• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/message_loop.h"
6 
7 #include <algorithm>
8 
9 #include "base/compiler_specific.h"
10 #include "base/lazy_instance.h"
11 #include "base/logging.h"
12 #include "base/message_pump_default.h"
13 #include "base/string_util.h"
14 #include "base/thread_local.h"
15 
16 #if defined(OS_MACOSX)
17 #include "base/message_pump_mac.h"
18 #endif
19 #if defined(OS_POSIX)
20 #include "base/message_pump_libevent.h"
21 #include "base/third_party/valgrind/valgrind.h"
22 #endif
23 #if defined(OS_POSIX) && !defined(OS_MACOSX)
24 #include "base/message_pump_glib.h"
25 #endif
26 
27 using base::Time;
28 using base::TimeDelta;
29 
30 // A lazily created thread local storage for quick access to a thread's message
31 // loop, if one exists.  This should be safe and free of static constructors.
32 static base::LazyInstance<base::ThreadLocalPointer<MessageLoop> > lazy_tls_ptr(
33     base::LINKER_INITIALIZED);
34 
35 //------------------------------------------------------------------------------
36 
37 // Logical events for Histogram profiling. Run with -message-loop-histogrammer
38 // to get an accounting of messages and actions taken on each thread.
39 static const int kTaskRunEvent = 0x1;
40 static const int kTimerEvent = 0x2;
41 
42 // Provide range of message IDs for use in histogramming and debug display.
43 static const int kLeastNonZeroMessageId = 1;
44 static const int kMaxMessageId = 1099;
45 static const int kNumberOfDistinctMessagesDisplayed = 1100;
46 
47 //------------------------------------------------------------------------------
48 
49 #if defined(OS_WIN)
50 
51 // Upon a SEH exception in this thread, it restores the original unhandled
52 // exception filter.
SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter)53 static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) {
54   ::SetUnhandledExceptionFilter(old_filter);
55   return EXCEPTION_CONTINUE_SEARCH;
56 }
57 
58 // Retrieves a pointer to the current unhandled exception filter. There
59 // is no standalone getter method.
GetTopSEHFilter()60 static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() {
61   LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL;
62   top_filter = ::SetUnhandledExceptionFilter(0);
63   ::SetUnhandledExceptionFilter(top_filter);
64   return top_filter;
65 }
66 
67 #endif  // defined(OS_WIN)
68 
69 //------------------------------------------------------------------------------
70 
71 // static
current()72 MessageLoop* MessageLoop::current() {
73   // TODO(darin): sadly, we cannot enable this yet since people call us even
74   // when they have no intention of using us.
75   // DCHECK(loop) << "Ouch, did you forget to initialize me?";
76   return lazy_tls_ptr.Pointer()->Get();
77 }
78 
MessageLoop(Type type)79 MessageLoop::MessageLoop(Type type)
80     : type_(type),
81       nestable_tasks_allowed_(true),
82       exception_restoration_(false),
83       state_(NULL),
84       next_sequence_num_(0) {
85   DCHECK(!current()) << "should only have one message loop per thread";
86   lazy_tls_ptr.Pointer()->Set(this);
87 
88 #if defined(OS_WIN)
89   // TODO(rvargas): Get rid of the OS guards.
90   if (type_ == TYPE_DEFAULT) {
91     pump_ = new base::MessagePumpDefault();
92   } else if (type_ == TYPE_IO) {
93     pump_ = new base::MessagePumpForIO();
94   } else {
95     DCHECK(type_ == TYPE_UI);
96     pump_ = new base::MessagePumpForUI();
97   }
98 #elif defined(OS_POSIX)
99   if (type_ == TYPE_UI) {
100 #if defined(OS_MACOSX)
101     pump_ = base::MessagePumpMac::Create();
102 #else
103     pump_ = new base::MessagePumpForUI();
104 #endif
105   } else if (type_ == TYPE_IO) {
106     pump_ = new base::MessagePumpLibevent();
107   } else {
108     pump_ = new base::MessagePumpDefault();
109   }
110 #endif  // OS_POSIX
111 }
112 
~MessageLoop()113 MessageLoop::~MessageLoop() {
114   DCHECK(this == current());
115 
116   // Let interested parties have one last shot at accessing this.
