• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_STACK_CONTAINER_H_
6 #define BASE_STACK_CONTAINER_H_
7 
8 #include <string>
9 #include <vector>
10 
11 #include "base/basictypes.h"
12 
13 // This allocator can be used with STL containers to provide a stack buffer
14 // from which to allocate memory and overflows onto the heap. This stack buffer
15 // would be allocated on the stack and allows us to avoid heap operations in
16 // some situations.
17 //
18 // STL likes to make copies of allocators, so the allocator itself can't hold
19 // the data. Instead, we make the creator responsible for creating a
20 // StackAllocator::Source which contains the data. Copying the allocator
21 // merely copies the pointer to this shared source, so all allocators created
22 // based on our allocator will share the same stack buffer.
23 //
24 // This stack buffer implementation is very simple. The first allocation that
25 // fits in the stack buffer will use the stack buffer. Any subsequent
26 // allocations will not use the stack buffer, even if there is unused room.
27 // This makes it appropriate for array-like containers, but the caller should
28 // be sure to reserve() in the container up to the stack buffer size. Otherwise
29 // the container will allocate a small array which will "use up" the stack
30 // buffer.
31 template<typename T, size_t stack_capacity>
32 class StackAllocator : public std::allocator<T> {
33  public:
34   typedef typename std::allocator<T>::pointer pointer;
35   typedef typename std::allocator<T>::size_type size_type;
36 
37   // Backing store for the allocator. The container owner is responsible for
38   // maintaining this for as long as any containers using this allocator are
39   // live.
40   struct Source {
SourceSource41     Source() : used_stack_buffer_(false) {
42     }
43 
44     // Casts the buffer in its right type.
stack_bufferSource45     T* stack_buffer() { return reinterpret_cast<T*>(stack_buffer_); }
stack_bufferSource46     const T* stack_buffer() const {
47       return reinterpret_cast<const T*>(stack_buffer_);
48     }
49 
50     //
51     // IMPORTANT: Take care to ensure that stack_buffer_ is aligned
52     // since it is used to mimic an array of T.
53     // Be careful while declaring any unaligned types (like bool)
54     // before stack_buffer_.
55     //
56 
57     // The buffer itself. It is not of type T because we don't want the
58     // constructors and destructors to be automatically called. Define a POD
59     // buffer of the right size instead.
60     char stack_buffer_[sizeof(T[stack_capacity])];
61 
62     // Set when the stack buffer is used for an allocation. We do not track
63     // how much of the buffer is used, only that somebody is using it.
64     bool used_stack_buffer_;
65   };
66 
67   // Used by containers when they want to refer to an allocator of type U.
68   template<typename U>
69   struct rebind {
70     typedef StackAllocator<U, stack_capacity> other;
71   };
72 
73   // For the straight up copy c-tor, we can share storage.
StackAllocator(const StackAllocator<T,stack_capacity> & rhs)74   StackAllocator(const StackAllocator<T, stack_capacity>& rhs)
75       : source_(rhs.source_) {
76   }
77 
78   // ISO C++ requires the following constructor to be defined,
79   // and std::vector in VC++2008SP1 Release fails with an error
80   // in the class _Container_base_aux_alloc_real (from <xutility>)
81   // if the constructor does not exist.
82   // For this constructor, we cannot share storage; there's
83   // no guarantee that the Source buffer of Ts is large enough
84   // for Us.
85   // TODO: If we were fancy pants, perhaps we could share storage
86   // iff sizeof(T) == sizeof(U).
87   template<typename U, size_t other_capacity>
StackAllocator(const StackAllocator<U,other_capacity> & other)88   StackAllocator(const StackAllocator<U, other_capacity>& other)
89       : source_(NULL) {
90   }
91 
StackAllocator(Source * source)92   explicit StackAllocator(Source* source) : source_(source) {
93   }
94 
95   // Actually do the allocation. Use the stack buffer if nobody has used it yet
96   // and the size requested fits. Otherwise, fall through to the standard
97   // allocator.
98   pointer allocate(size_type n, void* hint = 0) {
99     if (source_ != NULL && !source_->used_stack_buffer_
100         && n <= stack_capacity) {
101       source_->used_stack_buffer_ = true;
102       return source_->stack_buffer();
103     } else {
104       return std::allocator<T>::allocate(n, hint);
105     }
106   }
107 
108   // Free: when trying to free the stack buffer, just mark it as free. For
109   // non-stack-buffer pointers, just fall though to the standard allocator.
deallocate(pointer p,size_type n)110   void deallocate(pointer p, size_type n) {
111     if (source_ != NULL && p == source_->stack_buffer())
112       source_->used_stack_buffer_ = false;
113     else
114       std::allocator<T>::deallocate(p, n);
115   }
116 
117  private:
118   Source* source_;
119 };
120 
121 // A wrapper around STL containers that maintains a stack-sized buffer that the
122 // initial capacity of the vector is based on. Growing the container beyond the
123 // stack capacity will transparently overflow onto the heap. The container must
124 // support reserve().
