1 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/message_loop.h"
6
7 #include <algorithm>
8
9 #include "base/compiler_specific.h"
10 #include "base/lazy_instance.h"
11 #include "base/logging.h"
12 #include "base/message_pump_default.h"
13 #include "base/string_util.h"
14 #include "base/thread_local.h"
15
16 #if defined(OS_MACOSX)
17 #include "base/message_pump_mac.h"
18 #endif
19 #if defined(OS_POSIX)
20 #include "base/message_pump_libevent.h"
21 #include "base/third_party/valgrind/valgrind.h"
22 #endif
23 #if defined(OS_POSIX) && !defined(OS_MACOSX)
24 #include "base/message_pump_glib.h"
25 #endif
26
27 using base::Time;
28 using base::TimeDelta;
29
30 // A lazily created thread local storage for quick access to a thread's message
31 // loop, if one exists. This should be safe and free of static constructors.
32 static base::LazyInstance<base::ThreadLocalPointer<MessageLoop> > lazy_tls_ptr(
33 base::LINKER_INITIALIZED);
34
35 //------------------------------------------------------------------------------
36
37 // Logical events for Histogram profiling. Run with -message-loop-histogrammer
38 // to get an accounting of messages and actions taken on each thread.
39 static const int kTaskRunEvent = 0x1;
40 static const int kTimerEvent = 0x2;
41
42 // Provide range of message IDs for use in histogramming and debug display.
43 static const int kLeastNonZeroMessageId = 1;
44 static const int kMaxMessageId = 1099;
45 static const int kNumberOfDistinctMessagesDisplayed = 1100;
46
47 //------------------------------------------------------------------------------
48
49 #if defined(OS_WIN)
50
51 // Upon a SEH exception in this thread, it restores the original unhandled
52 // exception filter.
SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter)53 static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) {
54 ::SetUnhandledExceptionFilter(old_filter);
55 return EXCEPTION_CONTINUE_SEARCH;
56 }
57
58 // Retrieves a pointer to the current unhandled exception filter. There
59 // is no standalone getter method.
GetTopSEHFilter()60 static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() {
61 LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL;
62 top_filter = ::SetUnhandledExceptionFilter(0);
63 ::SetUnhandledExceptionFilter(top_filter);
64 return top_filter;
65 }
66
67 #endif // defined(OS_WIN)
68
69 //------------------------------------------------------------------------------
70
71 // static
current()72 MessageLoop* MessageLoop::current() {
73 // TODO(darin): sadly, we cannot enable this yet since people call us even
74 // when they have no intention of using us.
75 // DCHECK(loop) << "Ouch, did you forget to initialize me?";
76 return lazy_tls_ptr.Pointer()->Get();
77 }
78
MessageLoop(Type type)79 MessageLoop::MessageLoop(Type type)
80 : type_(type),
81 nestable_tasks_allowed_(true),
82 exception_restoration_(false),
83 state_(NULL),
84 next_sequence_num_(0) {
85 DCHECK(!current()) << "should only have one message loop per thread";
86 lazy_tls_ptr.Pointer()->Set(this);
87
88 #if defined(OS_WIN)
89 // TODO(rvargas): Get rid of the OS guards.
90 if (type_ == TYPE_DEFAULT) {
91 pump_ = new base::MessagePumpDefault();
92 } else if (type_ == TYPE_IO) {
93 pump_ = new base::MessagePumpForIO();
94 } else {
95 DCHECK(type_ == TYPE_UI);
96 pump_ = new base::MessagePumpForUI();
97 }
98 #elif defined(OS_POSIX)
99 if (type_ == TYPE_UI) {
100 #if defined(OS_MACOSX)
101 pump_ = base::MessagePumpMac::Create();
102 #else
103 pump_ = new base::MessagePumpForUI();
104 #endif
105 } else if (type_ == TYPE_IO) {
106 pump_ = new base::MessagePumpLibevent();
107 } else {
108 pump_ = new base::MessagePumpDefault();
109 }
110 #endif // OS_POSIX
111 }
112
~MessageLoop()113 MessageLoop::~MessageLoop() {
114 DCHECK(this == current());
115
116 // Let interested parties have one last shot at accessing this.