117   FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_,
118                     WillDestroyCurrentMessageLoop());
119 
120   DCHECK(!state_);
121 
122   // Clean up any unprocessed tasks, but take care: deleting a task could
123   // result in the addition of more tasks (e.g., via DeleteSoon).  We set a
124   // limit on the number of times we will allow a deleted task to generate more
125   // tasks.  Normally, we should only pass through this loop once or twice.  If
126   // we end up hitting the loop limit, then it is probably due to one task that
127   // is being stubborn.  Inspect the queues to see who is left.
128   bool did_work;
129   for (int i = 0; i < 100; ++i) {
130     DeletePendingTasks();
131     ReloadWorkQueue();
132     // If we end up with empty queues, then break out of the loop.
133     did_work = DeletePendingTasks();
134     if (!did_work)
135       break;
136   }
137   DCHECK(!did_work);
138 
139   // OK, now make it so that no one can find us.
140   lazy_tls_ptr.Pointer()->Set(NULL);
141 }
142 
AddDestructionObserver(DestructionObserver * obs)143 void MessageLoop::AddDestructionObserver(DestructionObserver *obs) {
144   DCHECK(this == current());
145   destruction_observers_.AddObserver(obs);
146 }
147 
RemoveDestructionObserver(DestructionObserver * obs)148 void MessageLoop::RemoveDestructionObserver(DestructionObserver *obs) {
149   DCHECK(this == current());
150   destruction_observers_.RemoveObserver(obs);
151 }
152 
Run()153 void MessageLoop::Run() {
154   AutoRunState save_state(this);
155   RunHandler();
156 }
157 
RunAllPending()158 void MessageLoop::RunAllPending() {
159   AutoRunState save_state(this);
160   state_->quit_received = true;  // Means run until we would otherwise block.
161   RunHandler();
162 }
163 
164 // Runs the loop in two different SEH modes:
165 // enable_SEH_restoration_ = false : any unhandled exception goes to the last
166 // one that calls SetUnhandledExceptionFilter().
167 // enable_SEH_restoration_ = true : any unhandled exception goes to the filter
168 // that was existed before the loop was run.
RunHandler()169 void MessageLoop::RunHandler() {
170 #if defined(OS_WIN)
171   if (exception_restoration_) {
172     RunInternalInSEHFrame();
173     return;
174   }
175 #endif
176 
177   RunInternal();
178 }
179 //------------------------------------------------------------------------------
180 #if defined(OS_WIN)
RunInternalInSEHFrame()181 __declspec(noinline) void MessageLoop::RunInternalInSEHFrame() {
182   LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter();
183   __try {
184     RunInternal();
185   } __except(SEHFilter(current_filter)) {
186   }
187   return;
188 }
189 #endif
190 //------------------------------------------------------------------------------
191 
RunInternal()192 void MessageLoop::RunInternal() {
193   DCHECK(this == current());
194 
195   StartHistogrammer();
196 
197 #if !defined(OS_MACOSX)
198   if (state_->dispatcher && type() == TYPE_UI) {
199     static_cast<base::MessagePumpForUI*>(pump_.get())->
200         RunWithDispatcher(this, state_->dispatcher);
201     return;
202   }
203 #endif
204 
205   pump_->Run(this);
206 }
207 
208 //------------------------------------------------------------------------------
209 // Wrapper functions for use in above message loop framework.