125 //
126 // WATCH OUT: the ContainerType MUST use the proper StackAllocator for this
127 // type. This object is really intended to be used only internally. You'll want
128 // to use the wrappers below for different types.
129 template<typename TContainerType, int stack_capacity>
130 class StackContainer {
131  public:
132   typedef TContainerType ContainerType;
133   typedef typename ContainerType::value_type ContainedType;
134   typedef StackAllocator<ContainedType, stack_capacity> Allocator;
135 
136   // Allocator must be constructed before the container!
StackContainer()137   StackContainer() : allocator_(&stack_data_), container_(allocator_) {
138     // Make the container use the stack allocation by reserving our buffer size
139     // before doing anything else.
140     container_.reserve(stack_capacity);
141   }
142 
143   // Getters for the actual container.
144   //
145   // Danger: any copies of this made using the copy constructor must have
146   // shorter lifetimes than the source. The copy will share the same allocator
147   // and therefore the same stack buffer as the original. Use std::copy to
148   // copy into a "real" container for longer-lived objects.
container()149   ContainerType& container() { return container_; }
container()150   const ContainerType& container() const { return container_; }
151 
152   // Support operator-> to get to the container. This allows nicer syntax like:
153   //   StackContainer<...> foo;
154   //   std::sort(foo->begin(), foo->end());
155   ContainerType* operator->() { return &container_; }
156   const ContainerType* operator->() const { return &container_; }
157 
158 #ifdef UNIT_TEST
159   // Retrieves the stack source so that that unit tests can verify that the
160   // buffer is being used properly.
stack_data()161   const typename Allocator::Source& stack_data() const {
162     return stack_data_;
163   }
164 #endif
165 
166  protected:
167   typename Allocator::Source stack_data_;
168   Allocator allocator_;
169   ContainerType container_;
170 
171   DISALLOW_EVIL_CONSTRUCTORS(StackContainer);
172 };
173 
174 // StackString
175 template<size_t stack_capacity>
176 class StackString : public StackContainer<
177     std::basic_string<char,
178                       std::char_traits<char>,
179                       StackAllocator<char, stack_capacity> >,
180     stack_capacity> {
181  public:
StackString()182   StackString() : StackContainer<
183       std::basic_string<char,
184                         std::char_traits<char>,
185                         StackAllocator<char, stack_capacity> >,
186       stack_capacity>() {
187   }
188 
189  private:
190   DISALLOW_EVIL_CONSTRUCTORS(StackString);
191 };
192 
193 // StackWString
194 template<size_t stack_capacity>
195 class StackWString : public StackContainer<
196     std::basic_string<wchar_t,
197                       std::char_traits<wchar_t>,
198                       StackAllocator<wchar_t, stack_capacity> >,
199     stack_capacity> {
200  public:
StackWString()201   StackWString() : StackContainer<
202       std::basic_string<wchar_t,
203                         std::char_traits<wchar_t>,
204                         StackAllocator<wchar_t, stack_capacity> >,
205       stack_capacity>() {
206   }
207 
208  private:
209   DISALLOW_EVIL_CONSTRUCTORS(StackWString);
210 };
211 
212 // StackVector
213 //
214 // Example:
215 //   StackVector<int, 16> foo;
216 //   foo->push_back(22);  // we have overloaded operator->
217 //   foo[0] = 10;         // as well as operator[]
218 template<typename T, size_t stack_capacity>
219 class StackVector : public StackContainer<
220     std::vector<T, StackAllocator<T, stack_capacity> >,
221     stack_capacity> {
222  public:
StackVector()223   StackVector() : StackContainer<
224       std::vector<T, StackAllocator<T, stack_capacity> >,
225       stack_capacity>() {
226   }
227 
228   // We need to put this in STL containers sometimes, which requires a copy
229   // constructor. We can't call the regular copy constructor because that will
230   // take the stack buffer from the original. Here, we create an empty object
231   // and make a stack buffer of its own.
StackVector(const StackVector<T,stack_capacity> & other)232   StackVector(const StackVector<T, stack_capacity>& other)
233       : StackContainer<
234             std::vector<T, StackAllocator<T, stack_capacity> >,
235             stack_capacity>() {
236     this->container().assign(other->begin(), other->end());
237   }
238 
239   StackVector<T, stack_capacity>& operator=(
240       const StackVector<T, stack_capacity>& other) {
241     this->container().assign(other->begin(), other->end());
242     return *this;
243   }
244 
245   // Vectors are commonly indexed, which isn't very convenient even with
246   // operator-> (using "->at()" does exception stuff we don't want).
247   T& operator[](size_t i) { return this->container().operator[](i); }
248   const T& operator[](size_t i) const {
249     return this->container().operator[](i);
250   }
251 };
252 
253 #endif  // BASE_STACK_CONTAINER_H_
254