117 FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_,
118 WillDestroyCurrentMessageLoop());
119
120 DCHECK(!state_);
121
122 // Clean up any unprocessed tasks, but take care: deleting a task could
123 // result in the addition of more tasks (e.g., via DeleteSoon). We set a
124 // limit on the number of times we will allow a deleted task to generate more
125 // tasks. Normally, we should only pass through this loop once or twice. If
126 // we end up hitting the loop limit, then it is probably due to one task that
127 // is being stubborn. Inspect the queues to see who is left.
128 bool did_work;
129 for (int i = 0; i < 100; ++i) {
130 DeletePendingTasks();
131 ReloadWorkQueue();
132 // If we end up with empty queues, then break out of the loop.
133 did_work = DeletePendingTasks();
134 if (!did_work)
135 break;
136 }
137 DCHECK(!did_work);
138
139 // OK, now make it so that no one can find us.
140 lazy_tls_ptr.Pointer()->Set(NULL);
141 }
142
AddDestructionObserver(DestructionObserver * obs)143 void MessageLoop::AddDestructionObserver(DestructionObserver *obs) {
144 DCHECK(this == current());
145 destruction_observers_.AddObserver(obs);
146 }
147
RemoveDestructionObserver(DestructionObserver * obs)148 void MessageLoop::RemoveDestructionObserver(DestructionObserver *obs) {
149 DCHECK(this == current());
150 destruction_observers_.RemoveObserver(obs);
151 }
152
Run()153 void MessageLoop::Run() {
154 AutoRunState save_state(this);
155 RunHandler();
156 }
157
RunAllPending()158 void MessageLoop::RunAllPending() {
159 AutoRunState save_state(this);
160 state_->quit_received = true; // Means run until we would otherwise block.
161 RunHandler();
162 }
163
164 // Runs the loop in two different SEH modes:
165 // enable_SEH_restoration_ = false : any unhandled exception goes to the last
166 // one that calls SetUnhandledExceptionFilter().
167 // enable_SEH_restoration_ = true : any unhandled exception goes to the filter
168 // that was existed before the loop was run.
RunHandler()169 void MessageLoop::RunHandler() {
170 #if defined(OS_WIN)
171 if (exception_restoration_) {
172 RunInternalInSEHFrame();
173 return;
174 }
175 #endif
176
177 RunInternal();
178 }
179 //------------------------------------------------------------------------------
180 #if defined(OS_WIN)
RunInternalInSEHFrame()181 __declspec(noinline) void MessageLoop::RunInternalInSEHFrame() {
182 LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter();
183 __try {
184 RunInternal();
185 } __except(SEHFilter(current_filter)) {
186 }
187 return;
188 }
189 #endif
190 //------------------------------------------------------------------------------
191
RunInternal()192 void MessageLoop::RunInternal() {
193 DCHECK(this == current());
194
195 StartHistogrammer();
196
197 #if !defined(OS_MACOSX)
198 if (state_->dispatcher && type() == TYPE_UI) {
199 static_cast<base::MessagePumpForUI*>(pump_.get())->
200 RunWithDispatcher(this, state_->dispatcher);
201 return;
202 }
203 #endif
204
205 pump_->Run(this);
206 }
207
208 //------------------------------------------------------------------------------
209 // Wrapper functions for use in above message loop framework.