210 
ProcessNextDelayedNonNestableTask()211 bool MessageLoop::ProcessNextDelayedNonNestableTask() {
212   if (state_->run_depth != 1)
213     return false;
214 
215   if (deferred_non_nestable_work_queue_.empty())
216     return false;
217 
218   Task* task = deferred_non_nestable_work_queue_.front().task;
219   deferred_non_nestable_work_queue_.pop();
220 
221   RunTask(task);
222   return true;
223 }
224 
225 //------------------------------------------------------------------------------
226 
Quit()227 void MessageLoop::Quit() {
228   DCHECK(current() == this);
229   if (state_) {
230     state_->quit_received = true;
231   } else {
232     NOTREACHED() << "Must be inside Run to call Quit";
233   }
234 }
235 
PostTask(const tracked_objects::Location & from_here,Task * task)236 void MessageLoop::PostTask(
237     const tracked_objects::Location& from_here, Task* task) {
238   PostTask_Helper(from_here, task, 0, true);
239 }
240 
PostDelayedTask(const tracked_objects::Location & from_here,Task * task,int64 delay_ms)241 void MessageLoop::PostDelayedTask(
242     const tracked_objects::Location& from_here, Task* task, int64 delay_ms) {
243   PostTask_Helper(from_here, task, delay_ms, true);
244 }
245 
PostNonNestableTask(const tracked_objects::Location & from_here,Task * task)246 void MessageLoop::PostNonNestableTask(
247     const tracked_objects::Location& from_here, Task* task) {
248   PostTask_Helper(from_here, task, 0, false);
249 }
250 
PostNonNestableDelayedTask(const tracked_objects::Location & from_here,Task * task,int64 delay_ms)251 void MessageLoop::PostNonNestableDelayedTask(
252     const tracked_objects::Location& from_here, Task* task, int64 delay_ms) {
253   PostTask_Helper(from_here, task, delay_ms, false);
254 }
255 
256 // Possibly called on a background thread!
PostTask_Helper(const tracked_objects::Location & from_here,Task * task,int64 delay_ms,bool nestable)257 void MessageLoop::PostTask_Helper(
258     const tracked_objects::Location& from_here, Task* task, int64 delay_ms,
259     bool nestable) {
260   task->SetBirthPlace(from_here);
261 
262   PendingTask pending_task(task, nestable);
263 
264   if (delay_ms > 0) {
265     pending_task.delayed_run_time =
266         Time::Now() + TimeDelta::FromMilliseconds(delay_ms);
267   } else {
268     DCHECK_EQ(delay_ms, 0) << "delay should not be negative";
269   }
270 
271   // Warning: Don't try to short-circuit, and handle this thread's tasks more
272   // directly, as it could starve handling of foreign threads.  Put every task
273   // into this queue.
274 
275   scoped_refptr<base::MessagePump> pump;
276   {
277     AutoLock locked(incoming_queue_lock_);
278 
279     bool was_empty = incoming_queue_.empty();
280     incoming_queue_.push(pending_task);
281     if (!was_empty)
282       return;  // Someone else should have started the sub-pump.
283 
284     pump = pump_;
285   }
286   // Since the incoming_queue_ may contain a task that destroys this message
287   // loop, we cannot exit incoming_queue_lock_ until we are done with |this|.
288   // We use a stack-based reference to the message pump so that we can call
289   // ScheduleWork outside of incoming_queue_lock_.
290 
291   pump->ScheduleWork();
292 }
293 
SetNestableTasksAllowed(bool allowed)294 void MessageLoop::SetNestableTasksAllowed(bool allowed) {
295   if (nestable_tasks_allowed_ != allowed) {
296     nestable_tasks_allowed_ = allowed;
297     if (!nestable_tasks_allowed_)
298       return;
299     // Start the native pump if we are not already pumping.
300     pump_->ScheduleWork();
301   }
302 }
303 
NestableTasksAllowed() const304 bool MessageLoop::NestableTasksAllowed() const {
305   return nestable_tasks_allowed_;
306 }
307 
IsNested()308 bool MessageLoop::IsNested() {
309   return state_->run_depth > 1;
310 }
311 
312 //------------------------------------------------------------------------------
313 
RunTask(Task * task)314 void MessageLoop::RunTask(Task* task) {
315   DCHECK(nestable_tasks_allowed_);
316   // Execute the task and assume the worst: It is probably not reentrant.
