }
544 accumulator->Add("%o", GetParameter(i));
545 }
546
547 accumulator->Add(")");
548 if (mode == OVERVIEW) {
549 accumulator->Add("\n");
550 return;
551 }
552 accumulator->Add(" {\n");
553
554 // Compute the number of locals and expression stack elements.
555 int stack_locals_count = info.number_of_stack_slots();
556 int heap_locals_count = info.number_of_context_slots();
557 int expressions_count = ComputeExpressionsCount();
558
559 // Print stack-allocated local variables.
560 if (stack_locals_count > 0) {
561 accumulator->Add(" // stack-allocated locals\n");
562 }
563 for (int i = 0; i < stack_locals_count; i++) {
564 accumulator->Add(" var ");
565 accumulator->PrintName(*info.stack_slot_name(i));
566 accumulator->Add(" = ");
567 if (i < expressions_count) {
568 accumulator->Add("%o", GetExpression(i));
569 } else {
570 accumulator->Add("// no expression found - inconsistent frame?");
571 }
572 accumulator->Add("\n");
573 }
574
575 // Try to get hold of the context of this frame.
576 Context* context = NULL;
577 if (this->context() != NULL && this->context()->IsContext()) {
578 context = Context::cast(this->context());
579 }
580
581 // Print heap-allocated local variables.
582 if (heap_locals_count > Context::MIN_CONTEXT_SLOTS) {
583 accumulator->Add(" // heap-allocated locals\n");
584 }
585 for (int i = Context::MIN_CONTEXT_SLOTS; i < heap_locals_count; i++) {
586 accumulator->Add(" var ");
587 accumulator->PrintName(*info.context_slot_name(i));
588 accumulator->Add(" = ");
589 if (context != NULL) {
590 if (i < context->length()) {
591 accumulator->Add("%o", context->get(i));
592 } else {
593 accumulator->Add(
594 "// warning: missing context slot - inconsistent frame?");
595 }
596 } else {
597 accumulator->Add("// warning: no context found - inconsistent frame?");
598 }
599 accumulator->Add("\n");
600 }
601
602 // Print the expression stack.
603 int expressions_start = stack_locals_count;
604 if (expressions_start < expressions_count) {
605 accumulator->Add(" // expression stack (top to bottom)\n");
606 }
607 for (int i = expressions_count - 1; i >= expressions_start; i--) {
608 if (IsExpressionInsideHandler(i)) continue;
609 accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
610 }
611
612 // Print details about the function.
613 if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
614 SharedFunctionInfo* shared = JSFunction::cast(function)->shared();
615 accumulator->Add("--------- s o u r c e c o d e ---------\n");
616 shared->SourceCodePrint(accumulator, FLAG_max_stack_trace_source_length);
617 accumulator->Add("\n-----------------------------------------\n");
618 }
619
620 accumulator->Add("}\n\n");
621 }
622
623
Print(StringStream * accumulator,PrintMode mode,int index) const624 void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
625 PrintMode mode,
626 int index) const {
627 int actual = ComputeParametersCount();
628 int expected = -1;
629 Object* function = this->function();
630 if (function->IsJSFunction()) {
631 expected = JSFunction::cast(function)->shared()->formal_parameter_count();
632 }
633
634 PrintIndex(accumulator, mode, index);
635 accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
636 if (mode == OVERVIEW) {
637 accumulator->Add("\n");
638 return;
639 }
640 accumulator->Add(" {\n");
641
642 // Print actual arguments.
643 if (actual > 0) accumulator->Add(" // actual arguments\n");
644 for (int i = 0; i < actual; i++) {
645 accumulator->Add(" [%02d] : %o", i, GetParameter(i));
646 if (expected != -1 && i >= expected) {
647 accumulator->Add(" // not passed to callee");
648 }
649 accumulator->Add("\n");
650 }
651
652 accumulator->Add("}\n\n");
653 }
654
655
Iterate(ObjectVisitor * v) const656 void EntryFrame::Iterate(ObjectVisitor* v) const {
657 StackHandlerIterator it(this, top_handler());
658 ASSERT(!it.done());
659 StackHandler* handler = it.handler();
660 ASSERT(handler->is_entry());
661 handler->Iterate(v);
662 // Make sure that there's the entry frame does not contain more than
663 // one stack handler.
664 #ifdef DEBUG
665 it.Advance();
666 ASSERT(it.done());
667 #endif
668 }
669
670
IterateExpressions(ObjectVisitor * v) const671 void StandardFrame::IterateExpressions(ObjectVisitor* v) const {
672 const int offset = StandardFrameConstants::kContextOffset;
673 Object** base = &Memory::Object_at(sp());
674 Object** limit = &Memory::Object_at(fp() + offset) + 1;
675 for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
676 StackHandler* handler = it.handler();
677 // Traverse pointers down to - but not including - the next
678 // handler in the handler chain. Update the base to skip the
679 // handler and allow the handler to traverse its own pointers.
680 const Address address = handler->address();
681 v->VisitPointers(base, reinterpret_cast<Object**>(address));
682 base = reinterpret_cast<Object**>(address + StackHandlerConstants::kSize);
683 // Traverse the pointers in the handler itself.
684 handler->Iterate(v);
685 }
686 v->VisitPointers(base, limit);
687 }
688
689
Iterate(ObjectVisitor * v) const690 void JavaScriptFrame::Iterate(ObjectVisitor* v) const {
691 IterateExpressions(v);
692
693 // Traverse callee-saved registers, receiver, and parameters.
694 const int kBaseOffset = JavaScriptFrameConstants::kSavedRegistersOffset;
695 const int kLimitOffset = JavaScriptFrameConstants::kReceiverOffset;
696 Object** base = &Memory::Object_at(fp() + kBaseOffset);
697 Object** limit = &Memory::Object_at(caller_sp() + kLimitOffset) + 1;
698 v->VisitPointers(base, limit);
699 }
700
701
Iterate(ObjectVisitor * v) const702 void InternalFrame::Iterate(ObjectVisitor* v) const {
703 // Internal frames only have object pointers on the expression stack
704 // as they never have any arguments.
705 IterateExpressions(v);
706 }
707
708
709 // -------------------------------------------------------------------------
710
711
FindJavaScriptFrame(int n)712 JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) {
713 ASSERT(n >= 0);
714 for (int i = 0; i <= n; i++) {
715 while (!iterator_.frame()->is_java_script()) iterator_.Advance();
716 if (i == n) return JavaScriptFrame::cast(iterator_.frame());
717 iterator_.Advance();
718 }
719 UNREACHABLE();
720 return NULL;
721 }
722
723
724 // -------------------------------------------------------------------------
725
726
NumRegs(RegList reglist)727 int NumRegs(RegList reglist) {
728 int n = 0;
729 while (reglist != 0) {
730 n++;
731 reglist &= reglist - 1; // clear one bit
732 }
733 return n;
734 }
735
736
JSCallerSavedCode(int n)737 int JSCallerSavedCode(int n) {
738 static int reg_code[kNumJSCallerSaved];
739 static bool initialized = false;
740 if (!initialized) {
741 initialized = true;
742 int i = 0;
743 for (int r = 0; r < kNumRegs; r++)
744 if ((kJSCallerSaved & (1 << r)) != 0)
745 reg_code[i++] = r;
746
747 ASSERT(i == kNumJSCallerSaved);
748 }
749 ASSERT(0 <= n && n < kNumJSCallerSaved);
750 return reg_code[n];
751 }
752
753
754 } } // namespace v8::internal
755