210
ProcessNextDelayedNonNestableTask()211 bool MessageLoop::ProcessNextDelayedNonNestableTask() {
212 if (state_->run_depth != 1)
213 return false;
214
215 if (deferred_non_nestable_work_queue_.empty())
216 return false;
217
218 Task* task = deferred_non_nestable_work_queue_.front().task;
219 deferred_non_nestable_work_queue_.pop();
220
221 RunTask(task);
222 return true;
223 }
224
225 //------------------------------------------------------------------------------
226
Quit()227 void MessageLoop::Quit() {
228 DCHECK(current() == this);
229 if (state_) {
230 state_->quit_received = true;
231 } else {
232 NOTREACHED() << "Must be inside Run to call Quit";
233 }
234 }
235
PostTask(const tracked_objects::Location & from_here,Task * task)236 void MessageLoop::PostTask(
237 const tracked_objects::Location& from_here, Task* task) {
238 PostTask_Helper(from_here, task, 0, true);
239 }
240
PostDelayedTask(const tracked_objects::Location & from_here,Task * task,int64 delay_ms)241 void MessageLoop::PostDelayedTask(
242 const tracked_objects::Location& from_here, Task* task, int64 delay_ms) {
243 PostTask_Helper(from_here, task, delay_ms, true);
244 }
245
PostNonNestableTask(const tracked_objects::Location & from_here,Task * task)246 void MessageLoop::PostNonNestableTask(
247 const tracked_objects::Location& from_here, Task* task) {
248 PostTask_Helper(from_here, task, 0, false);
249 }
250
PostNonNestableDelayedTask(const tracked_objects::Location & from_here,Task * task,int64 delay_ms)251 void MessageLoop::PostNonNestableDelayedTask(
252 const tracked_objects::Location& from_here, Task* task, int64 delay_ms) {
253 PostTask_Helper(from_here, task, delay_ms, false);
254 }
255
256 // Possibly called on a background thread!
PostTask_Helper(const tracked_objects::Location & from_here,Task * task,int64 delay_ms,bool nestable)257 void MessageLoop::PostTask_Helper(
258 const tracked_objects::Location& from_here, Task* task, int64 delay_ms,
259 bool nestable) {
260 task->SetBirthPlace(from_here);
261
262 PendingTask pending_task(task, nestable);
263
264 if (delay_ms > 0) {
265 pending_task.delayed_run_time =
266 Time::Now() + TimeDelta::FromMilliseconds(delay_ms);
267 } else {
268 DCHECK_EQ(delay_ms, 0) << "delay should not be negative";
269 }
270
271 // Warning: Don't try to short-circuit, and handle this thread's tasks more
272 // directly, as it could starve handling of foreign threads. Put every task
273 // into this queue.
274
275 scoped_refptr<base::MessagePump> pump;
276 {
277 AutoLock locked(incoming_queue_lock_);
278
279 bool was_empty = incoming_queue_.empty();
280 incoming_queue_.push(pending_task);
281 if (!was_empty)
282 return; // Someone else should have started the sub-pump.
283
284 pump = pump_;
285 }
286 // Since the incoming_queue_ may contain a task that destroys this message
287 // loop, we cannot exit incoming_queue_lock_ until we are done with |this|.
288 // We use a stack-based reference to the message pump so that we can call
289 // ScheduleWork outside of incoming_queue_lock_.
290
291 pump->ScheduleWork();
292 }
293
SetNestableTasksAllowed(bool allowed)294 void MessageLoop::SetNestableTasksAllowed(bool allowed) {
295 if (nestable_tasks_allowed_ != allowed) {
296 nestable_tasks_allowed_ = allowed;
297 if (!nestable_tasks_allowed_)
298 return;
299 // Start the native pump if we are not already pumping.
300 pump_->ScheduleWork();
301 }
302 }
303
NestableTasksAllowed() const304 bool MessageLoop::NestableTasksAllowed() const {
305 return nestable_tasks_allowed_;
306 }
307
IsNested()308 bool MessageLoop::IsNested() {
309 return state_->run_depth > 1;
310 }
311
312 //------------------------------------------------------------------------------
313
RunTask(Task * task)314 void MessageLoop::RunTask(Task* task) {
315 DCHECK(nestable_tasks_allowed_);
316 // Execute the task and assume the worst: It is probably not reentrant.