317   nestable_tasks_allowed_ = false;
318 
319   HistogramEvent(kTaskRunEvent);
320   task->Run();
321   delete task;
322 
323   nestable_tasks_allowed_ = true;
324 }
325 
DeferOrRunPendingTask(const PendingTask & pending_task)326 bool MessageLoop::DeferOrRunPendingTask(const PendingTask& pending_task) {
327   if (pending_task.nestable || state_->run_depth == 1) {
328     RunTask(pending_task.task);
329     // Show that we ran a task (Note: a new one might arrive as a
330     // consequence!).
331     return true;
332   }
333 
334   // We couldn't run the task now because we're in a nested message loop
335   // and the task isn't nestable.
336   deferred_non_nestable_work_queue_.push(pending_task);
337   return false;
338 }
339 
AddToDelayedWorkQueue(const PendingTask & pending_task)340 void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) {
341   // Move to the delayed work queue.  Initialize the sequence number
342   // before inserting into the delayed_work_queue_.  The sequence number
343   // is used to faciliate FIFO sorting when two tasks have the same
344   // delayed_run_time value.
345   PendingTask new_pending_task(pending_task);
346   new_pending_task.sequence_num = next_sequence_num_++;
347   delayed_work_queue_.push(new_pending_task);
348 }
349 
ReloadWorkQueue()350 void MessageLoop::ReloadWorkQueue() {
351   // We can improve performance of our loading tasks from incoming_queue_ to
352   // work_queue_ by waiting until the last minute (work_queue_ is empty) to
353   // load.  That reduces the number of locks-per-task significantly when our
354   // queues get large.
355   if (!work_queue_.empty())
356     return;  // Wait till we *really* need to lock and load.
357 
358   // Acquire all we can from the inter-thread queue with one lock acquisition.
359   {
360     AutoLock lock(incoming_queue_lock_);
361     if (incoming_queue_.empty())
362       return;
363     incoming_queue_.Swap(&work_queue_);  // Constant time
364     DCHECK(incoming_queue_.empty());
365   }
366 }
367 
DeletePendingTasks()368 bool MessageLoop::DeletePendingTasks() {
369   bool did_work = !work_queue_.empty();
370   while (!work_queue_.empty()) {
371     PendingTask pending_task = work_queue_.front();
372     work_queue_.pop();
373     if (!pending_task.delayed_run_time.is_null()) {
374       // We want to delete delayed tasks in the same order in which they would
375       // normally be deleted in case of any funny dependencies between delayed
376       // tasks.
377       AddToDelayedWorkQueue(pending_task);
378     } else {
379       // TODO(darin): Delete all tasks once it is safe to do so.
380       // Until it is totally safe, just do it when running Purify or
381       // Valgrind.
382 #if defined(PURIFY)
383       delete pending_task.task;
384 #elif defined(OS_POSIX)
385       if (RUNNING_ON_VALGRIND)
386         delete pending_task.task;
387 #endif  // defined(OS_POSIX)
388     }
389   }
390   did_work |= !deferred_non_nestable_work_queue_.empty();
391   while (!deferred_non_nestable_work_queue_.empty()) {
392     // TODO(darin): Delete all tasks once it is safe to do so.
393     // Until it is totaly safe, only delete them under Purify and Valgrind.
394     Task* task = NULL;
395 #if defined(PURIFY)
396     task = deferred_non_nestable_work_queue_.front().task;
397 #elif defined(OS_POSIX)
398     if (RUNNING_ON_VALGRIND)
399       task = deferred_non_nestable_work_queue_.front().task;
400 #endif
401     deferred_non_nestable_work_queue_.pop();
402     if (task)
403       delete task;
404   }
405   did_work |= !delayed_work_queue_.empty();
406   while (!delayed_work_queue_.empty()) {
407     Task* task = delayed_work_queue_.top().task;
408     delayed_work_queue_.pop();
409     delete task;
410   }
411   return did_work;
412 }
413 
DoWork()414 bool MessageLoop::DoWork() {
415   if (!nestable_tasks_allowed_) {
416     // Task can't be executed right now.
417     return false;
418   }
419 
420   for (;;) {
421     ReloadWorkQueue();
422     if (work_queue_.empty())
423       break;
424 
425     // Execute oldest task.
426     do {
427       PendingTask pending_task = work_queue_.front();
428       work_queue_.pop();
429       if (!pending_task.delayed_run_time.is_null()) {
430         AddToDelayedWorkQueue(pending_task);
431         // If we changed the topmost task, then it is time to re-schedule.
432         if (delayed_work_queue_.top().task == pending_task.task)
433           pump_->ScheduleDelayedWork(pending_task.delayed_run_time);
434       } else {
435         if (DeferOrRunPendingTask(pending_task))
436           return true;
437       }
438     } while (!work_queue_.empty());
439   }
440 
441   // Nothing happened.
442   return false;
443 }
444 
DoDelayedWork(Time * next_delayed_work_time)445 bool MessageLoop::DoDelayedWork(Time* next_delayed_work_time) {
446   if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) {
447     *next_delayed_work_time = Time();
448     return false;
449   }
450 
451   if (delayed_work_queue_.top().delayed_run_time > Time::Now()) {
452     *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
453     return false;
454   }
455 
456   PendingTask pending_task = delayed_work_queue_.top();
457   delayed_work_queue_.pop();
458 
459   if (!delayed_work_queue_.empty())
460     *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
461 
462   return DeferOrRunPendingTask(pending_task);
463 }
464 
DoIdleWork()465 bool MessageLoop::DoIdleWork() {
466   if (ProcessNextDelayedNonNestableTask())
467     return true;
468 
469   if (state_->quit_received)
470     pump_->Quit();
471 
472   return false;
473 }
474 
475 //------------------------------------------------------------------------------
476 // MessageLoop::AutoRunState
477 
AutoRunState(MessageLoop * loop)478 MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) {
479   // Make the loop reference us.
480   previous_state_ = loop_->state_;
481   if (previous_state_) {
482     run_depth = previous_state_->run_depth + 1;
483   } else {
484     run_depth = 1;
485   }
486   loop_->state_ = this;
487 
488   // Initialize the other fields:
489   quit_received = false;
490 #if !defined(OS_MACOSX)
491   dispatcher = NULL;
492 #endif
493 }
494 
~AutoRunState()495 MessageLoop::AutoRunState::~AutoRunState() {
496   loop_->state_ = previous_state_;
497 }
498 
499 //------------------------------------------------------------------------------
500 // MessageLoop::PendingTask
501 
operator <(const PendingTask & other) const502 bool MessageLoop::PendingTask::operator<(const PendingTask& other) const {
503   // Since the top of a priority queue is defined as the "greatest" element, we
504   // need to invert the comparison here.  We want the smaller time to be at the
505   // top of the heap.
506 
507   if (delayed_run_time < other.delayed_run_time)
508     return false;
509 
510   if (delayed_run_time > other.delayed_run_time)
511     return true;
512 
513   // If the times happen to match, then we use the sequence number to decide.
514   // Compare the difference to support integer roll-over.
515   return (sequence_num - other.sequence_num) > 0;
516 }
517 
518 //------------------------------------------------------------------------------
519 // Method and data for histogramming events and actions taken by each instance
520 // on each thread.