317 nestable_tasks_allowed_ = false;
318
319 HistogramEvent(kTaskRunEvent);
320 task->Run();
321 delete task;
322
323 nestable_tasks_allowed_ = true;
324 }
325
DeferOrRunPendingTask(const PendingTask & pending_task)326 bool MessageLoop::DeferOrRunPendingTask(const PendingTask& pending_task) {
327 if (pending_task.nestable || state_->run_depth == 1) {
328 RunTask(pending_task.task);
329 // Show that we ran a task (Note: a new one might arrive as a
330 // consequence!).
331 return true;
332 }
333
334 // We couldn't run the task now because we're in a nested message loop
335 // and the task isn't nestable.
336 deferred_non_nestable_work_queue_.push(pending_task);
337 return false;
338 }
339
AddToDelayedWorkQueue(const PendingTask & pending_task)340 void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) {
341 // Move to the delayed work queue. Initialize the sequence number
342 // before inserting into the delayed_work_queue_. The sequence number
343 // is used to faciliate FIFO sorting when two tasks have the same
344 // delayed_run_time value.
345 PendingTask new_pending_task(pending_task);
346 new_pending_task.sequence_num = next_sequence_num_++;
347 delayed_work_queue_.push(new_pending_task);
348 }
349
ReloadWorkQueue()350 void MessageLoop::ReloadWorkQueue() {
351 // We can improve performance of our loading tasks from incoming_queue_ to
352 // work_queue_ by waiting until the last minute (work_queue_ is empty) to
353 // load. That reduces the number of locks-per-task significantly when our
354 // queues get large.
355 if (!work_queue_.empty())
356 return; // Wait till we *really* need to lock and load.
357
358 // Acquire all we can from the inter-thread queue with one lock acquisition.
359 {
360 AutoLock lock(incoming_queue_lock_);
361 if (incoming_queue_.empty())
362 return;
363 incoming_queue_.Swap(&work_queue_); // Constant time
364 DCHECK(incoming_queue_.empty());
365 }
366 }
367
DeletePendingTasks()368 bool MessageLoop::DeletePendingTasks() {
369 bool did_work = !work_queue_.empty();
370 while (!work_queue_.empty()) {
371 PendingTask pending_task = work_queue_.front();
372 work_queue_.pop();
373 if (!pending_task.delayed_run_time.is_null()) {
374 // We want to delete delayed tasks in the same order in which they would
375 // normally be deleted in case of any funny dependencies between delayed
376 // tasks.
377 AddToDelayedWorkQueue(pending_task);
378 } else {
379 // TODO(darin): Delete all tasks once it is safe to do so.
380 // Until it is totally safe, just do it when running Purify or
381 // Valgrind.
382 #if defined(PURIFY)
383 delete pending_task.task;
384 #elif defined(OS_POSIX)
385 if (RUNNING_ON_VALGRIND)
386 delete pending_task.task;
387 #endif // defined(OS_POSIX)
388 }
389 }
390 did_work |= !deferred_non_nestable_work_queue_.empty();
391 while (!deferred_non_nestable_work_queue_.empty()) {
392 // TODO(darin): Delete all tasks once it is safe to do so.
393 // Until it is totaly safe, only delete them under Purify and Valgrind.
394 Task* task = NULL;
395 #if defined(PURIFY)
396 task = deferred_non_nestable_work_queue_.front().task;
397 #elif defined(OS_POSIX)
398 if (RUNNING_ON_VALGRIND)
399 task = deferred_non_nestable_work_queue_.front().task;
400 #endif
401 deferred_non_nestable_work_queue_.pop();
402 if (task)
403 delete task;
404 }
405 did_work |= !delayed_work_queue_.empty();
406 while (!delayed_work_queue_.empty()) {
407 Task* task = delayed_work_queue_.top().task;
408 delayed_work_queue_.pop();
409 delete task;
410 }
411 return did_work;
412 }
413
DoWork()414 bool MessageLoop::DoWork() {
415 if (!nestable_tasks_allowed_) {
416 // Task can't be executed right now.
417 return false;
418 }
419
420 for (;;) {
421 ReloadWorkQueue();
422 if (work_queue_.empty())
423 break;
424
425 // Execute oldest task.
426 do {
427 PendingTask pending_task = work_queue_.front();
428 work_queue_.pop();
429 if (!pending_task.delayed_run_time.is_null()) {
430 AddToDelayedWorkQueue(pending_task);
431 // If we changed the topmost task, then it is time to re-schedule.
432 if (delayed_work_queue_.top().task == pending_task.task)
433 pump_->ScheduleDelayedWork(pending_task.delayed_run_time);
434 } else {
435 if (DeferOrRunPendingTask(pending_task))
436 return true;
437 }
438 } while (!work_queue_.empty());
439 }
440
441 // Nothing happened.
442 return false;
443 }
444
DoDelayedWork(Time * next_delayed_work_time)445 bool MessageLoop::DoDelayedWork(Time* next_delayed_work_time) {
446 if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) {
447 *next_delayed_work_time = Time();
448 return false;
449 }
450
451 if (delayed_work_queue_.top().delayed_run_time > Time::Now()) {
452 *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
453 return false;
454 }
455
456 PendingTask pending_task = delayed_work_queue_.top();
457 delayed_work_queue_.pop();
458
459 if (!delayed_work_queue_.empty())
460 *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
461
462 return DeferOrRunPendingTask(pending_task);
463 }
464
DoIdleWork()465 bool MessageLoop::DoIdleWork() {
466 if (ProcessNextDelayedNonNestableTask())
467 return true;
468
469 if (state_->quit_received)
470 pump_->Quit();
471
472 return false;
473 }
474
475 //------------------------------------------------------------------------------
476 // MessageLoop::AutoRunState
477
AutoRunState(MessageLoop * loop)478 MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) {
479 // Make the loop reference us.
480 previous_state_ = loop_->state_;
481 if (previous_state_) {
482 run_depth = previous_state_->run_depth + 1;
483 } else {
484 run_depth = 1;
485 }
486 loop_->state_ = this;
487
488 // Initialize the other fields:
489 quit_received = false;
490 #if !defined(OS_MACOSX)
491 dispatcher = NULL;
492 #endif
493 }
494
~AutoRunState()495 MessageLoop::AutoRunState::~AutoRunState() {
496 loop_->state_ = previous_state_;
497 }
498
499 //------------------------------------------------------------------------------
500 // MessageLoop::PendingTask
501
operator <(const PendingTask & other) const502 bool MessageLoop::PendingTask::operator<(const PendingTask& other) const {
503 // Since the top of a priority queue is defined as the "greatest" element, we
504 // need to invert the comparison here. We want the smaller time to be at the
505 // top of the heap.
506
507 if (delayed_run_time < other.delayed_run_time)
508 return false;
509
510 if (delayed_run_time > other.delayed_run_time)
511 return true;
512
513 // If the times happen to match, then we use the sequence number to decide.
514 // Compare the difference to support integer roll-over.
515 return (sequence_num - other.sequence_num) > 0;
516 }
517
518 //------------------------------------------------------------------------------
519 // Method and data for histogramming events and actions taken by each instance
520 // on each thread.