521 
522 // static
523 bool MessageLoop::enable_histogrammer_ = false;
524 
525 // static
EnableHistogrammer(bool enable)526 void MessageLoop::EnableHistogrammer(bool enable) {
527   enable_histogrammer_ = enable;
528 }
529 
StartHistogrammer()530 void MessageLoop::StartHistogrammer() {
531   if (enable_histogrammer_ && !message_histogram_.get()
532       && StatisticsRecorder::WasStarted()) {
533     DCHECK(!thread_name_.empty());
534     message_histogram_ = LinearHistogram::FactoryGet("MsgLoop:" + thread_name_,
535         kLeastNonZeroMessageId, kMaxMessageId,
536         kNumberOfDistinctMessagesDisplayed,
537         message_histogram_->kHexRangePrintingFlag);
538     message_histogram_->SetRangeDescriptions(event_descriptions_);
539   }
540 }
541 
HistogramEvent(int event)542 void MessageLoop::HistogramEvent(int event) {
543   if (message_histogram_.get())
544     message_histogram_->Add(event);
545 }
546 
547 // Provide a macro that takes an expression (such as a constant, or macro
548 // constant) and creates a pair to initalize an array of pairs.  In this case,
549 // our pair consists of the expressions value, and the "stringized" version
550 // of the expression (i.e., the exrpression put in quotes).  For example, if
551 // we have:
552 //    #define FOO 2
553 //    #define BAR 5
554 // then the following:
555 //    VALUE_TO_NUMBER_AND_NAME(FOO + BAR)
556 // will expand to:
557 //   {7, "FOO + BAR"}
558 // We use the resulting array as an argument to our histogram, which reads the
559 // number as a bucket identifier, and proceeds to use the corresponding name
560 // in the pair (i.e., the quoted string) when printing out a histogram.
561 #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name},
562 
563 // static
564 const LinearHistogram::DescriptionPair MessageLoop::event_descriptions_[] = {
565   // Provide some pretty print capability in our histogram for our internal
566   // messages.
567 
568   // A few events we handle (kindred to messages), and used to profile actions.
569   VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent)
570   VALUE_TO_NUMBER_AND_NAME(kTimerEvent)
571 
572   {-1, NULL}  // The list must be null terminated, per API to histogram.
573 };
574 
575 //------------------------------------------------------------------------------
576 // MessageLoopForUI
577 
578 #if defined(OS_WIN)
WillProcessMessage(const MSG & message)579 void MessageLoopForUI::WillProcessMessage(const MSG& message) {
580   pump_win()->WillProcessMessage(message);
581 }
DidProcessMessage(const MSG & message)582 void MessageLoopForUI::DidProcessMessage(const MSG& message) {
583   pump_win()->DidProcessMessage(message);
584 }
PumpOutPendingPaintMessages()585 void MessageLoopForUI::PumpOutPendingPaintMessages() {
586   pump_ui()->PumpOutPendingPaintMessages();
587 }
588 
589 #endif  // defined(OS_WIN)
590 
591 #if !defined(OS_MACOSX)
AddObserver(Observer * observer)592 void MessageLoopForUI::AddObserver(Observer* observer) {
593   pump_ui()->AddObserver(observer);
594 }
595 
RemoveObserver(Observer * observer)596 void MessageLoopForUI::RemoveObserver(Observer* observer) {
597   pump_ui()->RemoveObserver(observer);
598 }
599 
Run(Dispatcher * dispatcher)600 void MessageLoopForUI::Run(Dispatcher* dispatcher) {
601   AutoRunState save_state(this);
602   state_->dispatcher = dispatcher;
603   RunHandler();
604 }
605 #endif  // !defined(OS_MACOSX)
606 
607 //------------------------------------------------------------------------------
608 // MessageLoopForIO
609 
610 #if defined(OS_WIN)
611 
RegisterIOHandler(HANDLE file,IOHandler * handler)612 void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
613   pump_io()->RegisterIOHandler(file, handler);
614 }
615 
WaitForIOCompletion(DWORD timeout,IOHandler * filter)616 bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
617   return pump_io()->WaitForIOCompletion(timeout, filter);
618 }
619 
620 #elif defined(OS_POSIX)
621 
WatchFileDescriptor(int fd,bool persistent,Mode mode,FileDescriptorWatcher * controller,Watcher * delegate)622 bool MessageLoopForIO::WatchFileDescriptor(int fd,
623                                            bool persistent,
624                                            Mode mode,
625                                            FileDescriptorWatcher *controller,
626                                            Watcher *delegate) {
627   return pump_libevent()->WatchFileDescriptor(
628       fd,
629       persistent,
630       static_cast<base::MessagePumpLibevent::Mode>(mode),
631       controller,
632       delegate);
633 }
634 
635 #endif
636