521
522 // static
523 bool MessageLoop::enable_histogrammer_ = false;
524
525 // static
EnableHistogrammer(bool enable)526 void MessageLoop::EnableHistogrammer(bool enable) {
527 enable_histogrammer_ = enable;
528 }
529
StartHistogrammer()530 void MessageLoop::StartHistogrammer() {
531 if (enable_histogrammer_ && !message_histogram_.get()
532 && StatisticsRecorder::WasStarted()) {
533 DCHECK(!thread_name_.empty());
534 message_histogram_ = LinearHistogram::FactoryGet("MsgLoop:" + thread_name_,
535 kLeastNonZeroMessageId, kMaxMessageId,
536 kNumberOfDistinctMessagesDisplayed,
537 message_histogram_->kHexRangePrintingFlag);
538 message_histogram_->SetRangeDescriptions(event_descriptions_);
539 }
540 }
541
HistogramEvent(int event)542 void MessageLoop::HistogramEvent(int event) {
543 if (message_histogram_.get())
544 message_histogram_->Add(event);
545 }
546
547 // Provide a macro that takes an expression (such as a constant, or macro
548 // constant) and creates a pair to initalize an array of pairs. In this case,
549 // our pair consists of the expressions value, and the "stringized" version
550 // of the expression (i.e., the exrpression put in quotes). For example, if
551 // we have:
552 // #define FOO 2
553 // #define BAR 5
554 // then the following:
555 // VALUE_TO_NUMBER_AND_NAME(FOO + BAR)
556 // will expand to:
557 // {7, "FOO + BAR"}
558 // We use the resulting array as an argument to our histogram, which reads the
559 // number as a bucket identifier, and proceeds to use the corresponding name
560 // in the pair (i.e., the quoted string) when printing out a histogram.
561 #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name},
562
563 // static
564 const LinearHistogram::DescriptionPair MessageLoop::event_descriptions_[] = {
565 // Provide some pretty print capability in our histogram for our internal
566 // messages.
567
568 // A few events we handle (kindred to messages), and used to profile actions.
569 VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent)
570 VALUE_TO_NUMBER_AND_NAME(kTimerEvent)
571
572 {-1, NULL} // The list must be null terminated, per API to histogram.
573 };
574
575 //------------------------------------------------------------------------------
576 // MessageLoopForUI
577
578 #if defined(OS_WIN)
WillProcessMessage(const MSG & message)579 void MessageLoopForUI::WillProcessMessage(const MSG& message) {
580 pump_win()->WillProcessMessage(message);
581 }
DidProcessMessage(const MSG & message)582 void MessageLoopForUI::DidProcessMessage(const MSG& message) {
583 pump_win()->DidProcessMessage(message);
584 }
PumpOutPendingPaintMessages()585 void MessageLoopForUI::PumpOutPendingPaintMessages() {
586 pump_ui()->PumpOutPendingPaintMessages();
587 }
588
589 #endif // defined(OS_WIN)
590
591 #if !defined(OS_MACOSX)
AddObserver(Observer * observer)592 void MessageLoopForUI::AddObserver(Observer* observer) {
593 pump_ui()->AddObserver(observer);
594 }
595
RemoveObserver(Observer * observer)596 void MessageLoopForUI::RemoveObserver(Observer* observer) {
597 pump_ui()->RemoveObserver(observer);
598 }
599
Run(Dispatcher * dispatcher)600 void MessageLoopForUI::Run(Dispatcher* dispatcher) {
601 AutoRunState save_state(this);
602 state_->dispatcher = dispatcher;
603 RunHandler();
604 }
605 #endif // !defined(OS_MACOSX)
606
607 //------------------------------------------------------------------------------
608 // MessageLoopForIO
609
610 #if defined(OS_WIN)
611
RegisterIOHandler(HANDLE file,IOHandler * handler)612 void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
613 pump_io()->RegisterIOHandler(file, handler);
614 }
615
WaitForIOCompletion(DWORD timeout,IOHandler * filter)616 bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
617 return pump_io()->WaitForIOCompletion(timeout, filter);
618 }
619
620 #elif defined(OS_POSIX)
621
WatchFileDescriptor(int fd,bool persistent,Mode mode,FileDescriptorWatcher * controller,Watcher * delegate)622 bool MessageLoopForIO::WatchFileDescriptor(int fd,
623 bool persistent,
624 Mode mode,
625 FileDescriptorWatcher *controller,
626 Watcher *delegate) {
627 return pump_libevent()->WatchFileDescriptor(
628 fd,
629 persistent,
630 static_cast<base::MessagePumpLibevent::Mode>(mode),
631 controller,
632 delegate);
633 }
634
635 #endif
636